Update application source code (v2.62)

This commit is contained in:
Mieszko Makuch 2025-03-10 13:03:30 +01:00
parent 18a8c7aa13
commit 1b9c647891
2 changed files with 212 additions and 178 deletions

View File

@ -1,12 +1,12 @@
import sys
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
# import os
import scipy.io
import logging
from geopy.distance import geodesic
from geopy.point import Point
from util.base_logger import getDefaultLogger
def main(Input_catalog, Input_injection_rate, time_win_in_hours, time_step_in_hour, time_win_type,
@ -68,7 +68,8 @@ def main(Input_catalog, Input_injection_rate, time_win_in_hours, time_step_in_ho
# Importing data
logger.info("Import data")
mat = scipy.io.loadmat(Input_catalog)
Cat_structure = mat['Catalog']
Cat_structure_name = scipy.io.whosmat(Input_catalog)[0][0]
Cat_structure = mat[Cat_structure_name]
Cat_id, Cat_t, Cat_m = [], [], []
Cat_x, Cat_y, Cat_z = [], [], []
Cat_lat, Cat_lon, Cat_elv, Cat_depth = [], [], [], []
@ -475,181 +476,6 @@ def main(Input_catalog, Input_injection_rate, time_win_in_hours, time_step_in_ho
return In_arr[:i_row,:]
# Plotting models and parameters
def Plot_feature(Model_Param_array,Output_dict):
myVars = locals()
# Function for findin min-max of all similar parameters
def Extermom4All(Model_Param_array, itr_loc):
Mat1D = np.reshape(Model_Param_array[:,itr_loc], -1)
NotNone = np.isfinite(Mat1D)
if np.min(Mat1D[NotNone])>0:
return [np.min(Mat1D[NotNone])*0.95, np.max(Mat1D[NotNone])*1.05]
elif np.min(Mat1D[NotNone])<0 and np.max(Mat1D[NotNone])>0:
return [np.min(Mat1D[NotNone])*1.05, np.max(Mat1D[NotNone])*1.05]
elif np.max(Mat1D[NotNone])<0:
return [np.min(Mat1D[NotNone])*1.05, np.max(Mat1D[NotNone])*0.95]
# Function for setting relevant lagends in the plot
def Legend_label(loc):
l = Output_dict_c['label'][loc]
if Output_dict_c['b_method'][loc]:
if Output_dict_c['cl'][loc]:
l+='('+Output_dict_c['b_method'][loc]+', cl='+str(Output_dict_c['cl'][loc])+')'
else:
l+='('+Output_dict_c['b_method'][loc]+')'
return l
c_NotNone = [] # Removing all parameters with None or constant value
for i in range(Model_Param_array.shape[1]):
NotNone = np.isfinite(Model_Param_array[:,i])
Eq_value = np.mean(Model_Param_array[:,i])
if any(NotNone) and Eq_value != Model_Param_array[0,i]:
c_NotNone.append(i)
else:
logger.info(f"No-PLOT: All values of {Output_dict['Type'][i]} are {Model_Param_array[0,i]}!")
if len(c_NotNone) > 1:
Model_Param_array = Model_Param_array[:,c_NotNone]
# New output dictionary based on valid parameters for plotting
Output_dict_c = {'Type':[], 'label':[], 'b_method':[], 'cl':[]}
for i in range(len(c_NotNone)):
Output_dict_c['Type'].append(Output_dict['Type'][c_NotNone[i]])
Output_dict_c['label'].append(Output_dict['label'][c_NotNone[i]])
Output_dict_c['b_method'].append(Output_dict['b_method'][c_NotNone[i]])
Output_dict_c['cl'].append(Output_dict['cl'][c_NotNone[i]])
coloring=['blue','g','r','c','m','y',
'brown', 'darkolivegreen', 'teal', 'steelblue', 'slateblue',
'purple', 'darksalmon', '#c5b0d5', '#c49c94',
'#e377c2', '#f7b6d2', '#7f7f7f', '#c7c7c7', '#bcbd22', '#dbdb8d',
'#17becf', '#9edae5',
'brown', 'darkolivegreen', 'teal', 'steelblue', 'slateblue',]
# All parameters to be plotted
All_vars = Output_dict_c['Type'][2:]
Uniqe_var = list(dict.fromkeys([s for s in All_vars if 'Standard Error' not in s])) #list(set(All_vars))
# defining handels and labels to make final legend
All_handels = ['p0']
for i in range(1,len(All_vars)):
All_handels.append('p'+str(i))
handels = []
labels = []
# itr_loc: location of paramteres with similar type
itr_loc = np.where(np.array(All_vars) == Uniqe_var[0])[0]+2
fig, myVars[Output_dict_c['Type'][0]] = plt.subplots(1,1,figsize=(8+int(len(All_vars)/3),6))
fig.subplots_adjust(right=1-len(Uniqe_var)*0.09)
if Output_dict_c['label'][itr_loc[0]] == 'True Max-Mag': # plot with dash-line
myVars[All_handels[itr_loc[0]-2]], = myVars[Output_dict_c['Type'][0]].plot(Model_Param_array[:,1]/24/3600, Model_Param_array[:,itr_loc[0]], c= 'k', ls='--', lw = 2)
else:
myVars[All_handels[itr_loc[0]-2]], = myVars[Output_dict_c['Type'][0]].plot(Model_Param_array[:,1]/24/3600, Model_Param_array[:,itr_loc[0]], c= coloring[itr_loc[0]])
handels.append(All_handels[itr_loc[0]-2])
labels.append(Legend_label(itr_loc[0]))
myVars[Output_dict_c['Type'][0]].set_ylabel(Output_dict_c['Type'][itr_loc[0]])
myVars[Output_dict_c['Type'][0]].set_ylim(Extermom4All(Model_Param_array, itr_loc)[0], Extermom4All(Model_Param_array, itr_loc)[1])
myVars[Output_dict_c['Type'][0]].set_xlabel('Day (From start of the recording)')
if End_time:
myVars[Output_dict_c['Type'][0]].set_xlim(0,End_time)
# Plotting statndard error (if exists)
if itr_loc[0]+1 < len(Output_dict_c['Type']) and Output_dict_c['Type'][itr_loc[0]+1] == 'Standard Error':
myVars[Output_dict_c['Type'][0]].fill_between(Model_Param_array[:,1]/24/3600,
Model_Param_array[:,itr_loc[0]] - Model_Param_array[:,itr_loc[0]+1],
Model_Param_array[:,itr_loc[0]] + Model_Param_array[:,itr_loc[0]+1], color= coloring[itr_loc[0]], alpha=0.1)
# Plotting similar parameters on one axis
for j in range(1,len(itr_loc)):
if Output_dict_c['label'][itr_loc[j]] == 'True Max-Mag': # plot with dash-line
myVars[All_handels[itr_loc[j]-2]], = myVars[Output_dict_c['Type'][0]].plot(Model_Param_array[:,1]/24/3600, Model_Param_array[:,itr_loc[j]], c= 'k', ls='--', lw = 2)
else:
myVars[All_handels[itr_loc[j]-2]], = myVars[Output_dict_c['Type'][0]].plot(Model_Param_array[:,1]/24/3600, Model_Param_array[:,itr_loc[j]], c= coloring[itr_loc[j]])
handels.append(All_handels[itr_loc[j]-2])
labels.append(Legend_label(itr_loc[j]))
# Plotting statndard error (if exists)
if itr_loc[0]+1 < len(Output_dict_c['Type']) and Output_dict_c['Type'][itr_loc[j]+1] == 'Standard Error':
myVars[Output_dict_c['Type'][0]].fill_between(Model_Param_array[:,1]/24/3600,
Model_Param_array[:,itr_loc[j]] - Model_Param_array[:,itr_loc[j]+1],
Model_Param_array[:,itr_loc[j]] + Model_Param_array[:,itr_loc[j]+1], color= coloring[itr_loc[j]], alpha=0.1)
first_itr = 0
# Check if there is any more parameter to be plotted in second axes
# The procedure is similar to last plots.
if len(Uniqe_var) > 1:
for i in range(1,len(Uniqe_var)):
itr_loc = np.where(np.array(All_vars) == Uniqe_var[i])[0]+2
myVars[Uniqe_var[i]] = myVars[Output_dict_c['Type'][0]].twinx()
# if it is third or more axis, make a distance between them
if first_itr == 0:
first_itr += 1
set_right = 1
else:
set_right = 1 + first_itr*0.2
first_itr += 1
myVars[Uniqe_var[i]].spines.right.set_position(("axes", set_right))
if Output_dict_c['label'][itr_loc[0]] == 'True Max-Mag': # plot with dash-line
myVars[All_handels[itr_loc[0]-2]], = myVars[Uniqe_var[i]].plot(Model_Param_array[:,1]/24/3600, Model_Param_array[:,itr_loc[0]], c= 'k', ls='--', lw = 2)
else:
myVars[All_handels[itr_loc[0]-2]], = myVars[Uniqe_var[i]].plot(Model_Param_array[:,1]/24/3600, Model_Param_array[:,itr_loc[0]], c= coloring[itr_loc[0]])
handels.append(All_handels[itr_loc[0]-2])
labels.append(Legend_label(itr_loc[0]))
myVars[Uniqe_var[i]].set_ylabel(Output_dict_c['Type'][itr_loc[0]])
myVars[Uniqe_var[i]].yaxis.label.set_color(coloring[itr_loc[0]])
myVars[Uniqe_var[i]].spines["right"].set_edgecolor(coloring[itr_loc[0]])
myVars[Uniqe_var[i]].tick_params(axis='y', colors= coloring[itr_loc[0]])
myVars[Uniqe_var[i]].set_ylim(Extermom4All(Model_Param_array, itr_loc)[0], Extermom4All(Model_Param_array, itr_loc)[1])
if itr_loc[0]+1 < len(Output_dict_c['Type']) and Output_dict_c['Type'][itr_loc[0]+1] == 'Standard Error':
myVars[Uniqe_var[i]].fill_between(Model_Param_array[:,1]/24/3600,
Model_Param_array[:,itr_loc[0]] - Model_Param_array[:,itr_loc[0]+1],
Model_Param_array[:,itr_loc[0]] + Model_Param_array[:,itr_loc[0]+1], color= coloring[itr_loc[0]], alpha=0.1)
for j in range(1,len(itr_loc)):
if Output_dict_c['label'][itr_loc[j]] == 'True Max-Mag': # plot with dash-line
myVars[All_handels[itr_loc[j]-2]], = myVars[Uniqe_var[i]].plot(Model_Param_array[:,1]/24/3600, Model_Param_array[:,itr_loc[j]], c= 'k', ls = '--', lw = 2)
else:
myVars[All_handels[itr_loc[j]-2]], = myVars[Uniqe_var[i]].plot(Model_Param_array[:,1]/24/3600, Model_Param_array[:,itr_loc[j]], c= coloring[itr_loc[j]])
handels.append(All_handels[itr_loc[j]-2])
labels.append(Legend_label(itr_loc[j]))
if itr_loc[j]+1 < len(Output_dict_c['Type']) and Output_dict_c['Type'][itr_loc[j]+1] == 'Standard Error':
myVars[Uniqe_var[i]].fill_between(Model_Param_array[:,1]/24/3600,
Model_Param_array[:,itr_loc[j]] - Model_Param_array[:,itr_loc[j]+1],
Model_Param_array[:,itr_loc[j]] + Model_Param_array[:,itr_loc[j]+1], color= coloring[itr_loc[j]], alpha=0.1)
# If there are timing, plot them as vertical lines
if time_inj:
myVars['l1'], = plt.plot([time_inj,time_inj], [Extermom4All(Model_Param_array, itr_loc)[0],Extermom4All(Model_Param_array, itr_loc)[1]], ls='--', c='k')
handels.append('l1')
labels.append('Start-inj')
if time_shut_in:
myVars['l2'], = plt.plot([time_shut_in,time_shut_in], [Extermom4All(Model_Param_array, itr_loc)[0],Extermom4All(Model_Param_array, itr_loc)[1]], ls='-.', c='k')
handels.append('l2')
labels.append('Shut-in')
if time_big_ev:
myVars['l3'], = plt.plot([time_big_ev,time_big_ev], [Extermom4All(Model_Param_array, itr_loc)[0],Extermom4All(Model_Param_array, itr_loc)[1]], ls='dotted', c='k')
handels.append('l3')
labels.append('Large-Ev')
box = myVars[Output_dict_c['Type'][0]].get_position()
if len(handels) < 6:
myVars[Output_dict_c['Type'][0]].set_position([box.x0, box.y0 + box.height * 0.1,
box.width, box.height * 0.9])
plt.legend([myVars[ii] for ii in handels], labels, loc='upper center',
bbox_to_anchor=(0.5+0.06*first_itr, -0.15), fancybox=True, shadow=True, ncol=len(handels))
elif len(handels) < 13:
myVars[Output_dict_c['Type'][0]].set_position([box.x0, box.y0 + box.height * 0.04*int(len(handels)/2),
box.width, box.height * (1 - 0.04*int(len(handels)/2))])
plt.legend([myVars[ii] for ii in handels], labels, loc='upper center',
bbox_to_anchor=(0.5+0.1*first_itr, -0.04*int(len(handels)/2)), fancybox=True, shadow=True, ncol=int(len(handels)/2)+1, handleheight=2)
else:
myVars[Output_dict_c['Type'][0]].set_position([box.x0, box.y0 + box.height * 0.04*int(len(handels)/2),
box.width, box.height * (1 - 0.04*int(len(handels)/2))])
plt.legend([myVars[ii] for ii in handels], labels, loc='upper center',
bbox_to_anchor=(0.6+0.1*first_itr, -0.04*int(len(handels)/2)), fancybox=True, shadow=True, ncol=int(len(handels)/2)+1, handleheight=2)
plt.title(Model_name)
# plt.savefig(cwd+'/Results/'+Model_name+'.png', dpi=300)
plt.savefig('PLOT_Mmax_param.png', dpi=300)
# plt.show()
# Run functions based on the configurations -------------------
# Computing model
if time_step_in_hour > time_win_in_hours:
@ -681,7 +507,9 @@ def main(Input_catalog, Input_injection_rate, time_win_in_hours, time_step_in_ho
if Plot_flag > 0:
if Model_Param_array.any():
logger.info("Plotting results")
Plot_feature(Model_Param_array, Output_dict)
import Mmax_plot # Import locally to ensure Mmax_plot is required only when Plot_flag > 0
Mmax_plot.Plot_feature(Model_Param_array, Output_dict)
else:
logger.info("Model_Param_array is empty or not enough values to plot. Check 'csv' file.")

206
src/Mmax_plot.py Normal file
View File

@ -0,0 +1,206 @@
import matplotlib.pyplot as plt
import numpy as np
def Plot_feature(Model_Param_array,
Output_dict,
End_time=None,
time_inj=None,
time_shut_in=None,
time_big_ev=None,
Model_name="",
logger=None):
"""
Plotting function extracted from Mmax.py for plotting models and parameters.
Parameters
----------
Model_Param_array : np.ndarray
Computed matrix of model parameters as rows in time.
Output_dict : dict
Dictionary describing each column in Model_Param_array.
End_time : float, optional
The last time to show in the X-axis (days), if desired.
time_inj : float, optional
Time of injection start (days), if you want a vertical line.
time_shut_in : float, optional
Time of shut-in (days), if you want a vertical line.
time_big_ev : float, optional
Time of large event (days), if you want a vertical line.
Model_name : str, optional
Model name used for the plot title.
logger : logging.Logger, optional
Logger for printing info messages. If None, no logging happens.
"""
myVars = locals()
# Function for findin min-max of all similar parameters
def Extermom4All(Model_Param_array, itr_loc):
Mat1D = np.reshape(Model_Param_array[:,itr_loc], -1)
NotNone = np.isfinite(Mat1D)
if np.min(Mat1D[NotNone])>0:
return [np.min(Mat1D[NotNone])*0.95, np.max(Mat1D[NotNone])*1.05]
elif np.min(Mat1D[NotNone])<0 and np.max(Mat1D[NotNone])>0:
return [np.min(Mat1D[NotNone])*1.05, np.max(Mat1D[NotNone])*1.05]
elif np.max(Mat1D[NotNone])<0:
return [np.min(Mat1D[NotNone])*1.05, np.max(Mat1D[NotNone])*0.95]
# Function for setting relevant lagends in the plot
def Legend_label(loc):
l = Output_dict_c['label'][loc]
if Output_dict_c['b_method'][loc]:
if Output_dict_c['cl'][loc]:
l+='('+Output_dict_c['b_method'][loc]+', cl='+str(Output_dict_c['cl'][loc])+')'
else:
l+='('+Output_dict_c['b_method'][loc]+')'
return l
c_NotNone = [] # Removing all parameters with None or constant value
for i in range(Model_Param_array.shape[1]):
NotNone = np.isfinite(Model_Param_array[:,i])
Eq_value = np.mean(Model_Param_array[:,i])
if any(NotNone) and Eq_value != Model_Param_array[0,i]:
c_NotNone.append(i)
else:
logger.info(f"No-PLOT: All values of {Output_dict['Type'][i]} are {Model_Param_array[0,i]}!")
if len(c_NotNone) > 1:
Model_Param_array = Model_Param_array[:,c_NotNone]
# New output dictionary based on valid parameters for plotting
Output_dict_c = {'Type':[], 'label':[], 'b_method':[], 'cl':[]}
for i in range(len(c_NotNone)):
Output_dict_c['Type'].append(Output_dict['Type'][c_NotNone[i]])
Output_dict_c['label'].append(Output_dict['label'][c_NotNone[i]])
Output_dict_c['b_method'].append(Output_dict['b_method'][c_NotNone[i]])
Output_dict_c['cl'].append(Output_dict['cl'][c_NotNone[i]])
coloring=['blue','g','r','c','m','y',
'brown', 'darkolivegreen', 'teal', 'steelblue', 'slateblue',
'purple', 'darksalmon', '#c5b0d5', '#c49c94',
'#e377c2', '#f7b6d2', '#7f7f7f', '#c7c7c7', '#bcbd22', '#dbdb8d',
'#17becf', '#9edae5',
'brown', 'darkolivegreen', 'teal', 'steelblue', 'slateblue',]
# All parameters to be plotted
All_vars = Output_dict_c['Type'][2:]
Uniqe_var = list(dict.fromkeys([s for s in All_vars if 'Standard Error' not in s])) #list(set(All_vars))
# defining handels and labels to make final legend
All_handels = ['p0']
for i in range(1,len(All_vars)):
All_handels.append('p'+str(i))
handels = []
labels = []
# itr_loc: location of paramteres with similar type
itr_loc = np.where(np.array(All_vars) == Uniqe_var[0])[0]+2
fig, myVars[Output_dict_c['Type'][0]] = plt.subplots(1,1,figsize=(8+int(len(All_vars)/3),6))
fig.subplots_adjust(right=1-len(Uniqe_var)*0.09)
if Output_dict_c['label'][itr_loc[0]] == 'True Max-Mag': # plot with dash-line
myVars[All_handels[itr_loc[0]-2]], = myVars[Output_dict_c['Type'][0]].plot(Model_Param_array[:,1]/24/3600, Model_Param_array[:,itr_loc[0]], c= 'k', ls='--', lw = 2)
else:
myVars[All_handels[itr_loc[0]-2]], = myVars[Output_dict_c['Type'][0]].plot(Model_Param_array[:,1]/24/3600, Model_Param_array[:,itr_loc[0]], c= coloring[itr_loc[0]])
handels.append(All_handels[itr_loc[0]-2])
labels.append(Legend_label(itr_loc[0]))
myVars[Output_dict_c['Type'][0]].set_ylabel(Output_dict_c['Type'][itr_loc[0]])
myVars[Output_dict_c['Type'][0]].set_ylim(Extermom4All(Model_Param_array, itr_loc)[0], Extermom4All(Model_Param_array, itr_loc)[1])
myVars[Output_dict_c['Type'][0]].set_xlabel('Day (From start of the recording)')
if End_time:
myVars[Output_dict_c['Type'][0]].set_xlim(0,End_time)
# Plotting statndard error (if exists)
if itr_loc[0]+1 < len(Output_dict_c['Type']) and Output_dict_c['Type'][itr_loc[0]+1] == 'Standard Error':
myVars[Output_dict_c['Type'][0]].fill_between(Model_Param_array[:,1]/24/3600,
Model_Param_array[:,itr_loc[0]] - Model_Param_array[:,itr_loc[0]+1],
Model_Param_array[:,itr_loc[0]] + Model_Param_array[:,itr_loc[0]+1], color= coloring[itr_loc[0]], alpha=0.1)
# Plotting similar parameters on one axis
for j in range(1,len(itr_loc)):
if Output_dict_c['label'][itr_loc[j]] == 'True Max-Mag': # plot with dash-line
myVars[All_handels[itr_loc[j]-2]], = myVars[Output_dict_c['Type'][0]].plot(Model_Param_array[:,1]/24/3600, Model_Param_array[:,itr_loc[j]], c= 'k', ls='--', lw = 2)
else:
myVars[All_handels[itr_loc[j]-2]], = myVars[Output_dict_c['Type'][0]].plot(Model_Param_array[:,1]/24/3600, Model_Param_array[:,itr_loc[j]], c= coloring[itr_loc[j]])
handels.append(All_handels[itr_loc[j]-2])
labels.append(Legend_label(itr_loc[j]))
# Plotting statndard error (if exists)
if itr_loc[0]+1 < len(Output_dict_c['Type']) and Output_dict_c['Type'][itr_loc[j]+1] == 'Standard Error':
myVars[Output_dict_c['Type'][0]].fill_between(Model_Param_array[:,1]/24/3600,
Model_Param_array[:,itr_loc[j]] - Model_Param_array[:,itr_loc[j]+1],
Model_Param_array[:,itr_loc[j]] + Model_Param_array[:,itr_loc[j]+1], color= coloring[itr_loc[j]], alpha=0.1)
first_itr = 0
# Check if there is any more parameter to be plotted in second axes
# The procedure is similar to last plots.
if len(Uniqe_var) > 1:
for i in range(1,len(Uniqe_var)):
itr_loc = np.where(np.array(All_vars) == Uniqe_var[i])[0]+2
myVars[Uniqe_var[i]] = myVars[Output_dict_c['Type'][0]].twinx()
# if it is third or more axis, make a distance between them
if first_itr == 0:
first_itr += 1
set_right = 1
else:
set_right = 1 + first_itr*0.2
first_itr += 1
myVars[Uniqe_var[i]].spines.right.set_position(("axes", set_right))
if Output_dict_c['label'][itr_loc[0]] == 'True Max-Mag': # plot with dash-line
myVars[All_handels[itr_loc[0]-2]], = myVars[Uniqe_var[i]].plot(Model_Param_array[:,1]/24/3600, Model_Param_array[:,itr_loc[0]], c= 'k', ls='--', lw = 2)
else:
myVars[All_handels[itr_loc[0]-2]], = myVars[Uniqe_var[i]].plot(Model_Param_array[:,1]/24/3600, Model_Param_array[:,itr_loc[0]], c= coloring[itr_loc[0]])
handels.append(All_handels[itr_loc[0]-2])
labels.append(Legend_label(itr_loc[0]))
myVars[Uniqe_var[i]].set_ylabel(Output_dict_c['Type'][itr_loc[0]])
myVars[Uniqe_var[i]].yaxis.label.set_color(coloring[itr_loc[0]])
myVars[Uniqe_var[i]].spines["right"].set_edgecolor(coloring[itr_loc[0]])
myVars[Uniqe_var[i]].tick_params(axis='y', colors= coloring[itr_loc[0]])
myVars[Uniqe_var[i]].set_ylim(Extermom4All(Model_Param_array, itr_loc)[0], Extermom4All(Model_Param_array, itr_loc)[1])
if itr_loc[0]+1 < len(Output_dict_c['Type']) and Output_dict_c['Type'][itr_loc[0]+1] == 'Standard Error':
myVars[Uniqe_var[i]].fill_between(Model_Param_array[:,1]/24/3600,
Model_Param_array[:,itr_loc[0]] - Model_Param_array[:,itr_loc[0]+1],
Model_Param_array[:,itr_loc[0]] + Model_Param_array[:,itr_loc[0]+1], color= coloring[itr_loc[0]], alpha=0.1)
for j in range(1,len(itr_loc)):
if Output_dict_c['label'][itr_loc[j]] == 'True Max-Mag': # plot with dash-line
myVars[All_handels[itr_loc[j]-2]], = myVars[Uniqe_var[i]].plot(Model_Param_array[:,1]/24/3600, Model_Param_array[:,itr_loc[j]], c= 'k', ls = '--', lw = 2)
else:
myVars[All_handels[itr_loc[j]-2]], = myVars[Uniqe_var[i]].plot(Model_Param_array[:,1]/24/3600, Model_Param_array[:,itr_loc[j]], c= coloring[itr_loc[j]])
handels.append(All_handels[itr_loc[j]-2])
labels.append(Legend_label(itr_loc[j]))
if itr_loc[j]+1 < len(Output_dict_c['Type']) and Output_dict_c['Type'][itr_loc[j]+1] == 'Standard Error':
myVars[Uniqe_var[i]].fill_between(Model_Param_array[:,1]/24/3600,
Model_Param_array[:,itr_loc[j]] - Model_Param_array[:,itr_loc[j]+1],
Model_Param_array[:,itr_loc[j]] + Model_Param_array[:,itr_loc[j]+1], color= coloring[itr_loc[j]], alpha=0.1)
# If there are timing, plot them as vertical lines
if time_inj:
myVars['l1'], = plt.plot([time_inj,time_inj], [Extermom4All(Model_Param_array, itr_loc)[0],Extermom4All(Model_Param_array, itr_loc)[1]], ls='--', c='k')
handels.append('l1')
labels.append('Start-inj')
if time_shut_in:
myVars['l2'], = plt.plot([time_shut_in,time_shut_in], [Extermom4All(Model_Param_array, itr_loc)[0],Extermom4All(Model_Param_array, itr_loc)[1]], ls='-.', c='k')
handels.append('l2')
labels.append('Shut-in')
if time_big_ev:
myVars['l3'], = plt.plot([time_big_ev,time_big_ev], [Extermom4All(Model_Param_array, itr_loc)[0],Extermom4All(Model_Param_array, itr_loc)[1]], ls='dotted', c='k')
handels.append('l3')
labels.append('Large-Ev')
box = myVars[Output_dict_c['Type'][0]].get_position()
if len(handels) < 6:
myVars[Output_dict_c['Type'][0]].set_position([box.x0, box.y0 + box.height * 0.1,
box.width, box.height * 0.9])
plt.legend([myVars[ii] for ii in handels], labels, loc='upper center',
bbox_to_anchor=(0.5+0.06*first_itr, -0.15), fancybox=True, shadow=True, ncol=len(handels))
elif len(handels) < 13:
myVars[Output_dict_c['Type'][0]].set_position([box.x0, box.y0 + box.height * 0.04*int(len(handels)/2),
box.width, box.height * (1 - 0.04*int(len(handels)/2))])
plt.legend([myVars[ii] for ii in handels], labels, loc='upper center',
bbox_to_anchor=(0.5+0.1*first_itr, -0.04*int(len(handels)/2)), fancybox=True, shadow=True, ncol=int(len(handels)/2)+1, handleheight=2)
else:
myVars[Output_dict_c['Type'][0]].set_position([box.x0, box.y0 + box.height * 0.04*int(len(handels)/2),
box.width, box.height * (1 - 0.04*int(len(handels)/2))])
plt.legend([myVars[ii] for ii in handels], labels, loc='upper center',
bbox_to_anchor=(0.6+0.1*first_itr, -0.04*int(len(handels)/2)), fancybox=True, shadow=True, ncol=int(len(handels)/2)+1, handleheight=2)
plt.title(Model_name)
# plt.savefig(cwd+'/Results/'+Model_name+'.png', dpi=300)
plt.savefig('PLOT_Mmax_param.png', dpi=300)
# plt.show()