Phase Association code

This commit is contained in:
Joanna Kocot Test 2024-10-09 11:18:04 +02:00
commit ef868db505
6 changed files with 435 additions and 0 deletions

108
PyOctoPhaseAssociation.py Normal file
View File

@ -0,0 +1,108 @@
import logging
import sys
import pandas as pd
from obspy import read_inventory, Catalog
from obspy.core.inventory import Inventory
from pyoctoAssociator import PhaseAssociation
from catalogConverter import CatalogConverter
from qml2picks import qml2picks
from count_picks import count_picks_from_stations
def main(qml_picks, inventory, velocity_model, lat_min, lat_max, lon_min, lon_max, z_min,
z_max, grid_hor_extent, grid_spacing, p_vel_const, s_vel_const,
n_picks=4, n_p_picks=0, n_s_picks=0, n_p_s_picks=0, time_before=10.0, tolerance=1.0, assoc_cut_dist=250.0,
pick_match_tolerance=0.5, p_hint="P", s_hint="S"):
"""
Main function for application: PHASEASSOCIATIONAPP
Arguments:
velocity_model: input file of type 'mat'
qml_picks: input file of type 'quakeml_seismogram_picks'
inventory: input file of type 'inventory'
grid_hor_extent: parameter of type 'DOUBLE'
grid_spacing: parameter of type 'DOUBLE'
lat_min: parameter of type 'DOUBLE'
lat_max: parameter of type 'DOUBLE'
lon_min: parameter of type 'DOUBLE'
lon_max: parameter of type 'DOUBLE'
z_min: parameter of type 'DOUBLE'
z_max: parameter of type 'DOUBLE'
n_picks: parameter of type 'INTEGER'
n_p_picks: parameter of type 'INTEGER'
n_s_picks: parameter of type 'INTEGER'
n_p_s_picks: parameter of type 'INTEGER'
pick_match_tolerance: parameter of type 'DOUBLE'
p_vel_const: parameter of type 'DOUBLE'
s_vel_const: parameter of type 'DOUBLE'
p_hint: parameter of type 'STRING'
s_hint: parameter of type 'STRING'
time_before: parameter of type 'DOUBLE'
tolerance: parameter of type 'DOUBLE'
assoc_cut_dist: parameter of type 'DOUBLE'
Returns:
File(s) named 'out_catalog' of type 'data_catalog_csv' and format 'PLAIN_TEXT' from working directory
"""
inv = Inventory()
for inventory_item in inventory:
inv.extend(read_inventory(inventory_item))
if count_picks_from_stations(quakeml_file=qml_picks, inventory=inv) == 0:
logging.error(f"There are no stations in the Station Inventory file(s) corresponding to the picked times. "
f"Check if the file(s) is/are correct")
sys.exit(1)
config_pyocto = {
"velocity": {
"path": velocity_model,
"path_out": "velocity_model_1D",
"0D_P_vel": p_vel_const,
"0D_S_vel": s_vel_const,
"grid_hor_extent": grid_hor_extent,
"grid_ver_extent": z_max-z_min,
"grid_spacing": grid_spacing
},
"grid": {
"lat_min": lat_min,
"lat_max": lat_max,
"lon_min": lon_min,
"lon_max": lon_max,
"z_min": z_min,
"z_max": z_max
},
"params": {
"time_before": time_before,
"n_picks": n_picks,
"n_p_picks": n_p_picks,
"n_s_picks": n_s_picks,
"n_p_and_s_picks": n_p_s_picks,
"tolerance": tolerance,
"association_cutoff_distance": assoc_cut_dist,
"pick_match_tolerance": pick_match_tolerance
}
}
config_conv = {
"P_hint": p_hint,
"S_hint": s_hint,
}
picks = qml2picks(qml_picks, p_hint, s_hint)
if not picks:
# Saving empty qml file
cat = Catalog()
cat.write("detections.xml", format="QUAKEML")
else:
pa = PhaseAssociation(inventory=inv, config=config_pyocto)
events, assignments = pa.associate_phases(picks)
if not events.empty:
events['datetime'] = pd.to_datetime(events['time'], unit='s')
cc = CatalogConverter(config_conv, picks, events, assignments, "PyOcto")
cc.catalog2obspy()
cc.save_catalog_to_file("detections.xml")
else:
# Saving empty qml file
cat = Catalog()
cat.write("detections.xml", format="QUAKEML")

120
catalogConverter.py Normal file
View File

@ -0,0 +1,120 @@
import pandas as pd
from obspy.core.event import Catalog
from obspy.core.event import Event
from obspy.core.event import Pick
from obspy.core.event import Origin
from obspy.core.event import OriginQuality
from obspy import UTCDateTime
from obspy.core.event.base import WaveformStreamID, Comment
class CatalogConverter:
"""
Class for converting SeisBench and pyOcto detection results to ObsPy Catalog, which can be saved as QuakeML.
"""
def __init__(self, config, picks, catalog_df, assignments_df, name_of_algorithm):
self._catalog_df = catalog_df
self._assignments_df = assignments_df
self._picks = picks
self._config = config
self._name_of_algorithm = name_of_algorithm
self.catalog = None
def _convert_pick(self, p):
"""
Function converts picks from SeisBench to ObsPy format
:param p: SeisBench pick
:return: ObsPy pick
"""
pick = Pick()
pick.time = UTCDateTime(p.peak_time.datetime)
pick.waveform_id = WaveformStreamID(network_code=p.trace_id.split(".")[0],
station_code=p.trace_id.split(".")[1],
channel_code=p.trace_id.split(".")[2])
if p.phase == 'P':
pick.phase_hint = self._config["P_hint"]
elif p.phase == 'S':
pick.phase_hint = self._config["S_hint"]
pick.evaluation_mode = 'automatic'
pick.evaluation_status = 'preliminary'
return pick
def _convert_origin(self, origin_sb, list_of_picks_sb):
origin = Origin()
origin.time = UTCDateTime(pd.to_datetime(origin_sb.time, unit='s').to_pydatetime())
origin.latitude = origin_sb.latitude # float
origin.longitude = origin_sb.longitude # float
origin.depth = origin_sb.depth # float in kilometers (SWIP5 origin version) down the see level
origin.depth_type = 'operator assigned'
# TODO: make sure that region is not necessary
# origin.region = self._config["region"]
origin.evaluation_mode = "automatic"
origin.evaluation_status = 'preliminary'
origin.comments.append(Comment(text=f"Localized by: {self._name_of_algorithm}", force_resource_id=False))
origin.quality = OriginQuality(used_phase_count=len(list_of_picks_sb))
return origin
def _convert_event(self, origin_sb, list_of_picks_sb):
"""
Function convert GaMMa detection to ObsPy Event
:param origin_sb:
:param list_of_picks_sb:
:return:
"""
event = Event()
for p in list_of_picks_sb:
pick = self._convert_pick(p)
event.picks.append(pick)
origin = self._convert_origin(origin_sb, list_of_picks_sb)
event.origins.append(origin)
return event
@staticmethod
def _append_pick_trace_id(pick, stream):
"""
Function assigns channel to pick - it is useful for work with SWIP
:param pick:
:param stream:
:return:
"""
channel = stream[0].stats.channel
if pick.phase == "P":
pick.trace_id = pick.trace_id + channel[:-1] + "Z"
if pick.phase == "S":
pick.trace_id = pick.trace_id + channel[:-1] + "E"
return pick
def catalog2obspy(self):
"""
Function convert GaMMa catalog and SeisBench picks
:return: ObsPy Catalog object
"""
# TODO: make sure that resource id is necessary
#cat = Catalog(resource_id=self._config["resource_id"])
cat = Catalog()
for j, row in self._catalog_df.iterrows():
event = self._catalog_df.iloc[j]
event_picks = [self._picks[i] for i in
self._assignments_df[self._assignments_df["event_idx"] ==
event["idx"]]["pick_idx"]]
event_obspy = self._convert_event(event, event_picks)
cat.append(event_obspy)
self.catalog = cat
def save_catalog_to_file(self, file_path):
"""
Save ObsPy catalog to a file.
Args:
file_path (str): The file path where the catalog will be saved.
Returns:
None
"""
try:
self.catalog.write(file_path, format="QUAKEML")
print(f"Catalog saved successfully to {file_path}")
except Exception as e:
print(f"Error occurred while saving catalog: {e}")

30
count_picks.py Normal file
View File

@ -0,0 +1,30 @@
import logging
import sys
from obspy import read_inventory, read_events
def count_picks_from_stations(quakeml_file, inventory):
# Read the QuakeML file
try:
events = read_events(quakeml_file)
except Exception as e:
logging.error(f"Error reading QuakeML file: {e}")
sys.exit(1)
# Extract station network and station codes from the inventory
stations = set()
for network in inventory:
for station in network:
stations.add((network.code, station.code))
# Count the number of picks in the QuakeML file that come from the stations in the inventory
pick_count = 0
for event in events:
for pick in event.picks:
net_sta = (pick.waveform_id.network_code, pick.waveform_id.station_code)
if net_sta in stations:
pick_count += 1
return pick_count

View File

@ -0,0 +1,59 @@
# -----------------
# Copyright © 2024 ACK Cyfronet AGH, Poland.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# This work was partially funded by DT-GEO Project.
# -----------------
import sys
import argparse
from PyOctoPhaseAssociation import main as phaseassoc
def main(argv):
parser = argparse.ArgumentParser()
parser.add_argument("qml_picks", help="Path to input file of type 'quakeml_seismogram_picks'")
parser.add_argument("inventory", nargs='+', help="Paths to input files of type 'inventory'")
parser.add_argument("--velocity_model", help="Path to input file of type 'velocity_model'", type=str,
required=False)
parser.add_argument("--lat_min", type=float)
parser.add_argument("--lat_max", type=float)
parser.add_argument("--lon_min", type=float)
parser.add_argument("--lon_max", type=float)
parser.add_argument("--z_min", type=float)
parser.add_argument("--z_max", type=float)
parser.add_argument("--grid_hor_extent", type=float, default=None, required=False)
parser.add_argument("--grid_spacing", type=float, default=None, required=False)
parser.add_argument("--p_vel_const", type=float, default=None, required=False)
parser.add_argument("--s_vel_const", type=float, default=None, required=False)
parser.add_argument("--n_picks", type=int, default=4, required=False)
parser.add_argument("--n_p_picks", type=int, default=0, required=False)
parser.add_argument("--n_s_picks", type=int, default=0, required=False)
parser.add_argument("--n_p_s_picks", type=int, default=0, required=False)
parser.add_argument("--time_before", type=float, default=10, required=False)
parser.add_argument("--tolerance", type=float, default=1, required=False)
parser.add_argument("--assoc_cut_dist", type=float, default=250, required=False)
parser.add_argument("--pick_match_tolerance", type=float, default=0.5, required=False)
parser.add_argument("--p_hint", type=str, default="P", required=False)
parser.add_argument("--s_hint", type=str, default="S", required=False)
args = parser.parse_args()
phaseassoc(**vars(args))
return
if __name__ == '__main__':
main(sys.argv)

100
pyoctoAssociator.py Normal file
View File

@ -0,0 +1,100 @@
import os
import numpy as np
import pandas as pd
import scipy.io
import pyocto
class PhaseAssociation:
"""
Class for phase association using PyOcto.
"""
def __init__(self, inventory, config):
"""
Initialize the PhaseAssociation class.
Args:
inventory: ObsPy inventory object.
config (dict): Configuration parameters.
"""
self._inv = inventory
self._config = config
self._setup_velocity_model()
self._setup_associator()
def _setup_velocity_model(self):
"""
Set up the velocity model based on configuration.
"""
velocity_config = self._config["velocity"]
if self._config["velocity"]["path"] is None:
self.velocity_model = pyocto.VelocityModel0D(
p_velocity=self._config["velocity"]["0D_P_vel"],
s_velocity=self._config["velocity"]["0D_S_vel"],
tolerance=self._config["params"]["tolerance"],
association_cutoff_distance=self._config["params"]["association_cutoff_distance"])
else:
if not os.path.exists(velocity_config["path_out"]):
self._create_1d_vel_model()
self.velocity_model = pyocto.VelocityModel1D(velocity_config["path_out"],
tolerance=self._config["params"]["tolerance"])
def _mat2df(self):
# Load the .mat file
mat_contents = scipy.io.loadmat(self._config["velocity"]["path"])
data = mat_contents["d"][0][0]
depth = data[0].T[0]
depth = np.append(depth[::2], depth[-1])
vel_p = data[1].T[0]
vel_p = np.append(vel_p[0], vel_p[::2])
vel_s = data[2].T[0]
vel_s = np.append(vel_s[0], vel_s[::2])
# Create DataFrame from the lists
data = {
'depth': depth,
'vp': vel_p,
'vs': vel_s
}
layers = pd.DataFrame(data)
return layers
def _create_1d_vel_model(self):
layers = self._mat2df()
pyocto.VelocityModel1D.create_model(
layers,
self._config["velocity"]["grid_spacing"],
self._config["velocity"]["grid_hor_extent"],
self._config["velocity"]["grid_ver_extent"],
self._config["velocity"]["path_out"]
)
def _setup_associator(self):
"""
Set up the associator based on configuration.
"""
grid_config = self._config["grid"]
associator_params = self._config["params"]
self.associator = pyocto.OctoAssociator.from_area(
lat=(grid_config["lat_min"], grid_config["lat_max"]),
lon=(grid_config["lon_min"], grid_config["lon_max"]),
zlim=(grid_config["z_min"], grid_config["z_max"]),
time_before=associator_params["time_before"],
velocity_model=self.velocity_model,
n_picks=associator_params["n_picks"],
n_p_picks=associator_params["n_p_picks"],
n_s_picks=associator_params["n_s_picks"],
n_p_and_s_picks=associator_params["n_p_and_s_picks"],
pick_match_tolerance=associator_params["pick_match_tolerance"]
)
def associate_phases(self, picks):
stations = self.associator.inventory_to_df(self._inv)
events, assignments = self.associator.associate_seisbench(picks, stations)
events = self.associator.transform_events(events)
return events, assignments

18
qml2picks.py Normal file
View File

@ -0,0 +1,18 @@
from obspy import read_events
from seisbench.util import Pick as SBPick
def qml2picks(path_to_qml_picks, p_hint, s_hint):
c = read_events(path_to_qml_picks, format="QUAKEML")
picks = list()
for p in c.events[0].picks:
# PyOcto requires one character "P" and "S" hints.
if p.phase_hint == p_hint:
picks.append(
SBPick(trace_id=f"{p.waveform_id.network_code}.{p.waveform_id.station_code}.", start_time=p.time,
peak_time=p.time, end_time=p.time, phase="P"))
elif p.phase_hint == s_hint:
picks.append(
SBPick(trace_id=f"{p.waveform_id.network_code}.{p.waveform_id.station_code}.", start_time=p.time,
peak_time=p.time, end_time=p.time, phase="S"))
return picks