Update application source code (v2.62)
This commit is contained in:
parent
18a8c7aa13
commit
1b9c647891
184
src/Mmax.py
184
src/Mmax.py
@ -1,12 +1,12 @@
|
||||
import sys
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import pandas as pd
|
||||
# import os
|
||||
import scipy.io
|
||||
import logging
|
||||
from geopy.distance import geodesic
|
||||
from geopy.point import Point
|
||||
|
||||
from util.base_logger import getDefaultLogger
|
||||
|
||||
def main(Input_catalog, Input_injection_rate, time_win_in_hours, time_step_in_hour, time_win_type,
|
||||
@ -68,7 +68,8 @@ def main(Input_catalog, Input_injection_rate, time_win_in_hours, time_step_in_ho
|
||||
# Importing data
|
||||
logger.info("Import data")
|
||||
mat = scipy.io.loadmat(Input_catalog)
|
||||
Cat_structure = mat['Catalog']
|
||||
Cat_structure_name = scipy.io.whosmat(Input_catalog)[0][0]
|
||||
Cat_structure = mat[Cat_structure_name]
|
||||
Cat_id, Cat_t, Cat_m = [], [], []
|
||||
Cat_x, Cat_y, Cat_z = [], [], []
|
||||
Cat_lat, Cat_lon, Cat_elv, Cat_depth = [], [], [], []
|
||||
@ -475,181 +476,6 @@ def main(Input_catalog, Input_injection_rate, time_win_in_hours, time_step_in_ho
|
||||
|
||||
return In_arr[:i_row,:]
|
||||
|
||||
# Plotting models and parameters
|
||||
def Plot_feature(Model_Param_array,Output_dict):
|
||||
myVars = locals()
|
||||
|
||||
# Function for findin min-max of all similar parameters
|
||||
def Extermom4All(Model_Param_array, itr_loc):
|
||||
Mat1D = np.reshape(Model_Param_array[:,itr_loc], -1)
|
||||
NotNone = np.isfinite(Mat1D)
|
||||
if np.min(Mat1D[NotNone])>0:
|
||||
return [np.min(Mat1D[NotNone])*0.95, np.max(Mat1D[NotNone])*1.05]
|
||||
elif np.min(Mat1D[NotNone])<0 and np.max(Mat1D[NotNone])>0:
|
||||
return [np.min(Mat1D[NotNone])*1.05, np.max(Mat1D[NotNone])*1.05]
|
||||
elif np.max(Mat1D[NotNone])<0:
|
||||
return [np.min(Mat1D[NotNone])*1.05, np.max(Mat1D[NotNone])*0.95]
|
||||
|
||||
# Function for setting relevant lagends in the plot
|
||||
def Legend_label(loc):
|
||||
l = Output_dict_c['label'][loc]
|
||||
if Output_dict_c['b_method'][loc]:
|
||||
if Output_dict_c['cl'][loc]:
|
||||
l+='('+Output_dict_c['b_method'][loc]+', cl='+str(Output_dict_c['cl'][loc])+')'
|
||||
else:
|
||||
l+='('+Output_dict_c['b_method'][loc]+')'
|
||||
|
||||
return l
|
||||
|
||||
c_NotNone = [] # Removing all parameters with None or constant value
|
||||
for i in range(Model_Param_array.shape[1]):
|
||||
NotNone = np.isfinite(Model_Param_array[:,i])
|
||||
Eq_value = np.mean(Model_Param_array[:,i])
|
||||
if any(NotNone) and Eq_value != Model_Param_array[0,i]:
|
||||
c_NotNone.append(i)
|
||||
else:
|
||||
logger.info(f"No-PLOT: All values of {Output_dict['Type'][i]} are {Model_Param_array[0,i]}!")
|
||||
|
||||
if len(c_NotNone) > 1:
|
||||
Model_Param_array = Model_Param_array[:,c_NotNone]
|
||||
# New output dictionary based on valid parameters for plotting
|
||||
Output_dict_c = {'Type':[], 'label':[], 'b_method':[], 'cl':[]}
|
||||
for i in range(len(c_NotNone)):
|
||||
Output_dict_c['Type'].append(Output_dict['Type'][c_NotNone[i]])
|
||||
Output_dict_c['label'].append(Output_dict['label'][c_NotNone[i]])
|
||||
Output_dict_c['b_method'].append(Output_dict['b_method'][c_NotNone[i]])
|
||||
Output_dict_c['cl'].append(Output_dict['cl'][c_NotNone[i]])
|
||||
|
||||
coloring=['blue','g','r','c','m','y',
|
||||
'brown', 'darkolivegreen', 'teal', 'steelblue', 'slateblue',
|
||||
'purple', 'darksalmon', '#c5b0d5', '#c49c94',
|
||||
'#e377c2', '#f7b6d2', '#7f7f7f', '#c7c7c7', '#bcbd22', '#dbdb8d',
|
||||
'#17becf', '#9edae5',
|
||||
'brown', 'darkolivegreen', 'teal', 'steelblue', 'slateblue',]
|
||||
# All parameters to be plotted
|
||||
All_vars = Output_dict_c['Type'][2:]
|
||||
Uniqe_var = list(dict.fromkeys([s for s in All_vars if 'Standard Error' not in s])) #list(set(All_vars))
|
||||
|
||||
# defining handels and labels to make final legend
|
||||
All_handels = ['p0']
|
||||
for i in range(1,len(All_vars)):
|
||||
All_handels.append('p'+str(i))
|
||||
handels = []
|
||||
labels = []
|
||||
|
||||
# itr_loc: location of paramteres with similar type
|
||||
itr_loc = np.where(np.array(All_vars) == Uniqe_var[0])[0]+2
|
||||
fig, myVars[Output_dict_c['Type'][0]] = plt.subplots(1,1,figsize=(8+int(len(All_vars)/3),6))
|
||||
fig.subplots_adjust(right=1-len(Uniqe_var)*0.09)
|
||||
if Output_dict_c['label'][itr_loc[0]] == 'True Max-Mag': # plot with dash-line
|
||||
myVars[All_handels[itr_loc[0]-2]], = myVars[Output_dict_c['Type'][0]].plot(Model_Param_array[:,1]/24/3600, Model_Param_array[:,itr_loc[0]], c= 'k', ls='--', lw = 2)
|
||||
else:
|
||||
myVars[All_handels[itr_loc[0]-2]], = myVars[Output_dict_c['Type'][0]].plot(Model_Param_array[:,1]/24/3600, Model_Param_array[:,itr_loc[0]], c= coloring[itr_loc[0]])
|
||||
handels.append(All_handels[itr_loc[0]-2])
|
||||
labels.append(Legend_label(itr_loc[0]))
|
||||
myVars[Output_dict_c['Type'][0]].set_ylabel(Output_dict_c['Type'][itr_loc[0]])
|
||||
myVars[Output_dict_c['Type'][0]].set_ylim(Extermom4All(Model_Param_array, itr_loc)[0], Extermom4All(Model_Param_array, itr_loc)[1])
|
||||
myVars[Output_dict_c['Type'][0]].set_xlabel('Day (From start of the recording)')
|
||||
if End_time:
|
||||
myVars[Output_dict_c['Type'][0]].set_xlim(0,End_time)
|
||||
|
||||
# Plotting statndard error (if exists)
|
||||
if itr_loc[0]+1 < len(Output_dict_c['Type']) and Output_dict_c['Type'][itr_loc[0]+1] == 'Standard Error':
|
||||
myVars[Output_dict_c['Type'][0]].fill_between(Model_Param_array[:,1]/24/3600,
|
||||
Model_Param_array[:,itr_loc[0]] - Model_Param_array[:,itr_loc[0]+1],
|
||||
Model_Param_array[:,itr_loc[0]] + Model_Param_array[:,itr_loc[0]+1], color= coloring[itr_loc[0]], alpha=0.1)
|
||||
# Plotting similar parameters on one axis
|
||||
for j in range(1,len(itr_loc)):
|
||||
if Output_dict_c['label'][itr_loc[j]] == 'True Max-Mag': # plot with dash-line
|
||||
myVars[All_handels[itr_loc[j]-2]], = myVars[Output_dict_c['Type'][0]].plot(Model_Param_array[:,1]/24/3600, Model_Param_array[:,itr_loc[j]], c= 'k', ls='--', lw = 2)
|
||||
else:
|
||||
myVars[All_handels[itr_loc[j]-2]], = myVars[Output_dict_c['Type'][0]].plot(Model_Param_array[:,1]/24/3600, Model_Param_array[:,itr_loc[j]], c= coloring[itr_loc[j]])
|
||||
handels.append(All_handels[itr_loc[j]-2])
|
||||
labels.append(Legend_label(itr_loc[j]))
|
||||
|
||||
# Plotting statndard error (if exists)
|
||||
if itr_loc[0]+1 < len(Output_dict_c['Type']) and Output_dict_c['Type'][itr_loc[j]+1] == 'Standard Error':
|
||||
myVars[Output_dict_c['Type'][0]].fill_between(Model_Param_array[:,1]/24/3600,
|
||||
Model_Param_array[:,itr_loc[j]] - Model_Param_array[:,itr_loc[j]+1],
|
||||
Model_Param_array[:,itr_loc[j]] + Model_Param_array[:,itr_loc[j]+1], color= coloring[itr_loc[j]], alpha=0.1)
|
||||
first_itr = 0
|
||||
# Check if there is any more parameter to be plotted in second axes
|
||||
# The procedure is similar to last plots.
|
||||
if len(Uniqe_var) > 1:
|
||||
for i in range(1,len(Uniqe_var)):
|
||||
itr_loc = np.where(np.array(All_vars) == Uniqe_var[i])[0]+2
|
||||
myVars[Uniqe_var[i]] = myVars[Output_dict_c['Type'][0]].twinx()
|
||||
# if it is third or more axis, make a distance between them
|
||||
if first_itr == 0:
|
||||
first_itr += 1
|
||||
set_right = 1
|
||||
else:
|
||||
set_right = 1 + first_itr*0.2
|
||||
first_itr += 1
|
||||
myVars[Uniqe_var[i]].spines.right.set_position(("axes", set_right))
|
||||
if Output_dict_c['label'][itr_loc[0]] == 'True Max-Mag': # plot with dash-line
|
||||
myVars[All_handels[itr_loc[0]-2]], = myVars[Uniqe_var[i]].plot(Model_Param_array[:,1]/24/3600, Model_Param_array[:,itr_loc[0]], c= 'k', ls='--', lw = 2)
|
||||
else:
|
||||
myVars[All_handels[itr_loc[0]-2]], = myVars[Uniqe_var[i]].plot(Model_Param_array[:,1]/24/3600, Model_Param_array[:,itr_loc[0]], c= coloring[itr_loc[0]])
|
||||
handels.append(All_handels[itr_loc[0]-2])
|
||||
labels.append(Legend_label(itr_loc[0]))
|
||||
myVars[Uniqe_var[i]].set_ylabel(Output_dict_c['Type'][itr_loc[0]])
|
||||
myVars[Uniqe_var[i]].yaxis.label.set_color(coloring[itr_loc[0]])
|
||||
myVars[Uniqe_var[i]].spines["right"].set_edgecolor(coloring[itr_loc[0]])
|
||||
myVars[Uniqe_var[i]].tick_params(axis='y', colors= coloring[itr_loc[0]])
|
||||
myVars[Uniqe_var[i]].set_ylim(Extermom4All(Model_Param_array, itr_loc)[0], Extermom4All(Model_Param_array, itr_loc)[1])
|
||||
if itr_loc[0]+1 < len(Output_dict_c['Type']) and Output_dict_c['Type'][itr_loc[0]+1] == 'Standard Error':
|
||||
myVars[Uniqe_var[i]].fill_between(Model_Param_array[:,1]/24/3600,
|
||||
Model_Param_array[:,itr_loc[0]] - Model_Param_array[:,itr_loc[0]+1],
|
||||
Model_Param_array[:,itr_loc[0]] + Model_Param_array[:,itr_loc[0]+1], color= coloring[itr_loc[0]], alpha=0.1)
|
||||
|
||||
for j in range(1,len(itr_loc)):
|
||||
if Output_dict_c['label'][itr_loc[j]] == 'True Max-Mag': # plot with dash-line
|
||||
myVars[All_handels[itr_loc[j]-2]], = myVars[Uniqe_var[i]].plot(Model_Param_array[:,1]/24/3600, Model_Param_array[:,itr_loc[j]], c= 'k', ls = '--', lw = 2)
|
||||
else:
|
||||
myVars[All_handels[itr_loc[j]-2]], = myVars[Uniqe_var[i]].plot(Model_Param_array[:,1]/24/3600, Model_Param_array[:,itr_loc[j]], c= coloring[itr_loc[j]])
|
||||
handels.append(All_handels[itr_loc[j]-2])
|
||||
labels.append(Legend_label(itr_loc[j]))
|
||||
if itr_loc[j]+1 < len(Output_dict_c['Type']) and Output_dict_c['Type'][itr_loc[j]+1] == 'Standard Error':
|
||||
myVars[Uniqe_var[i]].fill_between(Model_Param_array[:,1]/24/3600,
|
||||
Model_Param_array[:,itr_loc[j]] - Model_Param_array[:,itr_loc[j]+1],
|
||||
Model_Param_array[:,itr_loc[j]] + Model_Param_array[:,itr_loc[j]+1], color= coloring[itr_loc[j]], alpha=0.1)
|
||||
|
||||
# If there are timing, plot them as vertical lines
|
||||
if time_inj:
|
||||
myVars['l1'], = plt.plot([time_inj,time_inj], [Extermom4All(Model_Param_array, itr_loc)[0],Extermom4All(Model_Param_array, itr_loc)[1]], ls='--', c='k')
|
||||
handels.append('l1')
|
||||
labels.append('Start-inj')
|
||||
if time_shut_in:
|
||||
myVars['l2'], = plt.plot([time_shut_in,time_shut_in], [Extermom4All(Model_Param_array, itr_loc)[0],Extermom4All(Model_Param_array, itr_loc)[1]], ls='-.', c='k')
|
||||
handels.append('l2')
|
||||
labels.append('Shut-in')
|
||||
if time_big_ev:
|
||||
myVars['l3'], = plt.plot([time_big_ev,time_big_ev], [Extermom4All(Model_Param_array, itr_loc)[0],Extermom4All(Model_Param_array, itr_loc)[1]], ls='dotted', c='k')
|
||||
handels.append('l3')
|
||||
labels.append('Large-Ev')
|
||||
|
||||
box = myVars[Output_dict_c['Type'][0]].get_position()
|
||||
if len(handels) < 6:
|
||||
myVars[Output_dict_c['Type'][0]].set_position([box.x0, box.y0 + box.height * 0.1,
|
||||
box.width, box.height * 0.9])
|
||||
plt.legend([myVars[ii] for ii in handels], labels, loc='upper center',
|
||||
bbox_to_anchor=(0.5+0.06*first_itr, -0.15), fancybox=True, shadow=True, ncol=len(handels))
|
||||
elif len(handels) < 13:
|
||||
myVars[Output_dict_c['Type'][0]].set_position([box.x0, box.y0 + box.height * 0.04*int(len(handels)/2),
|
||||
box.width, box.height * (1 - 0.04*int(len(handels)/2))])
|
||||
plt.legend([myVars[ii] for ii in handels], labels, loc='upper center',
|
||||
bbox_to_anchor=(0.5+0.1*first_itr, -0.04*int(len(handels)/2)), fancybox=True, shadow=True, ncol=int(len(handels)/2)+1, handleheight=2)
|
||||
else:
|
||||
myVars[Output_dict_c['Type'][0]].set_position([box.x0, box.y0 + box.height * 0.04*int(len(handels)/2),
|
||||
box.width, box.height * (1 - 0.04*int(len(handels)/2))])
|
||||
plt.legend([myVars[ii] for ii in handels], labels, loc='upper center',
|
||||
bbox_to_anchor=(0.6+0.1*first_itr, -0.04*int(len(handels)/2)), fancybox=True, shadow=True, ncol=int(len(handels)/2)+1, handleheight=2)
|
||||
plt.title(Model_name)
|
||||
# plt.savefig(cwd+'/Results/'+Model_name+'.png', dpi=300)
|
||||
plt.savefig('PLOT_Mmax_param.png', dpi=300)
|
||||
# plt.show()
|
||||
|
||||
# Run functions based on the configurations -------------------
|
||||
# Computing model
|
||||
if time_step_in_hour > time_win_in_hours:
|
||||
@ -681,7 +507,9 @@ def main(Input_catalog, Input_injection_rate, time_win_in_hours, time_step_in_ho
|
||||
if Plot_flag > 0:
|
||||
if Model_Param_array.any():
|
||||
logger.info("Plotting results")
|
||||
Plot_feature(Model_Param_array, Output_dict)
|
||||
|
||||
import Mmax_plot # Import locally to ensure Mmax_plot is required only when Plot_flag > 0
|
||||
Mmax_plot.Plot_feature(Model_Param_array, Output_dict)
|
||||
else:
|
||||
logger.info("Model_Param_array is empty or not enough values to plot. Check 'csv' file.")
|
||||
|
||||
|
206
src/Mmax_plot.py
Normal file
206
src/Mmax_plot.py
Normal file
@ -0,0 +1,206 @@
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
|
||||
|
||||
def Plot_feature(Model_Param_array,
|
||||
Output_dict,
|
||||
End_time=None,
|
||||
time_inj=None,
|
||||
time_shut_in=None,
|
||||
time_big_ev=None,
|
||||
Model_name="",
|
||||
logger=None):
|
||||
"""
|
||||
Plotting function extracted from Mmax.py for plotting models and parameters.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
Model_Param_array : np.ndarray
|
||||
Computed matrix of model parameters as rows in time.
|
||||
Output_dict : dict
|
||||
Dictionary describing each column in Model_Param_array.
|
||||
End_time : float, optional
|
||||
The last time to show in the X-axis (days), if desired.
|
||||
time_inj : float, optional
|
||||
Time of injection start (days), if you want a vertical line.
|
||||
time_shut_in : float, optional
|
||||
Time of shut-in (days), if you want a vertical line.
|
||||
time_big_ev : float, optional
|
||||
Time of large event (days), if you want a vertical line.
|
||||
Model_name : str, optional
|
||||
Model name used for the plot title.
|
||||
logger : logging.Logger, optional
|
||||
Logger for printing info messages. If None, no logging happens.
|
||||
"""
|
||||
myVars = locals()
|
||||
|
||||
# Function for findin min-max of all similar parameters
|
||||
def Extermom4All(Model_Param_array, itr_loc):
|
||||
Mat1D = np.reshape(Model_Param_array[:,itr_loc], -1)
|
||||
NotNone = np.isfinite(Mat1D)
|
||||
if np.min(Mat1D[NotNone])>0:
|
||||
return [np.min(Mat1D[NotNone])*0.95, np.max(Mat1D[NotNone])*1.05]
|
||||
elif np.min(Mat1D[NotNone])<0 and np.max(Mat1D[NotNone])>0:
|
||||
return [np.min(Mat1D[NotNone])*1.05, np.max(Mat1D[NotNone])*1.05]
|
||||
elif np.max(Mat1D[NotNone])<0:
|
||||
return [np.min(Mat1D[NotNone])*1.05, np.max(Mat1D[NotNone])*0.95]
|
||||
|
||||
# Function for setting relevant lagends in the plot
|
||||
def Legend_label(loc):
|
||||
l = Output_dict_c['label'][loc]
|
||||
if Output_dict_c['b_method'][loc]:
|
||||
if Output_dict_c['cl'][loc]:
|
||||
l+='('+Output_dict_c['b_method'][loc]+', cl='+str(Output_dict_c['cl'][loc])+')'
|
||||
else:
|
||||
l+='('+Output_dict_c['b_method'][loc]+')'
|
||||
|
||||
return l
|
||||
|
||||
c_NotNone = [] # Removing all parameters with None or constant value
|
||||
for i in range(Model_Param_array.shape[1]):
|
||||
NotNone = np.isfinite(Model_Param_array[:,i])
|
||||
Eq_value = np.mean(Model_Param_array[:,i])
|
||||
if any(NotNone) and Eq_value != Model_Param_array[0,i]:
|
||||
c_NotNone.append(i)
|
||||
else:
|
||||
logger.info(f"No-PLOT: All values of {Output_dict['Type'][i]} are {Model_Param_array[0,i]}!")
|
||||
|
||||
if len(c_NotNone) > 1:
|
||||
Model_Param_array = Model_Param_array[:,c_NotNone]
|
||||
# New output dictionary based on valid parameters for plotting
|
||||
Output_dict_c = {'Type':[], 'label':[], 'b_method':[], 'cl':[]}
|
||||
for i in range(len(c_NotNone)):
|
||||
Output_dict_c['Type'].append(Output_dict['Type'][c_NotNone[i]])
|
||||
Output_dict_c['label'].append(Output_dict['label'][c_NotNone[i]])
|
||||
Output_dict_c['b_method'].append(Output_dict['b_method'][c_NotNone[i]])
|
||||
Output_dict_c['cl'].append(Output_dict['cl'][c_NotNone[i]])
|
||||
|
||||
coloring=['blue','g','r','c','m','y',
|
||||
'brown', 'darkolivegreen', 'teal', 'steelblue', 'slateblue',
|
||||
'purple', 'darksalmon', '#c5b0d5', '#c49c94',
|
||||
'#e377c2', '#f7b6d2', '#7f7f7f', '#c7c7c7', '#bcbd22', '#dbdb8d',
|
||||
'#17becf', '#9edae5',
|
||||
'brown', 'darkolivegreen', 'teal', 'steelblue', 'slateblue',]
|
||||
# All parameters to be plotted
|
||||
All_vars = Output_dict_c['Type'][2:]
|
||||
Uniqe_var = list(dict.fromkeys([s for s in All_vars if 'Standard Error' not in s])) #list(set(All_vars))
|
||||
|
||||
# defining handels and labels to make final legend
|
||||
All_handels = ['p0']
|
||||
for i in range(1,len(All_vars)):
|
||||
All_handels.append('p'+str(i))
|
||||
handels = []
|
||||
labels = []
|
||||
|
||||
# itr_loc: location of paramteres with similar type
|
||||
itr_loc = np.where(np.array(All_vars) == Uniqe_var[0])[0]+2
|
||||
fig, myVars[Output_dict_c['Type'][0]] = plt.subplots(1,1,figsize=(8+int(len(All_vars)/3),6))
|
||||
fig.subplots_adjust(right=1-len(Uniqe_var)*0.09)
|
||||
if Output_dict_c['label'][itr_loc[0]] == 'True Max-Mag': # plot with dash-line
|
||||
myVars[All_handels[itr_loc[0]-2]], = myVars[Output_dict_c['Type'][0]].plot(Model_Param_array[:,1]/24/3600, Model_Param_array[:,itr_loc[0]], c= 'k', ls='--', lw = 2)
|
||||
else:
|
||||
myVars[All_handels[itr_loc[0]-2]], = myVars[Output_dict_c['Type'][0]].plot(Model_Param_array[:,1]/24/3600, Model_Param_array[:,itr_loc[0]], c= coloring[itr_loc[0]])
|
||||
handels.append(All_handels[itr_loc[0]-2])
|
||||
labels.append(Legend_label(itr_loc[0]))
|
||||
myVars[Output_dict_c['Type'][0]].set_ylabel(Output_dict_c['Type'][itr_loc[0]])
|
||||
myVars[Output_dict_c['Type'][0]].set_ylim(Extermom4All(Model_Param_array, itr_loc)[0], Extermom4All(Model_Param_array, itr_loc)[1])
|
||||
myVars[Output_dict_c['Type'][0]].set_xlabel('Day (From start of the recording)')
|
||||
if End_time:
|
||||
myVars[Output_dict_c['Type'][0]].set_xlim(0,End_time)
|
||||
|
||||
# Plotting statndard error (if exists)
|
||||
if itr_loc[0]+1 < len(Output_dict_c['Type']) and Output_dict_c['Type'][itr_loc[0]+1] == 'Standard Error':
|
||||
myVars[Output_dict_c['Type'][0]].fill_between(Model_Param_array[:,1]/24/3600,
|
||||
Model_Param_array[:,itr_loc[0]] - Model_Param_array[:,itr_loc[0]+1],
|
||||
Model_Param_array[:,itr_loc[0]] + Model_Param_array[:,itr_loc[0]+1], color= coloring[itr_loc[0]], alpha=0.1)
|
||||
# Plotting similar parameters on one axis
|
||||
for j in range(1,len(itr_loc)):
|
||||
if Output_dict_c['label'][itr_loc[j]] == 'True Max-Mag': # plot with dash-line
|
||||
myVars[All_handels[itr_loc[j]-2]], = myVars[Output_dict_c['Type'][0]].plot(Model_Param_array[:,1]/24/3600, Model_Param_array[:,itr_loc[j]], c= 'k', ls='--', lw = 2)
|
||||
else:
|
||||
myVars[All_handels[itr_loc[j]-2]], = myVars[Output_dict_c['Type'][0]].plot(Model_Param_array[:,1]/24/3600, Model_Param_array[:,itr_loc[j]], c= coloring[itr_loc[j]])
|
||||
handels.append(All_handels[itr_loc[j]-2])
|
||||
labels.append(Legend_label(itr_loc[j]))
|
||||
|
||||
# Plotting statndard error (if exists)
|
||||
if itr_loc[0]+1 < len(Output_dict_c['Type']) and Output_dict_c['Type'][itr_loc[j]+1] == 'Standard Error':
|
||||
myVars[Output_dict_c['Type'][0]].fill_between(Model_Param_array[:,1]/24/3600,
|
||||
Model_Param_array[:,itr_loc[j]] - Model_Param_array[:,itr_loc[j]+1],
|
||||
Model_Param_array[:,itr_loc[j]] + Model_Param_array[:,itr_loc[j]+1], color= coloring[itr_loc[j]], alpha=0.1)
|
||||
first_itr = 0
|
||||
# Check if there is any more parameter to be plotted in second axes
|
||||
# The procedure is similar to last plots.
|
||||
if len(Uniqe_var) > 1:
|
||||
for i in range(1,len(Uniqe_var)):
|
||||
itr_loc = np.where(np.array(All_vars) == Uniqe_var[i])[0]+2
|
||||
myVars[Uniqe_var[i]] = myVars[Output_dict_c['Type'][0]].twinx()
|
||||
# if it is third or more axis, make a distance between them
|
||||
if first_itr == 0:
|
||||
first_itr += 1
|
||||
set_right = 1
|
||||
else:
|
||||
set_right = 1 + first_itr*0.2
|
||||
first_itr += 1
|
||||
myVars[Uniqe_var[i]].spines.right.set_position(("axes", set_right))
|
||||
if Output_dict_c['label'][itr_loc[0]] == 'True Max-Mag': # plot with dash-line
|
||||
myVars[All_handels[itr_loc[0]-2]], = myVars[Uniqe_var[i]].plot(Model_Param_array[:,1]/24/3600, Model_Param_array[:,itr_loc[0]], c= 'k', ls='--', lw = 2)
|
||||
else:
|
||||
myVars[All_handels[itr_loc[0]-2]], = myVars[Uniqe_var[i]].plot(Model_Param_array[:,1]/24/3600, Model_Param_array[:,itr_loc[0]], c= coloring[itr_loc[0]])
|
||||
handels.append(All_handels[itr_loc[0]-2])
|
||||
labels.append(Legend_label(itr_loc[0]))
|
||||
myVars[Uniqe_var[i]].set_ylabel(Output_dict_c['Type'][itr_loc[0]])
|
||||
myVars[Uniqe_var[i]].yaxis.label.set_color(coloring[itr_loc[0]])
|
||||
myVars[Uniqe_var[i]].spines["right"].set_edgecolor(coloring[itr_loc[0]])
|
||||
myVars[Uniqe_var[i]].tick_params(axis='y', colors= coloring[itr_loc[0]])
|
||||
myVars[Uniqe_var[i]].set_ylim(Extermom4All(Model_Param_array, itr_loc)[0], Extermom4All(Model_Param_array, itr_loc)[1])
|
||||
if itr_loc[0]+1 < len(Output_dict_c['Type']) and Output_dict_c['Type'][itr_loc[0]+1] == 'Standard Error':
|
||||
myVars[Uniqe_var[i]].fill_between(Model_Param_array[:,1]/24/3600,
|
||||
Model_Param_array[:,itr_loc[0]] - Model_Param_array[:,itr_loc[0]+1],
|
||||
Model_Param_array[:,itr_loc[0]] + Model_Param_array[:,itr_loc[0]+1], color= coloring[itr_loc[0]], alpha=0.1)
|
||||
|
||||
for j in range(1,len(itr_loc)):
|
||||
if Output_dict_c['label'][itr_loc[j]] == 'True Max-Mag': # plot with dash-line
|
||||
myVars[All_handels[itr_loc[j]-2]], = myVars[Uniqe_var[i]].plot(Model_Param_array[:,1]/24/3600, Model_Param_array[:,itr_loc[j]], c= 'k', ls = '--', lw = 2)
|
||||
else:
|
||||
myVars[All_handels[itr_loc[j]-2]], = myVars[Uniqe_var[i]].plot(Model_Param_array[:,1]/24/3600, Model_Param_array[:,itr_loc[j]], c= coloring[itr_loc[j]])
|
||||
handels.append(All_handels[itr_loc[j]-2])
|
||||
labels.append(Legend_label(itr_loc[j]))
|
||||
if itr_loc[j]+1 < len(Output_dict_c['Type']) and Output_dict_c['Type'][itr_loc[j]+1] == 'Standard Error':
|
||||
myVars[Uniqe_var[i]].fill_between(Model_Param_array[:,1]/24/3600,
|
||||
Model_Param_array[:,itr_loc[j]] - Model_Param_array[:,itr_loc[j]+1],
|
||||
Model_Param_array[:,itr_loc[j]] + Model_Param_array[:,itr_loc[j]+1], color= coloring[itr_loc[j]], alpha=0.1)
|
||||
|
||||
# If there are timing, plot them as vertical lines
|
||||
if time_inj:
|
||||
myVars['l1'], = plt.plot([time_inj,time_inj], [Extermom4All(Model_Param_array, itr_loc)[0],Extermom4All(Model_Param_array, itr_loc)[1]], ls='--', c='k')
|
||||
handels.append('l1')
|
||||
labels.append('Start-inj')
|
||||
if time_shut_in:
|
||||
myVars['l2'], = plt.plot([time_shut_in,time_shut_in], [Extermom4All(Model_Param_array, itr_loc)[0],Extermom4All(Model_Param_array, itr_loc)[1]], ls='-.', c='k')
|
||||
handels.append('l2')
|
||||
labels.append('Shut-in')
|
||||
if time_big_ev:
|
||||
myVars['l3'], = plt.plot([time_big_ev,time_big_ev], [Extermom4All(Model_Param_array, itr_loc)[0],Extermom4All(Model_Param_array, itr_loc)[1]], ls='dotted', c='k')
|
||||
handels.append('l3')
|
||||
labels.append('Large-Ev')
|
||||
|
||||
box = myVars[Output_dict_c['Type'][0]].get_position()
|
||||
if len(handels) < 6:
|
||||
myVars[Output_dict_c['Type'][0]].set_position([box.x0, box.y0 + box.height * 0.1,
|
||||
box.width, box.height * 0.9])
|
||||
plt.legend([myVars[ii] for ii in handels], labels, loc='upper center',
|
||||
bbox_to_anchor=(0.5+0.06*first_itr, -0.15), fancybox=True, shadow=True, ncol=len(handels))
|
||||
elif len(handels) < 13:
|
||||
myVars[Output_dict_c['Type'][0]].set_position([box.x0, box.y0 + box.height * 0.04*int(len(handels)/2),
|
||||
box.width, box.height * (1 - 0.04*int(len(handels)/2))])
|
||||
plt.legend([myVars[ii] for ii in handels], labels, loc='upper center',
|
||||
bbox_to_anchor=(0.5+0.1*first_itr, -0.04*int(len(handels)/2)), fancybox=True, shadow=True, ncol=int(len(handels)/2)+1, handleheight=2)
|
||||
else:
|
||||
myVars[Output_dict_c['Type'][0]].set_position([box.x0, box.y0 + box.height * 0.04*int(len(handels)/2),
|
||||
box.width, box.height * (1 - 0.04*int(len(handels)/2))])
|
||||
plt.legend([myVars[ii] for ii in handels], labels, loc='upper center',
|
||||
bbox_to_anchor=(0.6+0.1*first_itr, -0.04*int(len(handels)/2)), fancybox=True, shadow=True, ncol=int(len(handels)/2)+1, handleheight=2)
|
||||
plt.title(Model_name)
|
||||
# plt.savefig(cwd+'/Results/'+Model_name+'.png', dpi=300)
|
||||
plt.savefig('PLOT_Mmax_param.png', dpi=300)
|
||||
# plt.show()
|
Loading…
Reference in New Issue
Block a user