MaxMagnitudeDPModels/applicationCode/util/M_max_models.py

217 lines
8.8 KiB
Python
Raw Permalink Normal View History

import numpy as np
class M_max_models:
def __init__(self, data = None, f_name = None, time_win = None, space_win = None,
Mc = None, b_method = None, num_bootstraps = None,
G = None, Mu = None,
dv = None, Mo = None, SER = None,
cl = None,
ssd = None, C = None,
):
self.data = data # Candidate data table: 2darray n x m, for n events and m clonums: x, y, z, t, mag
self.f_name = f_name # Feature's name to be calculated, check: def ComputeFeaure(self)
self.time_win = time_win # Time window whihc a feature is computed in
self.space_win = space_win # Space window ...
self.Mc = Mc # Magnitude of completeness for computing b-positive
self.b_method = b_method # list of b_methods
self.num_bootstraps = num_bootstraps # Num of bootstraps for standard error estimation of b-value
self.G = G # Shear modulus
self.Mu = Mu # Friction coefficient
self.dv = dv # Injected fluid
self.SER = SER
self.Mo = Mo # Cumulative moment magnitude
self.cl = cl # Confidence level
self.ssd = ssd # Static stress drop (Shapiro et al. 2013)
self.C = C # Geometrical constant (Shapiro et al. 2013)
def b_value(self, b_flag):
if b_flag == '1':
return 1, None
# maximum-likelihood estimate (MLE) of b (Deemer & Votaw 1955; Aki 1965; Kagan 2002):
elif b_flag == 'b':
X = self.data[np.where(self.data[:,-1]>self.Mc)[0],:]
if X.shape[0] > 0:
b = 1/((np.mean(X[:,-1] - self.Mc))*np.log(10))
std_error = b/np.sqrt(X.shape[0])
else:
raise ValueError("All events in the current time window have a magnitude less than 'completeness magnitude'. Use another value either for 'time window', 'minimum number of events' or 'completeness magnitude'. Also check 'time window type'.")
return b, std_error
# B-positive (van der Elst 2021)
elif b_flag == 'bp':
# Function to perform bootstrap estimation
def bootstrap_estimate(data, num_bootstraps):
estimates = []
for _ in range(num_bootstraps):
# Generate bootstrap sample
bootstrap_sample = np.random.choice(data, size=len(data), replace=True)
# Perform maximum likelihood estimation on bootstrap sample
diff_mat = np.diff(bootstrap_sample)
diff_mat = diff_mat[np.where(diff_mat>0)[0]]
estimate = 1/((np.mean(diff_mat - np.min(diff_mat)))*np.log(10))
estimates.append(estimate)
return np.array(estimates)
diff_mat = np.diff(self.data[:,-1])
diff_mat = diff_mat[np.where(diff_mat>0)[0]]
bp = 1/((np.mean(diff_mat - np.min(diff_mat)))*np.log(10))
bootstrap_estimates = bootstrap_estimate(diff_mat, self.num_bootstraps)
std_error = np.std(bootstrap_estimates, axis=0)
return bp, std_error
# Tapered Gutenberg_Richter (TGR) distribution (Kagan 2002)
elif b_flag == 'TGR':
from scipy.optimize import minimize
# The logarithm of the likelihood function for the TGR distribution (Kagan 2002)
def log_likelihood(params, data):
beta, Mcm = params
n = len(data)
Mt = np.min(data)
l = n*beta*np.log(Mt)+1/Mcm*(n*Mt-np.sum(data))-beta*np.sum(np.log(data))+np.sum(np.log([(beta/data[i]+1/Mcm) for i in range(len(data))]))
return -l
X = self.data[np.where(self.data[:,-1]>self.Mc)[0],:]
M = 10**(1.5*X[:,-1]+9.1)
initial_guess = [0.5, np.max(M)]
bounds = [(0.0, None), (np.max(M), None)]
# Minimize the negative likelihood function for beta and maximum moment
result = minimize(log_likelihood, initial_guess, args=(M,), bounds=bounds, method='L-BFGS-B',
options={'gtol': 1e-12, 'disp': False})
beta_opt, Mcm_opt = result.x
eta = 1/Mcm_opt
S = M/np.min(M)
dldb2 = -np.sum([1/(beta_opt-eta*S[i])**2 for i in range(len(S))])
dldbde = -np.sum([S[i]/(beta_opt-eta*S[i])**2 for i in range(len(S))])
dlde2 = -np.sum([S[i]**2/(beta_opt-eta*S[i])**2 for i in range(len(S))])
std_error_beta = 1/np.sqrt(dldb2*dlde2-dldbde**2)*np.sqrt(-dlde2)
return beta_opt*1.5, std_error_beta*1.5
def McGarr(self):
b_value, b_stderr = self.b_value(self.b_method)
B = 2/3*b_value
if B < 1:
sigma_m = ((1-B)/B)*(2*self.Mu)*(5*self.G)/3*self.dv
Mmax = (np.log10(sigma_m)-9.1)/1.5
if b_stderr:
Mmax_stderr = b_stderr/np.abs(np.log(10)*(1.5*b_value-b_value**2))
else:
Mmax_stderr = None
else:
Mmax = None
Mmax_stderr = None
return b_value, b_stderr, Mmax, Mmax_stderr
def Hallo(self):
b_value, b_stderr = self.b_value(self.b_method)
B = 2/3*b_value
if b_value < 1.5:
sigma_m = self.SER*((1-B)/B)*(2*self.Mu)*(5*self.G)/3*self.dv
Mmax = (np.log10(sigma_m)-9.1)/1.5
if b_stderr:
Mmax_stderr = self.SER*b_stderr/np.abs(np.log(10)*(1.5*b_value-b_value**2))
else:
Mmax_stderr = None
else:
Mmax = None
Mmax_stderr = None
return b_value, b_stderr, Mmax, Mmax_stderr
def Li(self):
sigma_m = self.SER*2*self.G*self.dv - self.Mo
Mmax = (np.log10(sigma_m)-9.1)/1.5
if Mmax < 0:
return None
else:
return Mmax
def van_der_Elst(self):
b_value, b_stderr = self.b_value(self.b_method)
# Seismogenic_Index
X = self.data
si = np.log10(X.shape[0]) - np.log10(self.dv) + b_value*self.Mc
if b_stderr:
si_stderr = self.Mc*b_stderr
else:
si_stderr = None
Mmax = (si + np.log10(self.dv))/b_value - np.log10(X.shape[0]*(1-self.cl**(1/X.shape[0])))/b_value
if b_stderr:
Mmax_stderr = (np.log10(X.shape[0]) + np.log10(X.shape[0]*(1-self.cl**(1/X.shape[0]))))*b_stderr
else:
Mmax_stderr = None
return b_value, b_stderr, si, si_stderr, Mmax, Mmax_stderr
def L_Shapiro(self):
from scipy.stats import chi2
X = self.data[np.isfinite(self.data[:,1]),1:4]
# Parameters
STD = 2.0 # 2 standard deviations
conf = 2 * chi2.cdf(STD, 2) - 1 # covers around 95% of population
scalee = chi2.ppf(conf, 2) # inverse chi-squared with dof=#dimensions
# Center the data
Mu = np.mean(X, axis=0)
X0 = X - Mu
# Covariance matrix
Cov = np.cov(X0, rowvar=False) * scalee
# Eigen decomposition
D, V = np.linalg.eigh(Cov)
order = np.argsort(D)[::-1]
D = D[order]
V = V[:, order]
# Compute radii
VV = V * np.sqrt(D)
R1 = np.sqrt(VV[0, 0]**2 + VV[1, 0]**2 + VV[2, 0]**2)
R2 = np.sqrt(VV[0, 1]**2 + VV[1, 1]**2 + VV[2, 1]**2)
R3 = np.sqrt(VV[0, 2]**2 + VV[1, 2]**2 + VV[2, 2]**2)
L = (1/3*(1/R1**3+1/R2**3+1/R3**3))**(-1/3)
return R1, R2, R3, L
def Shapiro(self):
R1, R2, R3, L = self.L_Shapiro()
Sh_lmax = np.log10((2*R1)**2)+(np.log10(self.ssd)-np.log10(self.C)-9.1)/1.5
Sh_lint = np.log10((2*R2)**2)+(np.log10(self.ssd)-np.log10(self.C)-9.1)/1.5
Sh_lmin = np.log10((2*R3)**2)+(np.log10(self.ssd)-np.log10(self.C)-9.1)/1.5
Sh_lavg = np.log10((2*L)**2)+(np.log10(self.ssd)-np.log10(self.C)-9.1)/1.5
return Sh_lmax, Sh_lint, Sh_lmin, Sh_lavg
# return R1, R2, R3, L, np.log10(R3**2)+(np.log10(self.ssd)-np.log10(self.C)-9.1)/1.5
def All_models(self):
return self.McGarr()[2], self.Hallo()[2], self.Li(), self.van_der_Elst()[-2], self.Shapiro()[-1]
def ComputeModel(self):
if self.f_name == 'max_mcg':
return self.McGarr()
if self.f_name == 'max_hlo':
return self.Hallo()
if self.f_name == 'max_li':
return self.Li()
if self.f_name == 'max_vde':
return self.van_der_Elst()
if self.f_name == 'max_shp':
return self.Shapiro()
if self.f_name == 'max_all':
return self.All_models()