PandSWavesDetectionTool/src/epos_ai_picking_tools/.ipynb_checkpoints/model_runner-checkpoint.py

103 lines
3.1 KiB
Python
Raw Normal View History

2023-09-20 11:44:18 +02:00
import json
import pathlib
import sys
from collections import defaultdict
import obspy
import seisbench.models as sbm
from obspy.core.event import Catalog, Event, Pick, WaveformStreamID
from obspy.io.json.default import Default
def list_pretrained_models(model_runner_class):
m = getattr(sbm, model_runner_class.model_type)
weights = m.list_pretrained()
return weights
def exit_error(msg):
print("ERROR:", msg)
sys.exit(1)
class ModelRunner:
model_type = "EMPTY"
def __init__(self, weights_name="original", output_dir=pathlib.Path("."), **kwargs):
# self.model_name = getattr(sbm, __class__.model_type)
self.model = self.load_model(weights_name)
self.output_dir = pathlib.Path(output_dir)
self.process_kwargs(**kwargs)
def process_kwargs(self, **kwargs):
pass
def citation(self):
return self.model.citation
def load_model(self, weights_name):
return self.model_name.from_pretrained(weights_name)
def load_stream(self, stream_file_name):
return obspy.read(stream_file_name)
def save_picks(self, classs_picks, stream_path):
dict_picks = list(map(lambda p: p.__dict__, classs_picks))
fpath = self.output_dir / f"{stream_path.stem}_picks.json"
with open(fpath, "w") as fp:
json.dump(dict_picks, fp, default=Default())
def save_quakeml(self, classs_picks, stream_path):
e = Event()
for cpick in classs_picks:
net, sta, loc = cpick.trace_id.split(".")
p = Pick(
time=cpick.peak_time,
phase_hint=cpick.phase,
waveform_id=WaveformStreamID(
network_code=net, station_code=sta, location_code=loc
),
)
e.picks.append(p)
cat = Catalog([e])
fpath = self.output_dir / f"{stream_path.stem}_picks.xml"
cat.write(fpath, format="QUAKEML")
def write_annotations(self, annotations, stream_path):
ann = annotations.copy()
for tr in ann:
tr.stats.channel = f"G_{tr.stats.component}"
fpath = self.output_dir / f"{stream_path.stem}_annotations.mseed"
ann.write(fpath, format="MSEED")
@staticmethod
def validate_stream(stream):
groups = defaultdict(list)
for trace in stream:
groups[trace.stats.station].append(trace.stats.channel[-1])
number_of_channels = list(map(len, groups.values()))
if max(number_of_channels) < 3:
exit_error("Not enough traces in the stream")
def find_picks(self, stream_file_name, save_annotations=True):
stream_path = pathlib.Path(stream_file_name)
stream = self.load_stream(stream_path)
self.validate_stream(stream)
annotations = self.model.annotate(stream, **self.annotate_kwargs)
if save_annotations:
self.write_annotations(annotations, stream_path)
classs_picks = self.model.classify_aggregate(annotations, self.classify_kwargs)
self.save_picks(classs_picks, stream_path)
self.save_quakeml(classs_picks, stream_path)
return classs_picks