SERA Hazard Analysis Toolbox

Application: SHAPE_ver2 – Seismic HAzard Parameters Evaluation

<u>Current Version: ver2.2, last updated 04/2020</u>, compatible with Matlab version 2017b or later, with 'Statistics and Machine Learning' Toolbox installed

Please cite any use of the Software as:

Leptokaropoulos, K. and S. Lasocki (2020), SHAPE: A MATLAB Software Package for Time-dependent Seismic Hazard Analysis, *Seismol. Res. Lett.*, doi: 10.1785/0220190319.

SHAPE_ver2 DESCRIPTION

OVERVIEW:

"SHAPE_ver2" Application performs time-dependent Seismic Hazard Analysis (SHA), taking into account the activity rate and the magnitude distribution of seismicity for selected time windows (Kijko et al., 2001; Lasocki and Orlecka-Sikora, 2008; Lasocki, 2017; Leptokaropoulos et al., 2017). The hazard parameters estimated are:

- 1) The Mean Return Period (MRP) of a given magnitude, M, which is defined as the average elapsed time between the occurrence of consecutive events of M and
- 2) The Exceedance Probability (EPR) of a given magnitude, M, within a given time period of length, T, which is defined as the probability of an earthquake of magnitude greater than or equal to M to occur during T.

These hazard parameters are estimated for different time windows which are constructed upon User's particular specifications. 4 different magnitude distribution models can be chosen:

- GRU, for Unbounded Gutenberg-Richter law
- **GRT**, for Upper bounded (truncated) Gutenberg-Richter law
- **NPU**, for Unbounded non-parametric Kernel estimate
- **NPT**, for Upper bounded (truncated) non-parametric Kernel estimate

The input files must be in ASCII format (e.g. *.txt). Please see "Input Data Requirement Specification" section below for details on input Data format.

The application is performed internally by SHAPE as a series of steps and the input arguments are defined by the User in the Wrapper script, <u>"SHAPE ver2.m"</u>. Once the parameters are set and the Wrapper script runs, the Application is performed without any interruption.

PACKAGE:

The SHAPE ver2 package includes the following material (Fig. 0):

• 3 Matlab Scripts

- o <u>SHAPE_ver2</u>: This is the main application (wrapper) script that the User must launch to perform the analysis. All the other scripts and functions included into this and the other directories are auxiliary and run within SHAPE_ver2.
- o <u>Zplo ver2</u>: This is an auxiliary script called by SHAPE_ver2 to create and save the output figure.
- o <u>Zsave_output_ver2</u>: This is an auxiliary script called by SHAPE_ver2 to create the and save the output results.

• 5 Directories

- o **CATALOGS:** Seismic data directory (see <u>INPUT</u> section below).
- o **PRODUCTION_DATA:** Production data directory (see INPUT section below).
- **TIME_WINDOWS:** Directory with files to define time windows (*see INPUT section below*).
- SSH: Directory with source size distribution functions and function for calculating seismic hazard parameters, called by SHAPE_ver2.
- o **OUTPUTS_SHA:** Directory where the output data, figures and reports will be stored (this is automatically generated after running SHAPE_ver2).
- 1 pdf document READ ME SHAPE ver2.pdf (user guide)

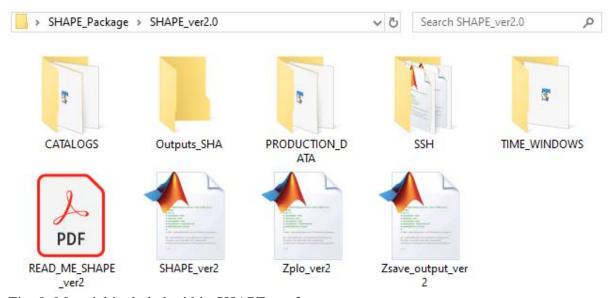


Fig. 0. Material included within SHAPE_ver2

INPUT:

The input arguments are the data sources (file names of input data ASCII files) as well as option selection and parameter values for data filtering and analysis. These arguments are defined by the User at Lines 117-134 of the wrapper script **SHAPE_ver2.m.**

For the application performance 3 Input Directories must be available (one mandatory, two optional). Sample data files must be located in these directories in appropriate format. An Output directory where the results are stored is created as well after running the 'SHAPE_ver2' Application:

- INPUT DIRECTORY "CATALOGS" [*Mandatory*]: This directory must be named after "CATALOGS" and it must contain
 - o Seismic catalogs in ASCII format (e.g. "ST2_SEIS_Data.txt").
 - o Files with the description of the Fields of the corresponding seismic catalog, also in ASCII format (e.g. "ST2_SEIS_Fields.txt")
- INPUT DIRECTORY "PRODUCTION_DATA" [*Optional*]: This directory must be named after "PRODUCTION_DATA" and must contain
 - o Files with production data in ASCII format (e.g. "ST2 PROD Data.txt")
 - Files with the description of the Fields of the corresponding production data, also in ASCII format (e.g. "ST2_PROD_Fields.txt")

- INPUT DIRECTORY "TIME_WINDOWS" [*Optional*]: This directory must be named after "TIME_WINDOWS" and must contain
 - o Files with two columns, the first of which corresponds to the time windows starting time and the second column corresponds to the time windows' ending time. Their format must be matlab time format (e.g. "ST2 test timewindows.txt").
- OUTPUT DIRECTORY "Outputs_SHA": This is the directory where the output data, figures and reports will be stored (Automatically generated by SHAPE).

INPUT DATA Requirements Specification: There is no difference in Catalog/Production Data format, therefore the DATA and FIELD generic formats are only specified here (See also Figures 1 and 2 below and refer to the sample data included in the package, within the corresponding directories):

✓ SEISMIC CATALOG/PRODUCTION <u>DATA</u> File: The <u>Data</u> files must be in ASCII format (e.g. ST2_SEIS_Data.txt). The data must be stored in columns, such that each column contains the values of a specified parameter. All records must be in numerical format, no strings are allowed (with the exception of 'NaN' values, which are acceptable). The minimum number of columns is 7 - 6 date/time columns plus one magnitude column for catalog data (or production parameter observation, for production data). The first 6 columns must correspond to the occurrence time of the seismic events (or production data observation time), such that (see Fig. 1a and Fig. 2a):

Column 1: **Year** (integer) Column 2: **Month** (integer) Column 3: **Day** (integer) Column 4: **Hour** (integer) Column 5: **Minute** (integer) Column 6: **Second** (double)

There is no upper limit on the number of columns. However, only magnitudes and time are further used in the analysis [for data filtering by selecting epicentral/depth distribution of events please refer to SHAPE_ver1, or the IS-EPOS platform on-line versions; Leptokaropoulos et al., 2019; Orlecka-Sikora et al., 2020). The rest of the columns may correspond to any other seismic parameter (e.g. depth, a moment tensor component, rms error, fault plane strike etc) – or equivalently, production parameter (e.g. water level, volume of extracted gas etc). The Production Data parameters are only used to facilitate visual inspection of input parameters and results and they do not take part in the calculations.

✓ SEISMIC CATALOG/PRODUCTION <u>FIELDS</u> File: The <u>Fields</u> files must be stored separately from the <u>Data</u>, in ASCII format as well (e.g. ST2_SEIS_Fields.txt). The specified Fields must be typed in a row, <u>separated by space intervals</u> (one or more spaces). Note that no commas, tabs or any other delimiters are allowed (see Fig. 1b and Fig. 2b). The first Field must be 'Time' (for Catalog) or 'Date' (for Production) and it corresponds to the 6 first columns of the Data file (see "seismic catalog/production data file" above). The remaining number of the specified fields must be equal to the number of the remaining columns in the Data file. For example, if the *Data* file has 10 columns (6 for time and 4 for other parameters, including at least one magnitude), the *Fields* file must have 5 columns (the first to be 'Time' and the rest corresponding to each one of the 4 remaining parameters, respectively).

<u>IMPORTANT NOTE</u>: be aware that the last character of the string line in the text file CANNOT be space or line! Make sure that the file ends with a character (letter or number).

Magnitude Fields: The Application provides the option of filtering data for Completeness Magnitude. In doing so, one or more Magnitude fields must be identified. SHAPE_ver2 supports the following names for Magnitude Scales (case sensitive): 'ML', 'Mw', 'Ms', 'mb', 'Md' and 'M'. If the User wishes to specify a different magnitude scale (other than the first 5 stated above), he/she may name it after 'M' (general case). Please make sure that the corresponding Magnitude column fields have one of the aforementioned names.

2007	12	10	10	27 50	.00 2.261	514922	4298613	2218	14	44	97	38.83619300000	122.8280700000
2007	12	14	2	13 55	.00 2.270	514865	4298893	2546	223	37	44	38.83871900000	122.8287220000
2007	12	16	23	42 43	.00 1.712	514874	4298841	2382	153	82	164	38.83824700000	122.8286130000
2007	12	19	12	17 16	.00 2.414	514774	4298429	1703	218	53	56	38.83453900000	122.8297760000
2007	12	31	11	54 14	.00 1.631	514800	4298819	2055	343	27	135	38.83805400000	122.8294770000
2008	1	1	11	19 40	.00 1.901	514912	4298900	2249	353	35	61	38.83877900000	122.8281740000
2008	1	7	11	6 43	.00 2.486	514831	4299037	2711	262	32	83	38.84001100000	122.8291050000
2008	1	20	21	23 2	.00 1.568	514895	4298839	2373	115	82	177	38.83823100000	122.8283770000
2008	1	21	10	53 45	.00 1.802	514883	4298898	2258	74	39	83	38.83875900000	122.8285190000
2008	2	2	8	47 2	.00 1.937	514931	4298790	2625	289	51	124	38.83778600000	122.8279640000
2008	2	12	18	56 9	.00 1.478	515115	4299119	2102	140	71	148	38.84075000000	122.8258320000
2008	2	12	19	6 14	.00 2.162	515146	4299128	2125	86	42	111	38.84083000000	122.8254840000
2008	2	18	23	24 0	.00 1.928	514852	4299100	2540	55	34	79	38.84058500000	122.8288650000
2008	2	22	6	14 24	.00 1.568	514955	4299102	2057	173	47	83	38.84060200000	122.8276820000
2008	2	22	14	41 16	.00 1.919	515154	4299101	2556	9	42	93	38.84059000000	122.8253910000
2008	3	3	23	12 28	.00 2.261	514840	4298968	2511	354	28	144	38.83939500000	122.8290030000
G_SEIS	Fields	.txt X											

Fig. 1. Example of a Seismic Data File (a) and the corresponding Seismic Data Fields File (b).

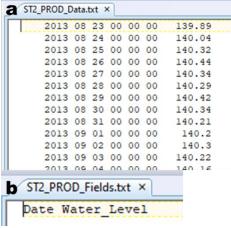


Fig. 2. Example of a Production Data File (a) and corresponding Production Data Fields File (b).

TIME WINDOWS File: This file is optional and can only be used when "Windows Creation Mode": 'Files' is selected (see next section). The <u>Time Windows</u> files must be in ASCII format (e.g. ST2_test_timewindows.txt). The data must be stored in 2 columns, such that each column contains the values of a specified parameter: 1st column – the starting time of each time window, 2nd column – the ending time of each time window. The file format must be matlab time (Fig. 3).

733388.930241936	733736.185887097
733736.185887097	734054.28266129
734054.28266129	734409.490725806
734409.490725806	734621.555241936
734621.555241936	734907.84233871
734907.84233871	735355.828629032
735355.828629032	735586.448790323
735586.448790323	735843.577016129

Fig. 3. Example of a Time Windows file.

INPUT ARGUMENTS set in SHAPE ver2.m. lines 117-134:

Argument	IENTS set in SHAPE_ver2.m, Description	Type	Format	Possible Values/ comments
SEIS_DATA	Seismic Catalog Data file	String	String	
SEIS_FIELDS	Seismic Catalog Fields file	String	String	Correspond to ASCII files (e.g.
PROD DATA	Production Data file	String	String	ST2_SEIS_Data.txt)
(optional)		~	~	PROD_DATA=[] is also valid, i.e. no production
PROD_FIELDS	Production Fields file	String	String	data is considered
(optional)				
PROD_FIELD	Indicator of vector from	Scalar	Integer	From 2 to number of
(optional)	production data to be plotted			columns included in
(1 /				Production Data file
MScale	Magnitude Scale	String	String	The ones stated in Data
	e.g. 'ML', 'Mw' etc			Fields file ('see Magnitude
				Fields' above)
Mc	Completeness Magnitude	Scalar	Double	Within magnitude range of
3.6	N . N 1	G 1	D 11	Catalog
Mmax	Maximum Magnitude	Scalar	Double	<maximum catalog="" p="" record<=""> M</maximum>
	Number of synthetic samples	C 1	Tutorou	M _{max} =[] is also valid*
Nsynth	for M_{max} Bias estimation	Scalar	Integer	>1
winmode	Mode for data windows	String	String	'Time', 'Events', or 'File'
wiiiiiodc	generation	Sumg	Sumg	Time, Events, or The
file_n	Name of the file with starting	String	String	applicable only for
1110_11	and ending times for time	Sumg	Sumg	winmode='File'
	windows			
winsize	Time window span	Scalar	Double	days for winmode='Time'
				events for
				winmode='Events'
				Not applicable for
				winmode='File'
dt	Time step	Scalar	Double	Corresponds to 'days'
method	magnitude distribution model	String	String	'GRU', 'GRT', 'NPU',
				'NPT' (see Overview)
Tunit	Time unit for activity rate and	String	String	'day', 'month', 'year'
	EPR	-		
MaG	Target magnitude for EPR	Scalar	Double	Cannot be higher than
	and MRP			Mmax in Truncated Models
D141-	Toward times wasted for EDD	C 1	D 11	('GRT', 'NPT')
Plength	Target time period for EPR	Scalar	Double	Set in time units defined by
Dlotont	Enables/disables plotting	Ctring	Ctring	'Tunit' parameter 'ON', 'OFF'
Plotopt	Enables/disables plotting	String	String	ON, OFF

^{*}For the special case of the truncated magnitude distributions (GRT and NPT), the maximum magnitude must also be set. This magnitude corresponds to the maximum possible magnitude given the dimensions of the area and/or seismicity history. By setting Mmax=[], the Maximum magnitude is estimated by the Kijko-Sellevoll formula, considering the entire available sample (all time windows) with $M \ge M_C$. The Mmax bias is also taken into account (Lasocki and Urban, 2011). Alternatively, the User may set a specific value of Mmax for the study area.

RUNNING THE PROGRAM:

The steps of the process (also described within 'SHAPE_ver2.m' comments) are as follows: (The following steps are executed <u>internally</u> by SHAPE. The User has only to define input arguments and parameters in the lines 117-134 of "SHAPE_ver2.m". After launching the wrapper script, the Application runs without any interruptions).

- **STEP 1 Data Uploading**: The User may specify the **names of** 2 input files, corresponding to the Seismic Catalog (data and corresponding field names, respectively). Optionally, 2 to Production data files can be uploaded (see INPUT section for details). Note that if the *PROD_DATA=[]*, then Production data are disregarded from the process.
- **STEP 1b Seismic and Production Data Handling and Conversion**: This step is internally executed by SHAPE in order to handle and convert data in format compatible for the program to run [use of 'Data_Hand_A2M.m' function called by SHAPE_ver2].
- **STEP 2 Magnitude scale Columns Importing**: This step is internally executed by SHAPE to select the time vector from the Catalog (use of 'Select_Magnitude_Scale_ver2.m' function called by SHAPE ver2).
- **STEP 3 Mc filtering**: Filtering data for $M \ge M_C$. If Mscale = [], then all data are considered for transformation no filtering takes place (use of 'FiltMC_ver2.m' function called by SHAPE_ver2).
- **STEP 4 Create Time Windows**: Depending on the selected 'winmode' value (either 'Time', 'Events' or 'File'), SHAPE follows a particular loop in order to generate subsequent time windows for which the hazard parameters will be estimated. These windows may or may not overlap with each other. If winmode='File' is selected, the time windows are created by the data included in the selected file located in the "TIME_WINDOWS" directory (See Input section for details).
- **STEP 5 Estimate Hazard Parameter**: SHAPE uses the parameters set by the User in the beginning of the code to estimate hazard parameters. First, the activity rates and magnitude distributions are estimated for each one of the datasets created (corresponding to specified time windows (use of 'TDHMagDistWrapper.m' called by SHAPE_ver2). Then the MRP and EPR for each time window is calculated (use of 'TDHRetPeriodExcProbWrapper.m' called by SHAPE_ver2).
- **STEP 6 Visualization (Optional**): If the User set the Value 'ON' to the 'Plotopt' parameters, a figure is created.
- **STEP 7 Save Outputs**: The results are save as matlab structure and output report in ASCII format.

Outputs: After the analysis is performed by SHAPE, the following output results are produced and stored in the directory "Outputs_SHA".

Structure "SHA.mat" containing fields with outputs from 'SHAPE_ver2.m' script as well as the corresponding input values. The structure has as many cells as the number of time windows generated. These fields are the following:

Field	Type	Format	Parameter/comments		
Time	Vector	Double	Origin times of the events included in each time window		
M	Vector	Double	Magnitudes of the events included in each time window		
Mmin	Scalar	Double	Minimum magnitude threshold		
eps	Scalar	Double	Magnitude round-off interval		
lambd	Scalar	Double	Mean activity rate		
lambd_err	Logical	0, 1	Events number sufficiency: if lambd_err=0, all parameters are estimated, if lambd_err=1 all outputs are set as NaN.		
unit	String	String	Time unit		
method	String	String	Magnitude distribution model selected among 'GRU', 'GRT', 'NPU' and 'NPT'		
b ¹	Scalar	Double	b-value of the Gutenberg-Richter law		
h ²	Scalar	Double	Kernel smoothing factor		
xx ²	Vector	Double	Background sample for the non-parametric kernel estimators of magnitudes		
ambd ²	Vector	Double	Weighting factors for the adaptive kernel		
ierr ²	Scalar	0, 1, 2	h convergence indicator: ierr=0: process converged, ierr=1: multiple zeros found, ierr=2: no zeros found.		
Mmax ³	Scalar	Double	Upper limit of the magnitude (truncated) distribution		
err ³	Logical	0,1	Mmax convergence indicator: err=0: convergence, err=1: no convergence		
PDF	Array	Double	Array with 2 columns: the first representing magnitudes and the second the Probability Density Function of those magnitudes, derived by the selected model ('method').		
CDF	Array	Double	Array with 2 columns: the first representing magnitudes and the second the Cumulative Distribution Function of those magnitudes, derived by the selected model ('method').		

¹ Applies only when "method" is set to "GRU" or "GRT"

Report: 'REPORT_Hazard_Analysis.txt' is generated and stored (by the auxiliary script "Zsave_output_ver2.m", called by SHAPE_ver2), including a summary of the input parameters and data considered, as well as the results obtained from the analysis.

FIGURE SHA.mat/SHA.jpeg: Request for a figure to be created as generated by the auxiliary script "*Zplo_ver2.m*" called by SHAPE_ver2 (see Fig. 4 and Fig. 5). Use the input argument 'Plotopt': Set Plotopt='ON' to enable visualization, or Plotopt='OFF' to disable visualization. The figure has three frames:

The upper frame demonstrates MRP for the selected target magnitude (Fig. 4 and Fig. 5). In the left axis the selected time unit is shown. Optionally, if Production Data are loaded, they are

² Applies only when "method" is set to "NPU" or "NPT"

³Applies only when "method" is set to "GRT" or "NPT"

plotted as well (right axis, Fig. 4). The left y-axis can be switched from linear to log scale and vice versa.

The middle frame demonstrates EPR for the selected target magnitude and period duration (Fig. 4 and Fig. 5). Optionally, if Production Data are loaded, they are plotted as well (right axis, Fig. 4).

The lower frame shows the mean activity rate in events/unit selected. In the right axis, the b-values are plotted if 'GRU' or 'GRT' method is selected (Fig. 4). Alternatively, the mean magnitude for each dataset is plotted (right axis) if method is set to 'NPU' or 'NPT' (Fig. 5).

In all three frames there are 2 plotting types. If the time windows are not overlapping, the resulted plot looks like Fig. 4 (horizontal lines). Otherwise, if time windows overlap with each other, the resulting plot looks like Fig. 5 (Circular points). Click on the 'SAVE and CLOSE' button to save the figure in .mat and .jpeg formats.

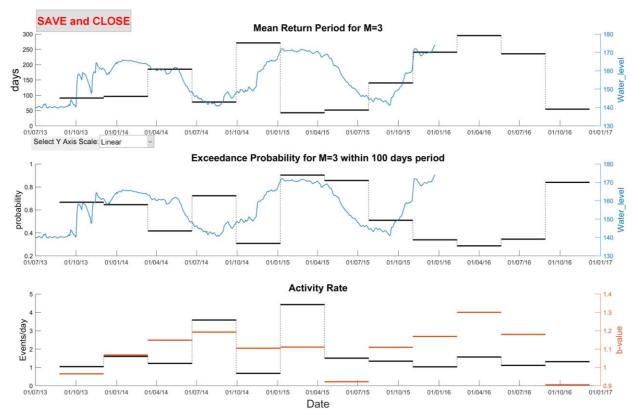


Fig. 4. Output figure for non-overlapping windows and Production Data plotted.

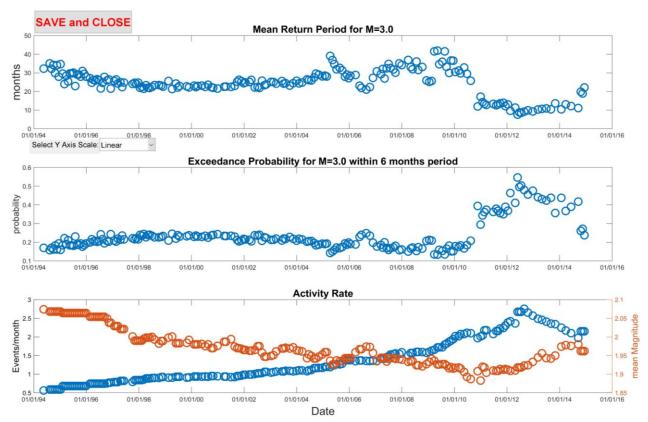


Fig. 5. Output figure for overlapping windows without Production Data plotted.

For a comprehensive description of the methodology applied in SHAPE, the User may read Leptokaropoulos and Lasocki (2020) and references therein.

The Users may also use the on-line versions in the IS-EPOS Platform of the Thematic Core Service Anthropogenic Hazards (TCS-AH) of EPOS (Leptokaropoulos et al., 2019; Orlecka-Sikora et al., 2020).

Appendix: Parameter Values Tutorial

Although this application can be evenly used for tectonic seismicity case studies, it has been developed to mainly apply for anthropogenic seismicity episodes. By setting the appropriate parameter values and units, the application can be equivalently implemented for any seismic hazard analysis. The following table presents examples of typical (yet, not exclusive) values set for anthropogenic as well as for tectonic seismicity case studies.

Parameter	Anthropogenic SHA	Tectonic SHA	
Magnitude Distribution Model	Non-parametric kernel	Gutenberg-Richter law	
Time Unit	Days to months	Years	
Maximum Magnitudes	Depending on technology,	Depending on the seismic zone,	
	Usually M _{max} < 4.0	can be as high as M _{max} ~9.5	
Target Magnitudes for EP and	Depending on technology,	Depending on the seismic zone,	
MRP	2 <m<5< td=""><td>M>5.0</td></m<5<>	M>5.0	
Target time period for EP	1 day to 1 week	10-50 years	

NOTE: This table does NOT show the observed range, it just provides some typical values for comparison between anthropogenic and tectonic seismicity. Please consult relevant reference to adapt proper values for specific case studies.

References

- Kijko. A., S. Lasocki, and G. Graham (2001), Nonparametric seismic hazard in mines, *Pure Appl Geophys.*, 158, No. 9-10, 1655–1676, doi: 10.1007/PL00001238.
- Kijko, A., and M. A. Sellevoll (1989), Estimation of earthquake hazard parameters from incomplete data files. Part I. Utilization of extreme and complete catalogs with different threshold magnitudes, *Bull. Seismol. Soc. Am.*, 79, no. 3, 645–654.
- Lasocki, S. (2017), Probabilistic Assessment of Mining-Induced Time-Dependent Seismic Hazards, *Chapter 11.3 in Rockburst Mechanisms, Monitoring, Warning, and Mitigation (Xia-Ting Feng, ed.), Butterworth-Heinemann (Elsevier), Oxford, United Kingdom*, pp. 366-380
- Lasocki, S., and B. Orlecka-Sikora (2008), Seismic hazard assessment under complex source size distribution of mining-induced seismicity, *Tectonophysics*, 456, No. 1-2, 28–37, doi: 10.1016/j.tecto.2006.08.013.
- Lasocki, S. and P. Urban (2011), Bias, variance and computational properties of Kijko's estimators of the upper limit of magnitude distribution, M_{max} , *Acta Geophys.*, 59, 659-673, doi: 10.2478/s11600-010-0049-y.
- Leptokaropoulos, K., S. Cielesta, M. Staszek, D. Olszewska, G. Lizurek, J. Kocot, S. Lasocki, B. Orlecka-Sikora, M. Sterzel, and T. Szepieniec (2019). IS-EPOS: A platform for anthropogenic seismicity research, *Acta Geophys.*, 67, 299–310, doi: 10.1007/s11600-018-0209-z.
- Leptokaropoulos, K. and S. Lasocki (2020), SHAPE: A MATLAB Software Package for Time-dependent Seismic Hazard Analysis, *Seismol. Res. Lett.*, doi: 10.1785/0220190319.
- Leptokaropoulos, K., M. Staszek, S. Cielesta, P. Urban, D. Olszewska and G. Lizurek (2017), Time-dependent seismic hazard in Bobrek coal mine, Poland, assuming different magnitude distribution estimations, *Acta Geophys.*, 65, 493-505, doi: 10.1007/s11600-016-0002-9.
- Orlecka-Sikora, B., S. Lasocki, J. Kocot, T. Szepieniec, J.-R. Grasso, A. Garcia-Aristizabal, M. Schaming, P. Urban, G. Jones, I. Stimpson, S. Dineva, P. Sałek, K. Leptokaropoulos, G. Lizurek, D. Olszewska, J. Schmittbuhl, G. Kwiatek, A. Blanke, G. Saccarotti, K. Chodzińska, Ł. Rudziński, I. Dobrzycka, G. Mutke, A. Barański, A. Pierzyna, E. Kozlovskaya, J. Nevalainen, J. Kinscher, J. Sileny, M. Sterzel, S. Cielesta, and T. Fischer (2020). An open data infrastructure for the study of anthropogenic hazards linked to georesource exploitation. Sci. Data, 7, 89. doi:10.1038/s41597-020-0429-3.