% [m,PDF_NPT,CDF_NPT]=dist_NPT(Md,Mu,dM,Mmin,eps,h,xx,ambd,Mmax) % % USING THE NONPARAMETRIC ADAPTATIVE KERNEL ESTIMATORS EVALUATES THE DENSITY % AND CUMULATIVE DISTRIBUTION FUNCTIONS FOR THE UPPER-BOUNDED MAGNITUDE % DISTRIBUTION. % % AUTHOR: Stanislaw. Lasocki, Institute of Geophysics Polish Academy of % Sciences, Warsaw, Poland % % DESCRIPTION: The kernel estimator approach is a model-free alternative % to estimating the magnitude distribution functions. It is assumed that % the magnitude distribution has a hard end point Mmax from the right hand % side.The estimation makes use of the previously estimated parameters % namely the mean activity rate lamb, the length of magnitude round-off % interval, eps, the smoothing factor, h, the background sample, xx, the % scaling factors for the background sample, ambd, and the end-point of % magnitude distribution Mmax. The background sample,xx, comprises the % randomized values of observed magnitude doubled symmetrically with % respect to the value Mmin-eps/2. % % REFERENCES: % Silverman B.W. (1986) Density Estimation for Statistics and Data Analysis, % Chapman and Hall, London % Kijko A., Lasocki S., Graham G. (2001) Pure appl. geophys. 158, 1655-1665 % Lasocki S., Orlecka-Sikora B. (2008) Tectonophysics 456, 28-37 % %INPUT: % Md - starting magnitude for distribution functions calculations % Mu - ending magnitude for distribution functions calculations % dM - magnitude step for distribution functions calculations % Mmin - lower bound of the distribution - catalog completeness level % eps - length of round-off interval of magnitudes. % h - kernel smoothing factor. % xx - the background sample % ambd - the weigthing factors for the adaptive kernel % Mmax - upper limit of magnitude distribution % % OUTPUT: % m - vector of the independent variable (magnitude) % PDF_NPT - PDF vector % CDF_NPT - CDF vector % % LICENSE % This file is a part of the IS-EPOS e-PLATFORM. % % This is free software: you can redistribute it and/or modify it under % the terms of the GNU General Public License as published by the Free % Software Foundation, either version 3 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details , . % function [m,PDF_NPT,CDF_NPT]=dist_NPT(Md,Mu,dM,Mmin,eps,h,xx,ambd,Mmax) m=(Md:dM:Mu)'; nn=length(m); mian=2*(Dystr_npr(Mmax,xx,ambd,h)-Dystr_npr(Mmin-eps/2,xx,ambd,h)); for i=1:nn if m(i)Mmax PDF_NPT(i)=0;CDF_NPT(i)=1; else PDF_NPT(i)=dens_npr1(m(i),xx,ambd,h,Mmin-eps/2)/mian; CDF_NPT(i)=2*(Dystr_npr(m(i),xx,ambd,h)-Dystr_npr(Mmin-eps/2,xx,ambd,h))/mian; end end PDF_NPT=PDF_NPT';CDF_NPT=CDF_NPT'; end function [gau]=dens_npr1(y,x,ambd,h,x1) %Nonparametric adaptive density for a variable from the interval [x1,inf) % x - the sample data doubled and sorted in the ascending order. % ambd - the local scaling factors for the adaptive estimation % h - the optimal smoothing factor % y - the value of random variable X for which the density is calculated % gau - the density value f(y) n=length(x); c=sqrt(2*pi); if y