From 292f63c2198f6fe32f9aba9c8d94e388fde2b409 Mon Sep 17 00:00:00 2001
From: EPISODES Platform Official Apps <>
Date: Tue, 25 Mar 2025 12:31:44 +0100
Subject: [PATCH] Initial commit

---
 .gitignore                    |   7 +
 README.md                     |   3 +
 src/Mmax.py                   | 552 ++++++++++++++++++++++++++++++++++++++++++
 src/Mmax_plot.py              | 206 ++++++++++++++++
 src/maxmagnitude_wrapper.py   |  49 ++++
 src/util/CandidateEventsTS.py |  43 ++++
 src/util/Find_idx4Time.py     |  14 ++
 src/util/M_max_models.py      | 217 +++++++++++++++++
 src/util/base_logger.py       |  62 +++++
 9 files changed, 1153 insertions(+)
 create mode 100644 .gitignore
 create mode 100644 README.md
 create mode 100644 src/Mmax.py
 create mode 100644 src/Mmax_plot.py
 create mode 100644 src/maxmagnitude_wrapper.py
 create mode 100644 src/util/CandidateEventsTS.py
 create mode 100644 src/util/Find_idx4Time.py
 create mode 100644 src/util/M_max_models.py
 create mode 100644 src/util/base_logger.py

diff --git a/.gitignore b/.gitignore
new file mode 100644
index 0000000..dfd7964
--- /dev/null
+++ b/.gitignore
@@ -0,0 +1,7 @@
+# Intellij
+.idea/
+*.iml
+*.iws
+
+# Mac
+.DS_Store
diff --git a/README.md b/README.md
new file mode 100644
index 0000000..547646e
--- /dev/null
+++ b/README.md
@@ -0,0 +1,3 @@
+MaxMagnitudeDPModels app official repository
+
+Link to remote: https://epos-apps.grid.cyfronet.pl/official-apps/MaxMagnitudeDPModels
\ No newline at end of file
diff --git a/src/Mmax.py b/src/Mmax.py
new file mode 100644
index 0000000..3b747b6
--- /dev/null
+++ b/src/Mmax.py
@@ -0,0 +1,552 @@
+import sys
+import numpy as np
+import pandas as pd
+# import os
+import scipy.io
+import logging
+from geopy.distance import geodesic
+from geopy.point import Point
+
+from util.base_logger import getDefaultLogger
+
+def main(Input_catalog, Input_injection_rate, time_win_in_hours, time_step_in_hour, time_win_type,
+         End_time, ev_limit, Model_index, Mc, Mu, G, ssd, C, b_value_type, cl, mag_name, time_inj=None, time_shut_in=None,
+         time_big_ev=None, Inpar = ["SER", "dv", "d_num"]):
+    """
+    Main function for application: MAXIMUM_MAGNITUDE_DETERMINISTIC_MODELS
+    Arguments:
+        Input catalog: path to input file of type 'catalog'
+        Input injection rate: path to input file of type 'injection_rate'
+        **kwargs: Model paramters.
+    Returns:
+        'PLOT_Mmax_param': Plot of all results (also check 'application.log' for more info)
+        'DATA_Mmax_param': Results with 'csv' format
+        'application.log': Logging file
+    """
+
+    f_indx = Model_index
+    b_method = b_value_type
+    Plot_flag = 0
+
+    # Setting up the logfile--------------------------------
+    logger = getDefaultLogger(__name__)
+
+    # Importing utilities ----------------------
+    logger.info("Import utilities")
+    from util.Find_idx4Time import Find_idx4Time
+    from util.CandidateEventsTS import CandidateEventsTS
+    from util.M_max_models import M_max_models
+
+    def latlon_to_enu(lat, lon, alt):
+        lat0 = np.mean(lat)
+        lon0 = np.mean(lon)
+        alt0 = 0
+
+        # Reference point (origin)
+        origin = Point(lat0, lon0, alt0)
+        
+        east = np.zeros_like(lon)
+        north = np.zeros_like(lat)
+        up = np.zeros_like(alt)
+
+        for i in range(len(lon)):
+
+            # Target point
+            target = Point(lat[i], lon[i], alt[i])
+            
+            # Calculate East-North-Up
+            east[i] = geodesic((lat0, lon0), (lat0, lon[i])).meters
+            if lon[i] < lon0:
+                east[i] = -east[i]
+            north[i] = geodesic((lat0, lon0), (lat[i], lon0)).meters
+            if lat[i] < lat0:
+                north[i] = -north[i]
+            up = alt - alt0
+        
+        return east, north, up
+
+    # Importing data
+    logger.info("Import data")
+    mat = scipy.io.loadmat(Input_catalog)
+    Cat_structure_name = scipy.io.whosmat(Input_catalog)[0][0]
+    Cat_structure = mat[Cat_structure_name]
+    Cat_id, Cat_t, Cat_m = [], [], []
+    Cat_x, Cat_y, Cat_z = [], [], []
+    Cat_lat, Cat_lon, Cat_elv, Cat_depth = [], [], [], []
+    for i in range(1,Cat_structure.shape[1]):
+        if Cat_structure.T[i][0][0][0] == 'X':
+            Cat_x = Cat_structure.T[i][0][2]
+            if not all(np.isfinite(Cat_x)):
+                raise ValueError("Catalog-X contains infinite value") 
+            if Cat_structure.T[i][0][3][0] == 'km':
+                Cat_x *= 1000
+
+        if Cat_structure.T[i][0][0][0] == 'Lat':
+            Cat_lat = Cat_structure.T[i][0][2]
+            if not all(np.isfinite(Cat_lat)):
+                raise ValueError("Catalog-Lat contains infinite value") 
+            
+        if Cat_structure.T[i][0][0][0] == 'Y':
+            Cat_y = Cat_structure.T[i][0][2]
+            if not all(np.isfinite(Cat_y)):
+                raise ValueError("Catalog-Y contains infinite value") 
+            if Cat_structure.T[i][0][3][0] == 'km':
+                Cat_y *= 1000
+
+        if Cat_structure.T[i][0][0][0] == 'Long':
+            Cat_lon = Cat_structure.T[i][0][2]
+            if not all(np.isfinite(Cat_lon)):
+                raise ValueError("Catalog-Long contains infinite value") 
+            
+        if Cat_structure.T[i][0][0][0] == 'Z':
+            Cat_z = Cat_structure.T[i][0][2]
+            if not all(np.isfinite(Cat_z)):
+                raise ValueError("Catalog-Z contains infinite value") 
+            if Cat_structure.T[i][0][3][0] == 'km':
+                Cat_z *= 1000
+
+        if Cat_structure.T[i][0][0][0] == 'Depth':
+            Cat_depth = Cat_structure.T[i][0][2]
+            if not all(np.isfinite(Cat_depth)):
+                raise ValueError("Catalog-Depth contains infinite value")
+            if Cat_structure.T[i][0][3][0] == 'km':
+                Cat_depth *= 1000
+
+        if Cat_structure.T[i][0][0][0] == 'Elevation':
+            Cat_elv = Cat_structure.T[i][0][2]
+            if not all(np.isfinite(Cat_elv)):
+                raise ValueError("Catalog-Elevation contains infinite value")
+            if Cat_structure.T[i][0][3][0] == 'km':
+                Cat_elv *= 1000
+
+        if Cat_structure.T[i][0][0][0] == 'Time':
+            Cat_t = Cat_structure.T[i][0][2]
+            if not all(np.isfinite(Cat_t)):
+                raise ValueError("Catalog-Time contains infinite value")
+            
+        if Cat_structure.T[i][0][0][0] == mag_name:
+            Cat_m = Cat_structure.T[i][0][2]
+            # if not all(np.isfinite(Cat_m)):
+            if np.argwhere(all(np.isfinite(Cat_m))):
+                raise ValueError("Catalog-Magnitude contains infinite value")
+
+    if any(Cat_x):
+        Cat_id = np.linspace(0,Cat_x.shape[0],Cat_x.shape[0]).reshape((Cat_x.shape[0],1))
+        arg = (Cat_id, Cat_x, Cat_y, Cat_z, Cat_t, Cat_m)
+        Cat = np.concatenate(arg, axis=1)
+    elif any(Cat_lat):
+        if any(Cat_elv):
+            Cat_x, Cat_y, Cat_z = latlon_to_enu(Cat_lat, Cat_lon, Cat_elv)
+        elif any(Cat_depth):
+            Cat_x, Cat_y, Cat_z = latlon_to_enu(Cat_lat, Cat_lon, Cat_depth)
+        else:
+            raise ValueError("Catalog Depth or Elevation is not available")
+        Cat_id = np.linspace(0,Cat_x.shape[0],Cat_x.shape[0]).reshape((Cat_x.shape[0],1))
+        arg = (Cat_id, Cat_x, Cat_y, Cat_z, Cat_t, Cat_m)
+        Cat = np.concatenate(arg, axis=1)
+    else:
+        raise ValueError("Catalog data are not available")
+
+    mat = scipy.io.loadmat(Input_injection_rate)
+    Inj_structure = mat['d']
+    if 'Date' in Inj_structure.dtype.names:
+        inj_date = Inj_structure['Date'][0,0]
+        inj_rate = Inj_structure['Injection_rate'][0,0]
+        Hyd = np.concatenate((inj_date,inj_rate), axis=1)
+    else:
+        raise ValueError("Injection data are not available")
+
+    if Cat[0,4]>np.max(Hyd[:,0]) or Hyd[0,0]>np.max(Cat[:,4]):
+        raise ValueError('Catalog and injection data do not have time coverage!')
+    
+    if Hyd[0,0] < Cat[0,4]:
+        same_time_idx = Find_idx4Time(Hyd[:,0], Cat[0,4])
+        Hyd = Hyd[same_time_idx:,:]
+    Hyd[:,0] = (Hyd[:,0] - Cat[0,4])*24*3600
+    Cat[:,4] = (Cat[:,4] - Cat[0,4])*24*3600
+    logger.info('Start of the computations is based on the time of catalog data.')
+
+    # Model dictionary
+    Feat_dic = {
+    'indx'      :[0             ,1         ,2         ,3        ,4             ,5         ],
+    'Full_names':['All_M_max'   ,'McGarr'  ,'Hallo'   ,'Li'     ,'van-der-Elst','Shapiro' ],
+    'Short_name':['max_all'     , 'max_mcg', 'max_hlo', 'max_li', 'max_vde'    , 'max_shp'],
+    'f_num'     :[5             ,4         ,4         ,1        ,6             ,4         ],
+    'Param'     :[{'Mc': 0.8, 'b_method': ['b'], 'cl': [0.37], 'Inpar': ['dv','d_num'], 'Mu':0.6, 'G': 35*10**(9), 'ssd': 3*10**6, 'C': 0.95, 'ev_limit': 20, 'num_bootstraps': 100}]
+            }
+            
+    Feat_dic['Param'][0]['Inpar'] = Inpar
+    Feat_dic['Param'][0]['ev_limit'] = ev_limit
+    num_bootstraps = 100            # Number of bootstraping for standard error computation
+    Feat_dic['Param'][0]['num_bootstraps'] = num_bootstraps
+
+    if f_indx in [0,1,2,4]:
+        if Mc < np.min(Cat[:,-1]) or Mc > np.max(Cat[:,-1]):
+            raise ValueError("Completeness magnitude (Mc) is out of magnitude range")
+        Feat_dic['Param'][0]['Mc'] = Mc
+
+    if f_indx in [0,1,2]: 
+        if Mu < 0.2 or Mu > 0.8:
+            raise ValueError("Friction coefficient (Mu) must be between [0.2, 0.8]")
+        Feat_dic['Param'][0]['Mu'] = Mu
+
+    if f_indx in [0,1,2,3]:
+        if G < 1*10**(9) or G > 100*10**(9):
+            raise ValueError("Shear modulus of reservoir rock (G) must be between [1, 100] GPa")
+        Feat_dic['Param'][0]['G'] = G
+        
+    if f_indx in [0,5]:
+        if ssd < 0.1*10**(6) or ssd > 100*10**(6):
+            raise ValueError("Static stress drop (ssd) must be between [0.1, 100] MPa")
+        Feat_dic['Param'][0]['ssd'] = ssd
+
+    if f_indx in [0,5]:
+        if C < 0.5 or C > 5:
+            raise ValueError("Geometrical constant (C) of Shaprio's model must be between [0.5, 5]")
+        Feat_dic['Param'][0]['C'] = C
+
+    if f_indx in [0,1,2,4]:
+        if not b_method:
+            raise ValueError("Please chose an option for b-value")
+
+    if f_indx in [0,4]:
+        for cl_i in cl:
+            if cl_i < 0 or cl_i > 1:
+                raise ValueError("Confidence level (cl) of van der Elst model must be between [0, 1]")
+        Feat_dic['Param'][0]['cl'] = cl
+
+    # Setting up based on the config and model dic --------------
+    ModelClass = M_max_models()
+
+    Model_name = Feat_dic['Full_names'][f_indx]
+    ModelClass.f_name = Feat_dic['Short_name'][f_indx]
+    f_num = Feat_dic['f_num'][f_indx]
+
+    if Feat_dic['Param'][0]['Mc']:
+        ModelClass.Mc = Mc
+    else:
+        Mc = np.min(Cat[:,-1])
+        ModelClass.Mc = Mc
+
+    time_win = time_win_in_hours*3600 # in sec
+    ModelClass.time_win = time_win
+
+    if f_indx == 0:
+        # Only first b_methods is used
+        Feat_dic['Param'][0]['b_method'] = b_method[0]
+        ModelClass.b_method = Feat_dic['Param'][0]['b_method']
+        logger.info(f"All models are based on b_method: { b_method[0]}")
+        Feat_dic['Param'][0]['cl'] = [cl[0]]
+        ModelClass.cl = Feat_dic['Param'][0]['cl']
+        logger.info(f"All models are based on cl: { cl[0]}")
+        ModelClass.Mu = Feat_dic['Param'][0]['Mu']
+        ModelClass.G = Feat_dic['Param'][0]['G']
+        ModelClass.ssd = Feat_dic['Param'][0]['ssd']
+        ModelClass.C = Feat_dic['Param'][0]['C']
+        ModelClass.num_bootstraps = Feat_dic['Param'][0]['num_bootstraps']
+
+    if f_indx == 1 or f_indx == 2:
+        ModelClass.b_method = Feat_dic['Param'][0]['b_method']
+        ModelClass.Mu = Feat_dic['Param'][0]['Mu']
+        ModelClass.G = Feat_dic['Param'][0]['G']
+        ModelClass.num_bootstraps = Feat_dic['Param'][0]['num_bootstraps']
+        Feat_dic['Param'][0]['cl'] = [None]
+
+    if f_indx == 3:
+        Feat_dic['Param'][0]['b_method'] = [None]
+        ModelClass.G = Feat_dic['Param'][0]['G']
+        Feat_dic['Param'][0]['cl'] = [None]
+
+    if f_indx == 4:
+        ModelClass.b_method = Feat_dic['Param'][0]['b_method']
+        ModelClass.num_bootstraps = Feat_dic['Param'][0]['num_bootstraps']
+        ModelClass.G = Feat_dic['Param'][0]['G']
+        ModelClass.cl = Feat_dic['Param'][0]['cl']
+
+    if f_indx == 5:
+        ModelClass.ssd = Feat_dic['Param'][0]['ssd']
+        ModelClass.C = Feat_dic['Param'][0]['C']
+        Feat_dic['Param'][0]['b_method'] = [None]
+        Feat_dic['Param'][0]['cl'] = [None]
+
+    # Output dictionary --------------------------------
+    Output_dict = {
+        'Type'      :['idx', 'Time[day]'],
+        'label'     :[None, None],
+        'b_method'  :[None, None],
+        'cl'        :[None, None],
+    }
+
+    c_out = 2
+    if any(Feat_dic['Param'][0]['b_method']) and any(Feat_dic['Param'][0]['cl']):
+        for i in range(len(Feat_dic['Param'][0]['b_method'])):
+            for j in range(len(Feat_dic['Param'][0]['cl'])):
+                if f_indx == 0: # f_index == 0
+                    for i in Feat_dic['Full_names'][1:]:
+                        Output_dict['Type'].append('Maximum magnitude')
+                        Output_dict['label'].append(i)
+                        Output_dict['b_method'].append(None)
+                        Output_dict['cl'].append(None)
+                        c_out += 1
+                elif j == 0: # f_index == 4
+                    Output_dict['Type'].append('b_value')
+                    Output_dict['label'].append('b_value')
+                    Output_dict['b_method'].append(Feat_dic['Param'][0]['b_method'][i])
+                    Output_dict['cl'].append(None)
+
+                    Output_dict['Type'].append('Standard Error')
+                    Output_dict['label'].append('b_std_err')
+                    Output_dict['b_method'].append(Feat_dic['Param'][0]['b_method'][i])
+                    Output_dict['cl'].append(None)
+
+                    Output_dict['Type'].append('Seismogenic Index')
+                    Output_dict['label'].append('SI')
+                    Output_dict['b_method'].append(Feat_dic['Param'][0]['b_method'][i])
+                    Output_dict['cl'].append(None)
+
+                    Output_dict['Type'].append('Standard Error')
+                    Output_dict['label'].append('si_std_err')
+                    Output_dict['b_method'].append(Feat_dic['Param'][0]['b_method'][i])
+                    Output_dict['cl'].append(None)
+
+                    Output_dict['Type'].append('Maximum magnitude')
+                    Output_dict['label'].append(Model_name)
+                    Output_dict['b_method'].append(Feat_dic['Param'][0]['b_method'][i])
+                    Output_dict['cl'].append(Feat_dic['Param'][0]['cl'][j])
+
+                    Output_dict['Type'].append('Standard Error')
+                    Output_dict['label'].append('M_std_err')
+                    Output_dict['b_method'].append(Feat_dic['Param'][0]['b_method'][i])
+                    Output_dict['cl'].append(None)
+                    c_out += 6
+
+                else: # f_index == 4
+                    Output_dict['Type'].append('Maximum magnitude')
+                    Output_dict['label'].append(Model_name)
+                    Output_dict['b_method'].append(Feat_dic['Param'][0]['b_method'][i])
+                    Output_dict['cl'].append(Feat_dic['Param'][0]['cl'][j])
+
+                    Output_dict['Type'].append('Standard Error')
+                    Output_dict['label'].append('M_std_err')
+                    Output_dict['b_method'].append(Feat_dic['Param'][0]['b_method'][i])
+                    Output_dict['cl'].append(None)
+                    c_out += 2
+
+    elif any(Feat_dic['Param'][0]['b_method']): # f_index == 1, 2
+        for i in range(len(Feat_dic['Param'][0]['b_method'])):
+            Output_dict['Type'].append('b_value')
+            Output_dict['label'].append('b_value')
+            Output_dict['b_method'].append(Feat_dic['Param'][0]['b_method'][i])
+            Output_dict['cl'].append(None)
+
+            Output_dict['Type'].append('Standard Error')
+            Output_dict['label'].append('b_std_err')
+            Output_dict['b_method'].append(Feat_dic['Param'][0]['b_method'][i])
+            Output_dict['cl'].append(None)
+
+            Output_dict['Type'].append('Maximum magnitude')
+            Output_dict['label'].append(Model_name)
+            Output_dict['b_method'].append(Feat_dic['Param'][0]['b_method'][i])
+            Output_dict['cl'].append(None)
+
+            Output_dict['Type'].append('Standard Error')
+            Output_dict['label'].append('M_std_err')
+            Output_dict['b_method'].append(Feat_dic['Param'][0]['b_method'][i])
+            Output_dict['cl'].append(None)
+            c_out += 4
+    elif f_indx == 5: # f_index == 5
+        # for i in ['L(max)','L(int)','L(min)', 'L(avg)']:
+        #     Output_dict['Type'].append('Length[m]')
+        #     Output_dict['label'].append(i)
+        #     Output_dict['b_method'].append(None)
+        #     Output_dict['cl'].append(None)
+        # Output_dict['Type'].append('Maximum magnitude')
+        # Output_dict['label'].append(Model_name)
+        # Output_dict['b_method'].append(None)
+        # Output_dict['cl'].append(None)
+        # c_out += 5
+
+        for i in ['Shapiro (Lmax)','Shapiro (Lint)','Shapiro (Lmin)', 'Shapiro (Lavg)']:
+            Output_dict['Type'].append('Maximum magnitude')
+            Output_dict['label'].append(i)
+            Output_dict['b_method'].append(None)
+            Output_dict['cl'].append(None)
+        c_out += 4
+
+    else: # f_index == 3
+        Output_dict['Type'].append('Maximum magnitude')
+        Output_dict['label'].append(Model_name)
+        Output_dict['b_method'].append(None)
+        Output_dict['cl'].append(None)
+        c_out += 1
+
+    # Add True maximum magnitude to the outputs
+    Output_dict['Type'].append('Maximum magnitude')
+    Output_dict['label'].append('True Max-Mag')
+    Output_dict['b_method'].append(None)
+    Output_dict['cl'].append(None)
+    c_out += 1
+
+    # if any(Feat_dic['Param'][0]['Inpar']): # Input parameters
+    if Inpar:
+        for i in Feat_dic['Param'][0]['Inpar']:
+            if i == 'd_num':
+                Output_dict['Type'].append('Number of events')
+                Output_dict['label'].append('Ev_Num')
+            elif i == 'dv':
+                Output_dict['Type'].append('Volume[m3]')
+                Output_dict['label'].append('Vol')
+            elif i == 'Mo':
+                Output_dict['Type'].append('Seismic moment')
+                Output_dict['label'].append('Mo')
+            elif i == 'SER':
+                Output_dict['Type'].append('Seismic efficiency ratio')
+                Output_dict['label'].append('SER')
+
+            Output_dict['b_method'].append(None)
+            Output_dict['cl'].append(None)
+            c_out += 1
+
+    # Functions ------------------------------
+    # Computing in extending time or time window
+    def Feature_in_Time(In_arr):
+        SER_l = 0
+        SER_c = 0
+        i_row = 0
+        for i in np.arange(1,Times):
+            # Defining time window and data
+            if time_win_type == 0:
+                ModelClass.time_win = i*time_step
+                candidate_events = CandidateEventsTS(Cat, i*time_step, None, i*time_step)
+            else:
+                candidate_events = CandidateEventsTS(Cat, i*time_step, None, time_win)
+            data = candidate_events.filter_data()
+
+            # USER: Check if cumulative dv is correctly computed !!!
+            end_time_indx = Find_idx4Time(Hyd[:,0], i*time_step)
+            # ModelClass.dv = np.sum(Hyd[:end_time_indx,1])
+            ModelClass.dv = np.trapz(Hyd[:end_time_indx,1], Hyd[:end_time_indx,0])/60
+
+            if len(data) > Feat_dic['Param'][0]['ev_limit'] and ModelClass.dv > 0:
+                ModelClass.Mo = np.sum(10**(1.5*data[:end_time_indx,5]+9.1))
+                if f_indx != 5: # Parameters have not been assinged for f_index == 5
+                    SER_c = ModelClass.Mo/(2.0*ModelClass.G*ModelClass.dv)
+                SER_l = np.max((SER_c, SER_l))
+                ModelClass.SER = SER_l
+                ModelClass.data = data
+
+                In_arr[i_row,0] = i                 # index
+                In_arr[i_row,1] = i*time_step       # Currecnt time
+                c = 2
+                if any(Feat_dic['Param'][0]['b_method']) and any(Feat_dic['Param'][0]['cl']):
+                    for ii in range(len(Feat_dic['Param'][0]['b_method'])):
+                        ModelClass.b_method = Feat_dic['Param'][0]['b_method'][ii]
+                        for jj in range(len(Feat_dic['Param'][0]['cl'])): # f_index == 4
+                            ModelClass.cl = Feat_dic['Param'][0]['cl'][jj]
+                            Out = ModelClass.ComputeModel()
+                            if jj == 0:
+                                In_arr[i_row,c:c+f_num] = Out
+                                c += f_num
+                            else:
+                                In_arr[i_row,c:c+2] = Out[-2:]
+                                c += 2
+                elif any(Feat_dic['Param'][0]['b_method']): # f_index == 1, 2
+                    for ii in range(len(Feat_dic['Param'][0]['b_method'])):
+                        ModelClass.b_method = Feat_dic['Param'][0]['b_method'][ii]
+                        In_arr[i_row,c:c+f_num] = ModelClass.ComputeModel()
+                        c += f_num
+                else: # f_index = 0, 3, 5
+                    In_arr[i_row,c:c+f_num] = ModelClass.ComputeModel()
+                    c += f_num
+                # Compute true maximum magnitude in the data
+                In_arr[i_row,c] = np.max(data[:end_time_indx,5])
+                c += 1
+
+                if Inpar:
+                    for ii in range(len(Feat_dic['Param'][0]['Inpar'])): # Add input parameters
+                        if Feat_dic['Param'][0]['Inpar'][ii] == 'd_num':
+                            In_arr[i_row,c+ii] = data.shape[0]
+                        elif Feat_dic['Param'][0]['Inpar'][ii] == 'dv':
+                            In_arr[i_row,c+ii] = ModelClass.dv
+                        elif Feat_dic['Param'][0]['Inpar'][ii] == 'Mo':
+                            In_arr[i_row,c+ii] = ModelClass.Mo
+                        elif Feat_dic['Param'][0]['Inpar'][ii] == 'SER':
+                            if ModelClass.SER:
+                                In_arr[i_row,c+ii] = ModelClass.SER
+                i_row += 1
+
+        return In_arr[:i_row,:]
+
+    # Run functions based on the configurations -------------------
+    # Computing model
+    if time_step_in_hour > time_win_in_hours:
+        raise ValueError('Time steps should be <= time window.')
+    
+    if (time_win_in_hours+time_step_in_hour)*3600 > np.max(Cat[:,4]):
+        raise ValueError('Time window and time steps are like that no more than three computations is possible. Use smaller value for either time window or time step.')
+    
+    time_step = time_step_in_hour*3600
+
+    if End_time:
+        if End_time*24*3600 > np.max(Cat[:,4])+24*3600:
+            raise ValueError(f'End_time is longer than the maximum time of catalog, which is {np.ceil(np.max(Cat[:,4])/24/3600)} day!')
+        elif time_step > 0:
+            Times = int(np.floor((End_time*24*3600 - Cat[0,4]) / time_step))
+        else:
+            Times = 2
+            time_step = time_win
+    elif time_step > 0:
+        Times = int(np.floor((np.max(Cat[:,4]) - Cat[0,4]) / time_step))
+    else:
+        Times = 2
+        time_step = time_win
+    Model_Param_array = np.zeros((Times,c_out))
+    logger.info("Computing input parameter(s) and the model(s)")
+    Model_Param_array = Feature_in_Time(Model_Param_array)
+
+    # Plotting  
+    if Plot_flag > 0:
+        if Model_Param_array.any():
+            logger.info("Plotting results")
+
+            import Mmax_plot # Import locally to ensure Mmax_plot is required only when Plot_flag > 0
+            Mmax_plot.Plot_feature(Model_Param_array, Output_dict)
+        else:
+            logger.info("Model_Param_array is empty or not enough values to plot. Check 'csv' file.")
+
+    # Saving
+    logger.info("Saving results")
+
+    # Save models and parameters in 
+    def OneLineHeader(loc):
+        l = Output_dict['Type'][loc]
+        if Output_dict['b_method'][loc]:
+            if Output_dict['label'][loc] != 'b_value' and Output_dict['label'][loc] != 'b_std_err' and Output_dict['label'][loc] != 'M_std_err':
+                l += '_'+Output_dict['label'][loc]
+            else:
+                l = Output_dict['label'][loc]
+            if Output_dict['cl'][loc]:
+                l += '(b_method: '+Output_dict['b_method'][loc]+', q='+str(Output_dict['cl'][loc])+')'
+            else:
+                l += '(b_method: '+Output_dict['b_method'][loc]+')'
+        elif Output_dict['label'][loc]:
+            l += '('+ Output_dict['label'][loc] +')'
+
+        return l
+
+    db_df = pd.DataFrame(data = Model_Param_array,
+                        columns = [OneLineHeader(i) for i in range(len(Output_dict['Type']))])
+    db_df = db_df.round(4)
+    # db_df.to_excel(cwd+'/Results/'+Full_feat_name+'.xlsx')
+    db_df.to_csv('DATA_Mmax_param.csv', sep=';', index=False)
+    # np.savez_compressed(cwd+'/Results/'+Full_feat_name+'.npz', Model_Param_array = Model_Param_array) # change the name!
+
+
+if __name__=='__main__':
+    # Input_catalog = 'Data/Cooper_Basin_Catalog_HAB_1_2003_Reprocessed.mat'
+    # Input_injection_rate = 'Data/Cooper_Basin_HAB_1_2003_Injection_Rate.mat'
+    # Model_index = 4
+    # b_value_type = 'TGR'
+    main(Input_catalog, Input_injection_rate, time_win_in_hours, time_step_in_hour, time_win_type,
+         End_time, ev_limit, Inpar, time_inj, time_shut_in, time_big_ev, Model_index,
+         Mc, Mu, G, ssd, C, b_value_type, cl, mag_name)
diff --git a/src/Mmax_plot.py b/src/Mmax_plot.py
new file mode 100644
index 0000000..1d30e2c
--- /dev/null
+++ b/src/Mmax_plot.py
@@ -0,0 +1,206 @@
+import matplotlib.pyplot as plt
+import numpy as np
+
+
+def Plot_feature(Model_Param_array,
+                 Output_dict,
+                 End_time=None,
+                 time_inj=None,
+                 time_shut_in=None,
+                 time_big_ev=None,
+                 Model_name="",
+                 logger=None):
+    """
+    Plotting function extracted from Mmax.py for plotting models and parameters.
+
+    Parameters
+    ----------
+    Model_Param_array : np.ndarray
+        Computed matrix of model parameters as rows in time.
+    Output_dict : dict
+        Dictionary describing each column in Model_Param_array.
+    End_time : float, optional
+        The last time to show in the X-axis (days), if desired.
+    time_inj : float, optional
+        Time of injection start (days), if you want a vertical line.
+    time_shut_in : float, optional
+        Time of shut-in (days), if you want a vertical line.
+    time_big_ev : float, optional
+        Time of large event (days), if you want a vertical line.
+    Model_name : str, optional
+        Model name used for the plot title.
+    logger : logging.Logger, optional
+        Logger for printing info messages. If None, no logging happens.
+    """
+    myVars = locals()
+
+    # Function for findin min-max of all similar parameters
+    def Extermom4All(Model_Param_array, itr_loc):
+        Mat1D = np.reshape(Model_Param_array[:,itr_loc], -1)
+        NotNone = np.isfinite(Mat1D)
+        if np.min(Mat1D[NotNone])>0:
+            return [np.min(Mat1D[NotNone])*0.95, np.max(Mat1D[NotNone])*1.05]
+        elif np.min(Mat1D[NotNone])<0 and np.max(Mat1D[NotNone])>0:
+            return [np.min(Mat1D[NotNone])*1.05, np.max(Mat1D[NotNone])*1.05]
+        elif np.max(Mat1D[NotNone])<0:
+            return [np.min(Mat1D[NotNone])*1.05, np.max(Mat1D[NotNone])*0.95]
+
+    # Function for setting relevant lagends in the plot
+    def Legend_label(loc):
+        l = Output_dict_c['label'][loc]
+        if Output_dict_c['b_method'][loc]:
+            if Output_dict_c['cl'][loc]:
+                l+='('+Output_dict_c['b_method'][loc]+', cl='+str(Output_dict_c['cl'][loc])+')'
+            else:
+                l+='('+Output_dict_c['b_method'][loc]+')'
+
+        return l
+
+    c_NotNone = [] # Removing all parameters with None or constant value
+    for i in range(Model_Param_array.shape[1]):
+        NotNone = np.isfinite(Model_Param_array[:,i])
+        Eq_value = np.mean(Model_Param_array[:,i])
+        if any(NotNone) and Eq_value != Model_Param_array[0,i]:
+            c_NotNone.append(i)
+        else:
+            logger.info(f"No-PLOT: All values of {Output_dict['Type'][i]} are {Model_Param_array[0,i]}!")
+
+    if len(c_NotNone) > 1:
+        Model_Param_array = Model_Param_array[:,c_NotNone]
+        # New output dictionary based on valid parameters for plotting
+        Output_dict_c = {'Type':[], 'label':[], 'b_method':[], 'cl':[]}
+        for i in range(len(c_NotNone)):
+            Output_dict_c['Type'].append(Output_dict['Type'][c_NotNone[i]])
+            Output_dict_c['label'].append(Output_dict['label'][c_NotNone[i]])
+            Output_dict_c['b_method'].append(Output_dict['b_method'][c_NotNone[i]])
+            Output_dict_c['cl'].append(Output_dict['cl'][c_NotNone[i]])
+
+        coloring=['blue','g','r','c','m','y',
+                  'brown', 'darkolivegreen', 'teal', 'steelblue', 'slateblue',
+                  'purple', 'darksalmon', '#c5b0d5', '#c49c94',
+                  '#e377c2', '#f7b6d2', '#7f7f7f', '#c7c7c7', '#bcbd22', '#dbdb8d',
+                  '#17becf', '#9edae5',
+                  'brown', 'darkolivegreen', 'teal', 'steelblue', 'slateblue',]
+        # All parameters to be plotted
+        All_vars = Output_dict_c['Type'][2:]
+        Uniqe_var = list(dict.fromkeys([s for s in All_vars if 'Standard Error' not in s])) #list(set(All_vars))
+
+        # defining handels and labels to make final legend
+        All_handels = ['p0']
+        for i in range(1,len(All_vars)):
+            All_handels.append('p'+str(i))
+        handels = []
+        labels = []
+
+        # itr_loc: location of paramteres with similar type
+        itr_loc = np.where(np.array(All_vars) == Uniqe_var[0])[0]+2
+        fig, myVars[Output_dict_c['Type'][0]] = plt.subplots(1,1,figsize=(8+int(len(All_vars)/3),6))
+        fig.subplots_adjust(right=1-len(Uniqe_var)*0.09)
+        if Output_dict_c['label'][itr_loc[0]] == 'True Max-Mag': # plot with dash-line
+            myVars[All_handels[itr_loc[0]-2]], = myVars[Output_dict_c['Type'][0]].plot(Model_Param_array[:,1]/24/3600, Model_Param_array[:,itr_loc[0]], c= 'k', ls='--', lw = 2)
+        else:
+            myVars[All_handels[itr_loc[0]-2]], = myVars[Output_dict_c['Type'][0]].plot(Model_Param_array[:,1]/24/3600, Model_Param_array[:,itr_loc[0]], c= coloring[itr_loc[0]])
+        handels.append(All_handels[itr_loc[0]-2])
+        labels.append(Legend_label(itr_loc[0]))
+        myVars[Output_dict_c['Type'][0]].set_ylabel(Output_dict_c['Type'][itr_loc[0]])
+        myVars[Output_dict_c['Type'][0]].set_ylim(Extermom4All(Model_Param_array, itr_loc)[0], Extermom4All(Model_Param_array, itr_loc)[1])
+        myVars[Output_dict_c['Type'][0]].set_xlabel('Day (From start of the recording)')
+        if End_time:
+            myVars[Output_dict_c['Type'][0]].set_xlim(0,End_time)
+
+        # Plotting statndard error (if exists)
+        if  itr_loc[0]+1 < len(Output_dict_c['Type']) and Output_dict_c['Type'][itr_loc[0]+1] == 'Standard Error':
+            myVars[Output_dict_c['Type'][0]].fill_between(Model_Param_array[:,1]/24/3600,
+                                                          Model_Param_array[:,itr_loc[0]] -  Model_Param_array[:,itr_loc[0]+1],
+                                                          Model_Param_array[:,itr_loc[0]] +  Model_Param_array[:,itr_loc[0]+1], color= coloring[itr_loc[0]], alpha=0.1)
+        # Plotting similar parameters on one axis
+        for j in range(1,len(itr_loc)):
+            if Output_dict_c['label'][itr_loc[j]] == 'True Max-Mag': # plot with dash-line
+                myVars[All_handels[itr_loc[j]-2]], = myVars[Output_dict_c['Type'][0]].plot(Model_Param_array[:,1]/24/3600, Model_Param_array[:,itr_loc[j]], c= 'k', ls='--', lw = 2)
+            else:
+                myVars[All_handels[itr_loc[j]-2]], = myVars[Output_dict_c['Type'][0]].plot(Model_Param_array[:,1]/24/3600, Model_Param_array[:,itr_loc[j]], c= coloring[itr_loc[j]])
+            handels.append(All_handels[itr_loc[j]-2])
+            labels.append(Legend_label(itr_loc[j]))
+
+            # Plotting statndard error (if exists)
+            if  itr_loc[0]+1 < len(Output_dict_c['Type']) and Output_dict_c['Type'][itr_loc[j]+1] == 'Standard Error':
+                myVars[Output_dict_c['Type'][0]].fill_between(Model_Param_array[:,1]/24/3600,
+                                                              Model_Param_array[:,itr_loc[j]] -  Model_Param_array[:,itr_loc[j]+1],
+                                                              Model_Param_array[:,itr_loc[j]] +  Model_Param_array[:,itr_loc[j]+1], color= coloring[itr_loc[j]], alpha=0.1)
+        first_itr = 0
+        # Check if there is any more parameter to be plotted in second axes
+        # The procedure is similar to last plots.
+        if len(Uniqe_var) > 1:
+            for i in range(1,len(Uniqe_var)):
+                itr_loc = np.where(np.array(All_vars) == Uniqe_var[i])[0]+2
+                myVars[Uniqe_var[i]] = myVars[Output_dict_c['Type'][0]].twinx()
+                # if it is third or more axis, make a distance between them
+                if first_itr == 0:
+                    first_itr += 1
+                    set_right = 1
+                else:
+                    set_right = 1 + first_itr*0.2
+                    first_itr += 1
+                    myVars[Uniqe_var[i]].spines.right.set_position(("axes", set_right))
+                if Output_dict_c['label'][itr_loc[0]] == 'True Max-Mag': # plot with dash-line
+                    myVars[All_handels[itr_loc[0]-2]], = myVars[Uniqe_var[i]].plot(Model_Param_array[:,1]/24/3600, Model_Param_array[:,itr_loc[0]], c= 'k', ls='--', lw = 2)
+                else:
+                    myVars[All_handels[itr_loc[0]-2]], = myVars[Uniqe_var[i]].plot(Model_Param_array[:,1]/24/3600, Model_Param_array[:,itr_loc[0]], c= coloring[itr_loc[0]])
+                handels.append(All_handels[itr_loc[0]-2])
+                labels.append(Legend_label(itr_loc[0]))
+                myVars[Uniqe_var[i]].set_ylabel(Output_dict_c['Type'][itr_loc[0]])
+                myVars[Uniqe_var[i]].yaxis.label.set_color(coloring[itr_loc[0]])
+                myVars[Uniqe_var[i]].spines["right"].set_edgecolor(coloring[itr_loc[0]])
+                myVars[Uniqe_var[i]].tick_params(axis='y', colors= coloring[itr_loc[0]])
+                myVars[Uniqe_var[i]].set_ylim(Extermom4All(Model_Param_array, itr_loc)[0], Extermom4All(Model_Param_array, itr_loc)[1])
+                if itr_loc[0]+1 < len(Output_dict_c['Type']) and Output_dict_c['Type'][itr_loc[0]+1] == 'Standard Error':
+                    myVars[Uniqe_var[i]].fill_between(Model_Param_array[:,1]/24/3600,
+                                                      Model_Param_array[:,itr_loc[0]] -  Model_Param_array[:,itr_loc[0]+1],
+                                                      Model_Param_array[:,itr_loc[0]] +  Model_Param_array[:,itr_loc[0]+1], color= coloring[itr_loc[0]], alpha=0.1)
+
+                for j in range(1,len(itr_loc)):
+                    if Output_dict_c['label'][itr_loc[j]] == 'True Max-Mag': # plot with dash-line
+                        myVars[All_handels[itr_loc[j]-2]], = myVars[Uniqe_var[i]].plot(Model_Param_array[:,1]/24/3600, Model_Param_array[:,itr_loc[j]], c= 'k', ls = '--', lw = 2)
+                    else:
+                        myVars[All_handels[itr_loc[j]-2]], = myVars[Uniqe_var[i]].plot(Model_Param_array[:,1]/24/3600, Model_Param_array[:,itr_loc[j]], c= coloring[itr_loc[j]])
+                    handels.append(All_handels[itr_loc[j]-2])
+                    labels.append(Legend_label(itr_loc[j]))
+                    if itr_loc[j]+1 < len(Output_dict_c['Type']) and Output_dict_c['Type'][itr_loc[j]+1] == 'Standard Error':
+                        myVars[Uniqe_var[i]].fill_between(Model_Param_array[:,1]/24/3600,
+                                                          Model_Param_array[:,itr_loc[j]] -  Model_Param_array[:,itr_loc[j]+1],
+                                                          Model_Param_array[:,itr_loc[j]] +  Model_Param_array[:,itr_loc[j]+1], color= coloring[itr_loc[j]], alpha=0.1)
+
+        # If there are timing, plot them as vertical lines
+        if time_inj:
+            myVars['l1'], = plt.plot([time_inj,time_inj], [Extermom4All(Model_Param_array, itr_loc)[0],Extermom4All(Model_Param_array, itr_loc)[1]], ls='--', c='k')
+            handels.append('l1')
+            labels.append('Start-inj')
+        if time_shut_in:
+            myVars['l2'], = plt.plot([time_shut_in,time_shut_in], [Extermom4All(Model_Param_array, itr_loc)[0],Extermom4All(Model_Param_array, itr_loc)[1]], ls='-.', c='k')
+            handels.append('l2')
+            labels.append('Shut-in')
+        if time_big_ev:
+            myVars['l3'], = plt.plot([time_big_ev,time_big_ev], [Extermom4All(Model_Param_array, itr_loc)[0],Extermom4All(Model_Param_array, itr_loc)[1]], ls='dotted', c='k')
+            handels.append('l3')
+            labels.append('Large-Ev')
+
+        box = myVars[Output_dict_c['Type'][0]].get_position()
+        if len(handels) < 6:
+            myVars[Output_dict_c['Type'][0]].set_position([box.x0, box.y0 + box.height * 0.1,
+                                                           box.width, box.height * 0.9])
+            plt.legend([myVars[ii] for ii in handels], labels, loc='upper center',
+                       bbox_to_anchor=(0.5+0.06*first_itr, -0.15), fancybox=True, shadow=True, ncol=len(handels))
+        elif len(handels) < 13:
+            myVars[Output_dict_c['Type'][0]].set_position([box.x0, box.y0 + box.height * 0.04*int(len(handels)/2),
+                                                           box.width, box.height * (1 - 0.04*int(len(handels)/2))])
+            plt.legend([myVars[ii] for ii in handels], labels, loc='upper center',
+                       bbox_to_anchor=(0.5+0.1*first_itr, -0.04*int(len(handels)/2)), fancybox=True, shadow=True, ncol=int(len(handels)/2)+1, handleheight=2)
+        else:
+            myVars[Output_dict_c['Type'][0]].set_position([box.x0, box.y0 + box.height * 0.04*int(len(handels)/2),
+                                                           box.width, box.height * (1 - 0.04*int(len(handels)/2))])
+            plt.legend([myVars[ii] for ii in handels], labels, loc='upper center',
+                       bbox_to_anchor=(0.6+0.1*first_itr, -0.04*int(len(handels)/2)), fancybox=True, shadow=True, ncol=int(len(handels)/2)+1, handleheight=2)
+        plt.title(Model_name)
+        # plt.savefig(cwd+'/Results/'+Model_name+'.png', dpi=300)
+        plt.savefig('PLOT_Mmax_param.png', dpi=300)
+        # plt.show()
diff --git a/src/maxmagnitude_wrapper.py b/src/maxmagnitude_wrapper.py
new file mode 100644
index 0000000..de02925
--- /dev/null
+++ b/src/maxmagnitude_wrapper.py
@@ -0,0 +1,49 @@
+# -*- coding: utf-8 -*-
+
+#  -----------------
+#  Copyright © 2024 ACK Cyfronet AGH, Poland.
+#
+#  Licensed under the Apache License, Version 2.0 (the "License");
+#  you may not use this file except in compliance with the License.
+#  You may obtain a copy of the License at
+#
+#      http://www.apache.org/licenses/LICENSE-2.0
+#
+#  Unless required by applicable law or agreed to in writing, software
+#  distributed under the License is distributed on an "AS IS" BASIS,
+#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+#  See the License for the specific language governing permissions and
+#  limitations under the License.
+#
+#  This work was partially funded by DT-GEO Project.
+#  -----------------
+
+import sys
+import argparse
+from Mmax import main as Mmax
+
+def main(argv):
+    parser = argparse.ArgumentParser()
+    parser.add_argument("Input_catalog", help="Input catalog: path to input file of type 'catalog'")
+    parser.add_argument("Input_injection_rate", help="Input injection rate: path to input file of type 'injection_rate'")
+    parser.add_argument("--time_win_in_hours", help="Time window length (in hours- backward from the current time).", type=int, default=6)
+    parser.add_argument("--time_step_in_hour", help="Time interval for computation (in hours).", type=int, default=3)
+    parser.add_argument("--time_win_type", help="Time window type for computation.", type=int, default=0)
+    parser.add_argument("--End_time", help="End time of the computations (in day).", type=int, default=None)
+    parser.add_argument("--ev_limit", help="Minimum events number required for model computation.", type=int, default=20)
+    parser.add_argument("--Model_index", help="Model index: parameter of type 'INTEGER'", type=int)
+    parser.add_argument("--Mc", help="Completeness magnitude.", type=float, default=0.8)
+    parser.add_argument("--Mu", help="Friction coefficient.", type=float, default=0.6, required=False)
+    parser.add_argument("--G", help="Shear modulus of reservoir (in Pa).", type=float, default=35000000000)
+    parser.add_argument("--ssd", help="Static stress drop (in Pa).", type=float, default=3000000)
+    parser.add_argument("--C", help="Geometrical constant.", type=float, default=0.95)
+    parser.add_argument("--b_value_type", help="b-value type: parameter of type 'TEXT'", action='append')
+    parser.add_argument("--cl", help="Confidence level in van der Elst model.", type=float, action='append')
+    parser.add_argument("--mag_name", help="Magnitude column name", type=str)
+
+    args = parser.parse_args()
+    Mmax(**vars(args))
+    return
+
+if __name__ == '__main__':
+    main(sys.argv)
\ No newline at end of file
diff --git a/src/util/CandidateEventsTS.py b/src/util/CandidateEventsTS.py
new file mode 100644
index 0000000..cf8dd5e
--- /dev/null
+++ b/src/util/CandidateEventsTS.py
@@ -0,0 +1,43 @@
+import numpy as np
+
+class CandidateEventsTS:
+    def __init__(self, data, current_time, Mc, time_win, space_win=None):
+        assert time_win > 0, f"Time windows is {time_win}, which should be a positive number"
+
+        self.data = data
+        self.current_time = current_time
+        self.Mc = Mc
+        self.time_win = time_win
+        self.space_win = space_win
+
+    def filter_by_time(self):
+        indx = np.where((self.data[:, 4] > (self.current_time - self.time_win)) & (self.data[:, 4] <= self.current_time))[0]
+        if len(indx) > 0:
+            self.data = self.data[indx, :]
+        else:
+            self.data = []
+
+    def filter_by_magnitude(self):
+        if self.Mc:
+            indx = np.where(self.data[:, 5] > self.Mc)[0]
+            if len(indx) > 0:
+                self.data = self.data[indx, :]
+            else:
+                self.data = []
+
+    def filter_by_space(self):
+        dist = np.sqrt(np.sum((self.data[:, 1:4] - self.data[-1, 1:4]) ** 2, axis=1))
+        indx = np.where(dist < self.space_win)[0]
+        if len(indx) > 0:
+            self.data = self.data[indx, :]
+        else:
+            self.data = []
+
+    def filter_data(self):
+        self.filter_by_time()
+        if len(self.data) > 0:
+            self.filter_by_magnitude()
+            if len(self.data) > 0 and self.space_win:
+                self.filter_by_space()
+
+        return self.data
diff --git a/src/util/Find_idx4Time.py b/src/util/Find_idx4Time.py
new file mode 100644
index 0000000..f6cf838
--- /dev/null
+++ b/src/util/Find_idx4Time.py
@@ -0,0 +1,14 @@
+import numpy as np
+def Find_idx4Time(In_mat, t): 
+    # In_mat: time array
+    # t = target time
+    In_mat = np.array(In_mat)
+    t = np.array(t)
+    if len(np.shape(t)) == 0:
+        return np.where(abs(In_mat - t) <= min(abs(In_mat - t)))[0][0]
+    else:
+        In_mat = In_mat.reshape((len(In_mat), 1))
+        t = t.reshape((1,len(t)))
+        target_time = np.matmul(np.ones((len(In_mat),1)), t)    
+        diff_mat = target_time - In_mat
+        return np.where(abs(diff_mat) <= np.min(abs(diff_mat), axis = 0))
\ No newline at end of file
diff --git a/src/util/M_max_models.py b/src/util/M_max_models.py
new file mode 100644
index 0000000..c2fccc5
--- /dev/null
+++ b/src/util/M_max_models.py
@@ -0,0 +1,217 @@
+import numpy as np
+
+class M_max_models:
+    def __init__(self, data = None, f_name = None, time_win = None, space_win = None,
+                 Mc = None, b_method = None, num_bootstraps = None,
+                 G = None, Mu = None, 
+                 dv = None, Mo = None, SER = None,
+                 cl = None, 
+                 ssd = None, C = None, 
+                 ):
+
+        self.data = data                # Candidate data table: 2darray n x m, for n events and m clonums: x, y, z, t, mag
+        self.f_name = f_name            # Feature's name to be calculated, check: def ComputeFeaure(self)
+        self.time_win = time_win        # Time window whihc a feature is computed in
+        self.space_win = space_win      # Space window ...
+        
+        self.Mc = Mc                    # Magnitude of completeness for computing b-positive
+        self.b_method = b_method        # list of b_methods 
+        self.num_bootstraps = num_bootstraps # Num of bootstraps for standard error estimation of b-value              
+        
+        self.G = G                      # Shear modulus
+        self.Mu = Mu                    # Friction coefficient
+        self.dv = dv                    # Injected fluid
+        self.SER = SER
+
+        self.Mo = Mo                    # Cumulative moment magnitude
+        self.cl = cl                    # Confidence level
+
+        self.ssd = ssd                  # Static stress drop (Shapiro et al. 2013)
+        self.C = C                      # Geometrical constant (Shapiro et al. 2013)
+
+    
+    
+
+    def b_value(self, b_flag):
+        if b_flag == '1':
+            return 1, None
+        
+        # maximum-likelihood estimate (MLE) of b (Deemer & Votaw 1955; Aki 1965; Kagan 2002):
+        elif b_flag == 'b':
+            X = self.data[np.where(self.data[:,-1]>self.Mc)[0],:]
+            if X.shape[0] > 0:
+                b = 1/((np.mean(X[:,-1] - self.Mc))*np.log(10))
+                std_error = b/np.sqrt(X.shape[0])
+            else:
+                raise ValueError("All events in the current time window have a magnitude less than 'completeness magnitude'. Use another value either for 'time window', 'minimum number of events' or 'completeness magnitude'. Also check 'time window type'.")
+            return b, std_error
+        
+        # B-positive (van der Elst 2021)
+        elif b_flag == 'bp':
+        
+            # Function to perform bootstrap estimation
+            def bootstrap_estimate(data, num_bootstraps):
+                estimates = []
+                for _ in range(num_bootstraps):
+                    # Generate bootstrap sample
+                    bootstrap_sample = np.random.choice(data, size=len(data), replace=True)
+                    # Perform maximum likelihood estimation on bootstrap sample
+                    diff_mat = np.diff(bootstrap_sample)
+                    diff_mat = diff_mat[np.where(diff_mat>0)[0]]
+                    estimate = 1/((np.mean(diff_mat - np.min(diff_mat)))*np.log(10))
+                    estimates.append(estimate)
+                return np.array(estimates)
+            
+            diff_mat = np.diff(self.data[:,-1])
+            diff_mat = diff_mat[np.where(diff_mat>0)[0]]
+            bp = 1/((np.mean(diff_mat - np.min(diff_mat)))*np.log(10))
+            bootstrap_estimates = bootstrap_estimate(diff_mat, self.num_bootstraps)
+            std_error = np.std(bootstrap_estimates, axis=0)
+            return bp, std_error
+        
+        # Tapered Gutenberg_Richter (TGR) distribution (Kagan 2002)
+        elif b_flag == 'TGR':
+            from scipy.optimize import minimize
+
+            # The logarithm of the likelihood function for the TGR distribution (Kagan 2002)
+            def log_likelihood(params, data):
+                beta, Mcm = params
+                n = len(data)
+                Mt = np.min(data)
+                l = n*beta*np.log(Mt)+1/Mcm*(n*Mt-np.sum(data))-beta*np.sum(np.log(data))+np.sum(np.log([(beta/data[i]+1/Mcm) for i in range(len(data))]))
+                return -l
+            X = self.data[np.where(self.data[:,-1]>self.Mc)[0],:]
+            M = 10**(1.5*X[:,-1]+9.1)
+            initial_guess = [0.5, np.max(M)]
+            bounds = [(0.0, None), (np.max(M), None)]
+
+            # Minimize the negative likelihood function for beta and maximum moment
+            result = minimize(log_likelihood, initial_guess, args=(M,), bounds=bounds, method='L-BFGS-B',
+                  options={'gtol': 1e-12, 'disp': False})
+            beta_opt, Mcm_opt = result.x
+            eta = 1/Mcm_opt
+            S = M/np.min(M)
+            dldb2 = -np.sum([1/(beta_opt-eta*S[i])**2 for i in range(len(S))])
+            dldbde = -np.sum([S[i]/(beta_opt-eta*S[i])**2 for i in range(len(S))])
+            dlde2 = -np.sum([S[i]**2/(beta_opt-eta*S[i])**2 for i in range(len(S))])
+            std_error_beta = 1/np.sqrt(dldb2*dlde2-dldbde**2)*np.sqrt(-dlde2)
+            return beta_opt*1.5, std_error_beta*1.5
+
+    def McGarr(self):
+        b_value, b_stderr = self.b_value(self.b_method)
+        B = 2/3*b_value
+        if B < 1:
+            sigma_m = ((1-B)/B)*(2*self.Mu)*(5*self.G)/3*self.dv
+            Mmax = (np.log10(sigma_m)-9.1)/1.5
+            if b_stderr:
+                Mmax_stderr = b_stderr/np.abs(np.log(10)*(1.5*b_value-b_value**2))
+            else:
+                Mmax_stderr = None
+        else:
+            Mmax = None
+            Mmax_stderr = None
+
+        return b_value, b_stderr, Mmax, Mmax_stderr
+
+    def Hallo(self):
+        b_value, b_stderr = self.b_value(self.b_method)
+        B = 2/3*b_value
+        if b_value < 1.5:
+            sigma_m = self.SER*((1-B)/B)*(2*self.Mu)*(5*self.G)/3*self.dv
+            Mmax = (np.log10(sigma_m)-9.1)/1.5
+            if b_stderr:
+                Mmax_stderr = self.SER*b_stderr/np.abs(np.log(10)*(1.5*b_value-b_value**2))
+            else:
+                Mmax_stderr = None
+        else:
+            Mmax = None
+            Mmax_stderr = None
+
+        return b_value, b_stderr, Mmax, Mmax_stderr
+
+    def Li(self):
+        sigma_m = self.SER*2*self.G*self.dv - self.Mo
+        Mmax = (np.log10(sigma_m)-9.1)/1.5
+        if Mmax < 0:
+            return None
+        else:
+            return Mmax 
+
+    def van_der_Elst(self):
+        b_value, b_stderr = self.b_value(self.b_method)
+        # Seismogenic_Index
+        X = self.data
+        si = np.log10(X.shape[0]) - np.log10(self.dv) + b_value*self.Mc
+        if b_stderr:
+            si_stderr = self.Mc*b_stderr
+        else:
+            si_stderr = None
+        
+        Mmax = (si + np.log10(self.dv))/b_value - np.log10(X.shape[0]*(1-self.cl**(1/X.shape[0])))/b_value
+        if b_stderr:
+            Mmax_stderr = (np.log10(X.shape[0]) + np.log10(X.shape[0]*(1-self.cl**(1/X.shape[0]))))*b_stderr
+        else:
+            Mmax_stderr = None
+        
+        return b_value, b_stderr, si, si_stderr, Mmax, Mmax_stderr
+    
+    def L_Shapiro(self):
+        from scipy.stats import chi2
+
+        X = self.data[np.isfinite(self.data[:,1]),1:4]
+        # Parameters
+        STD = 2.0  # 2 standard deviations
+        conf = 2 * chi2.cdf(STD, 2) - 1  # covers around 95% of population
+        scalee = chi2.ppf(conf, 2)  # inverse chi-squared with dof=#dimensions
+
+        # Center the data
+        Mu = np.mean(X, axis=0)
+        X0 = X - Mu
+
+        # Covariance matrix
+        Cov = np.cov(X0, rowvar=False) * scalee
+
+        # Eigen decomposition
+        D, V = np.linalg.eigh(Cov)
+        order = np.argsort(D)[::-1]
+        D = D[order]
+        V = V[:, order]
+
+        # Compute radii
+        VV = V * np.sqrt(D)
+        R1 = np.sqrt(VV[0, 0]**2 + VV[1, 0]**2 + VV[2, 0]**2)
+        R2 = np.sqrt(VV[0, 1]**2 + VV[1, 1]**2 + VV[2, 1]**2)
+        R3 = np.sqrt(VV[0, 2]**2 + VV[1, 2]**2 + VV[2, 2]**2)
+
+        L = (1/3*(1/R1**3+1/R2**3+1/R3**3))**(-1/3)
+
+        return R1, R2, R3, L
+
+    def Shapiro(self):
+        R1, R2, R3, L = self.L_Shapiro()
+        Sh_lmax = np.log10((2*R1)**2)+(np.log10(self.ssd)-np.log10(self.C)-9.1)/1.5
+        Sh_lint = np.log10((2*R2)**2)+(np.log10(self.ssd)-np.log10(self.C)-9.1)/1.5
+        Sh_lmin = np.log10((2*R3)**2)+(np.log10(self.ssd)-np.log10(self.C)-9.1)/1.5
+        Sh_lavg = np.log10((2*L)**2)+(np.log10(self.ssd)-np.log10(self.C)-9.1)/1.5
+        
+        return Sh_lmax, Sh_lint, Sh_lmin, Sh_lavg 
+        # return R1, R2, R3, L, np.log10(R3**2)+(np.log10(self.ssd)-np.log10(self.C)-9.1)/1.5
+        
+    def All_models(self):
+
+        return self.McGarr()[2], self.Hallo()[2], self.Li(), self.van_der_Elst()[-2], self.Shapiro()[-1]
+
+    
+    def ComputeModel(self):
+        if self.f_name == 'max_mcg':
+            return self.McGarr()
+        if self.f_name == 'max_hlo':
+            return self.Hallo() 
+        if self.f_name == 'max_li':
+            return self.Li()        
+        if self.f_name == 'max_vde':
+            return self.van_der_Elst()
+        if self.f_name == 'max_shp':
+            return self.Shapiro()
+        if self.f_name == 'max_all':
+            return self.All_models()
\ No newline at end of file
diff --git a/src/util/base_logger.py b/src/util/base_logger.py
new file mode 100644
index 0000000..188b72f
--- /dev/null
+++ b/src/util/base_logger.py
@@ -0,0 +1,62 @@
+#
+# -----------------
+# Copyright © 2024 ACK Cyfronet AGH, Poland.
+# -----------------
+#
+import os
+import logging
+
+def getDefaultLogger(name):
+    """
+    Retrieves or creates a logger with the specified name and sets it up with a file handler.
+    
+    The logger is configured to write log messages to the file path specified by the
+    'APP_LOG_FILE' environment variable. If the environment variable is not set,
+    the logger will write to the file 'base-logger-log.log' in the current
+    working directory. The logger uses the 'INFO' level as the default logging level
+    and writes log entries in the following format:
+    
+    'YYYY-MM-DD HH:MM:SS,ms LEVEL logger_name message'
+    
+    If the logger does not already have handlers, a file handler is created, and the 
+    logging output is appended to the file. The log format includes the timestamp with 
+    milliseconds, log level, logger name, and the log message.
+
+    Parameters:
+    -----------
+    name : str
+        The name of the logger. This can be the name of the module or any identifier 
+        that you want to associate with the logger.
+
+    Returns:
+    --------
+    logger : logging.Logger
+        A logger instance with the specified name. The logger is configured with a 
+        file handler that writes to the file specified by the 'APP_LOG_FILE' 
+        environment variable, or to 'base-logger-log.log' if the environment 
+        variable is not set.
+    
+    Example:
+    --------
+    logger = getDefaultLogger(__name__)
+    logger.info("This is an info message.")
+    try:
+        # some code causing exception
+    except Exception:
+        logger.exception('An error occurred')
+
+    Notes:
+    ------
+    - The 'APP_LOG_FILE' environment variable should specify the full path to the log file.
+    - If 'APP_LOG_FILE' is not set, logs will be written to 'base-logger-log.log'.
+
+    """
+    logger = logging.getLogger(name)
+    if not logger.hasHandlers():
+        file_handler = logging.FileHandler(os.environ.get('APP_LOG_FILE', 'base-logger-log.log'), mode='a')
+        formatter = logging.Formatter('%(asctime)s,%(msecs)d %(levelname)s %(name)s %(message)s')
+        file_handler.setFormatter(formatter)
+        logger.addHandler(file_handler)
+    logger.setLevel(logging.INFO)
+    
+    return logger
\ No newline at end of file