Compare commits
1 Commits
master
...
2e2c3d03e1
| Author | SHA1 | Date | |
|---|---|---|---|
| 2e2c3d03e1 |
408
LICENCE.txt
408
LICENCE.txt
@@ -1,408 +0,0 @@
|
|||||||
Attribution-NonCommercial 4.0 International
|
|
||||||
|
|
||||||
=======================================================================
|
|
||||||
|
|
||||||
Creative Commons Corporation ("Creative Commons") is not a law firm and
|
|
||||||
does not provide legal services or legal advice. Distribution of
|
|
||||||
Creative Commons public licenses does not create a lawyer-client or
|
|
||||||
other relationship. Creative Commons makes its licenses and related
|
|
||||||
information available on an "as-is" basis. Creative Commons gives no
|
|
||||||
warranties regarding its licenses, any material licensed under their
|
|
||||||
terms and conditions, or any related information. Creative Commons
|
|
||||||
disclaims all liability for damages resulting from their use to the
|
|
||||||
fullest extent possible.
|
|
||||||
|
|
||||||
Using Creative Commons Public Licenses
|
|
||||||
|
|
||||||
Creative Commons public licenses provide a standard set of terms and
|
|
||||||
conditions that creators and other rights holders may use to share
|
|
||||||
original works of authorship and other material subject to copyright
|
|
||||||
and certain other rights specified in the public license below. The
|
|
||||||
following considerations are for informational purposes only, are not
|
|
||||||
exhaustive, and do not form part of our licenses.
|
|
||||||
|
|
||||||
Considerations for licensors: Our public licenses are
|
|
||||||
intended for use by those authorized to give the public
|
|
||||||
permission to use material in ways otherwise restricted by
|
|
||||||
copyright and certain other rights. Our licenses are
|
|
||||||
irrevocable. Licensors should read and understand the terms
|
|
||||||
and conditions of the license they choose before applying it.
|
|
||||||
Licensors should also secure all rights necessary before
|
|
||||||
applying our licenses so that the public can reuse the
|
|
||||||
material as expected. Licensors should clearly mark any
|
|
||||||
material not subject to the license. This includes other CC-
|
|
||||||
licensed material, or material used under an exception or
|
|
||||||
limitation to copyright. More considerations for licensors:
|
|
||||||
wiki.creativecommons.org/Considerations_for_licensors
|
|
||||||
|
|
||||||
Considerations for the public: By using one of our public
|
|
||||||
licenses, a licensor grants the public permission to use the
|
|
||||||
licensed material under specified terms and conditions. If
|
|
||||||
the licensor's permission is not necessary for any reason--for
|
|
||||||
example, because of any applicable exception or limitation to
|
|
||||||
copyright--then that use is not regulated by the license. Our
|
|
||||||
licenses grant only permissions under copyright and certain
|
|
||||||
other rights that a licensor has authority to grant. Use of
|
|
||||||
the licensed material may still be restricted for other
|
|
||||||
reasons, including because others have copyright or other
|
|
||||||
rights in the material. A licensor may make special requests,
|
|
||||||
such as asking that all changes be marked or described.
|
|
||||||
Although not required by our licenses, you are encouraged to
|
|
||||||
respect those requests where reasonable. More considerations
|
|
||||||
for the public:
|
|
||||||
wiki.creativecommons.org/Considerations_for_licensees
|
|
||||||
|
|
||||||
=======================================================================
|
|
||||||
|
|
||||||
Creative Commons Attribution-NonCommercial 4.0 International Public
|
|
||||||
License
|
|
||||||
|
|
||||||
By exercising the Licensed Rights (defined below), You accept and agree
|
|
||||||
to be bound by the terms and conditions of this Creative Commons
|
|
||||||
Attribution-NonCommercial 4.0 International Public License ("Public
|
|
||||||
License"). To the extent this Public License may be interpreted as a
|
|
||||||
contract, You are granted the Licensed Rights in consideration of Your
|
|
||||||
acceptance of these terms and conditions, and the Licensor grants You
|
|
||||||
such rights in consideration of benefits the Licensor receives from
|
|
||||||
making the Licensed Material available under these terms and
|
|
||||||
conditions.
|
|
||||||
|
|
||||||
|
|
||||||
Section 1 -- Definitions.
|
|
||||||
|
|
||||||
a. Adapted Material means material subject to Copyright and Similar
|
|
||||||
Rights that is derived from or based upon the Licensed Material
|
|
||||||
and in which the Licensed Material is translated, altered,
|
|
||||||
arranged, transformed, or otherwise modified in a manner requiring
|
|
||||||
permission under the Copyright and Similar Rights held by the
|
|
||||||
Licensor. For purposes of this Public License, where the Licensed
|
|
||||||
Material is a musical work, performance, or sound recording,
|
|
||||||
Adapted Material is always produced where the Licensed Material is
|
|
||||||
synched in timed relation with a moving image.
|
|
||||||
|
|
||||||
b. Adapter's License means the license You apply to Your Copyright
|
|
||||||
and Similar Rights in Your contributions to Adapted Material in
|
|
||||||
accordance with the terms and conditions of this Public License.
|
|
||||||
|
|
||||||
c. Copyright and Similar Rights means copyright and/or similar rights
|
|
||||||
closely related to copyright including, without limitation,
|
|
||||||
performance, broadcast, sound recording, and Sui Generis Database
|
|
||||||
Rights, without regard to how the rights are labeled or
|
|
||||||
categorized. For purposes of this Public License, the rights
|
|
||||||
specified in Section 2(b)(1)-(2) are not Copyright and Similar
|
|
||||||
Rights.
|
|
||||||
d. Effective Technological Measures means those measures that, in the
|
|
||||||
absence of proper authority, may not be circumvented under laws
|
|
||||||
fulfilling obligations under Article 11 of the WIPO Copyright
|
|
||||||
Treaty adopted on December 20, 1996, and/or similar international
|
|
||||||
agreements.
|
|
||||||
|
|
||||||
e. Exceptions and Limitations means fair use, fair dealing, and/or
|
|
||||||
any other exception or limitation to Copyright and Similar Rights
|
|
||||||
that applies to Your use of the Licensed Material.
|
|
||||||
|
|
||||||
f. Licensed Material means the artistic or literary work, database,
|
|
||||||
or other material to which the Licensor applied this Public
|
|
||||||
License.
|
|
||||||
|
|
||||||
g. Licensed Rights means the rights granted to You subject to the
|
|
||||||
terms and conditions of this Public License, which are limited to
|
|
||||||
all Copyright and Similar Rights that apply to Your use of the
|
|
||||||
Licensed Material and that the Licensor has authority to license.
|
|
||||||
|
|
||||||
h. Licensor means the individual(s) or entity(ies) granting rights
|
|
||||||
under this Public License.
|
|
||||||
|
|
||||||
i. NonCommercial means not primarily intended for or directed towards
|
|
||||||
commercial advantage or monetary compensation. For purposes of
|
|
||||||
this Public License, the exchange of the Licensed Material for
|
|
||||||
other material subject to Copyright and Similar Rights by digital
|
|
||||||
file-sharing or similar means is NonCommercial provided there is
|
|
||||||
no payment of monetary compensation in connection with the
|
|
||||||
exchange.
|
|
||||||
|
|
||||||
j. Share means to provide material to the public by any means or
|
|
||||||
process that requires permission under the Licensed Rights, such
|
|
||||||
as reproduction, public display, public performance, distribution,
|
|
||||||
dissemination, communication, or importation, and to make material
|
|
||||||
available to the public including in ways that members of the
|
|
||||||
public may access the material from a place and at a time
|
|
||||||
individually chosen by them.
|
|
||||||
|
|
||||||
k. Sui Generis Database Rights means rights other than copyright
|
|
||||||
resulting from Directive 96/9/EC of the European Parliament and of
|
|
||||||
the Council of 11 March 1996 on the legal protection of databases,
|
|
||||||
as amended and/or succeeded, as well as other essentially
|
|
||||||
equivalent rights anywhere in the world.
|
|
||||||
|
|
||||||
l. You means the individual or entity exercising the Licensed Rights
|
|
||||||
under this Public License. Your has a corresponding meaning.
|
|
||||||
|
|
||||||
|
|
||||||
Section 2 -- Scope.
|
|
||||||
|
|
||||||
a. License grant.
|
|
||||||
|
|
||||||
1. Subject to the terms and conditions of this Public License,
|
|
||||||
the Licensor hereby grants You a worldwide, royalty-free,
|
|
||||||
non-sublicensable, non-exclusive, irrevocable license to
|
|
||||||
exercise the Licensed Rights in the Licensed Material to:
|
|
||||||
|
|
||||||
a. reproduce and Share the Licensed Material, in whole or
|
|
||||||
in part, for NonCommercial purposes only; and
|
|
||||||
|
|
||||||
b. produce, reproduce, and Share Adapted Material for
|
|
||||||
NonCommercial purposes only.
|
|
||||||
|
|
||||||
2. Exceptions and Limitations. For the avoidance of doubt, where
|
|
||||||
Exceptions and Limitations apply to Your use, this Public
|
|
||||||
License does not apply, and You do not need to comply with
|
|
||||||
its terms and conditions.
|
|
||||||
|
|
||||||
3. Term. The term of this Public License is specified in Section
|
|
||||||
6(a).
|
|
||||||
|
|
||||||
4. Media and formats; technical modifications allowed. The
|
|
||||||
Licensor authorizes You to exercise the Licensed Rights in
|
|
||||||
all media and formats whether now known or hereafter created,
|
|
||||||
and to make technical modifications necessary to do so. The
|
|
||||||
Licensor waives and/or agrees not to assert any right or
|
|
||||||
authority to forbid You from making technical modifications
|
|
||||||
necessary to exercise the Licensed Rights, including
|
|
||||||
technical modifications necessary to circumvent Effective
|
|
||||||
Technological Measures. For purposes of this Public License,
|
|
||||||
simply making modifications authorized by this Section 2(a)
|
|
||||||
(4) never produces Adapted Material.
|
|
||||||
|
|
||||||
5. Downstream recipients.
|
|
||||||
|
|
||||||
a. Offer from the Licensor -- Licensed Material. Every
|
|
||||||
recipient of the Licensed Material automatically
|
|
||||||
receives an offer from the Licensor to exercise the
|
|
||||||
Licensed Rights under the terms and conditions of this
|
|
||||||
Public License.
|
|
||||||
|
|
||||||
b. No downstream restrictions. You may not offer or impose
|
|
||||||
any additional or different terms or conditions on, or
|
|
||||||
apply any Effective Technological Measures to, the
|
|
||||||
Licensed Material if doing so restricts exercise of the
|
|
||||||
Licensed Rights by any recipient of the Licensed
|
|
||||||
Material.
|
|
||||||
|
|
||||||
6. No endorsement. Nothing in this Public License constitutes or
|
|
||||||
may be construed as permission to assert or imply that You
|
|
||||||
are, or that Your use of the Licensed Material is, connected
|
|
||||||
with, or sponsored, endorsed, or granted official status by,
|
|
||||||
the Licensor or others designated to receive attribution as
|
|
||||||
provided in Section 3(a)(1)(A)(i).
|
|
||||||
|
|
||||||
b. Other rights.
|
|
||||||
|
|
||||||
1. Moral rights, such as the right of integrity, are not
|
|
||||||
licensed under this Public License, nor are publicity,
|
|
||||||
privacy, and/or other similar personality rights; however, to
|
|
||||||
the extent possible, the Licensor waives and/or agrees not to
|
|
||||||
assert any such rights held by the Licensor to the limited
|
|
||||||
extent necessary to allow You to exercise the Licensed
|
|
||||||
Rights, but not otherwise.
|
|
||||||
|
|
||||||
2. Patent and trademark rights are not licensed under this
|
|
||||||
Public License.
|
|
||||||
|
|
||||||
3. To the extent possible, the Licensor waives any right to
|
|
||||||
collect royalties from You for the exercise of the Licensed
|
|
||||||
Rights, whether directly or through a collecting society
|
|
||||||
under any voluntary or waivable statutory or compulsory
|
|
||||||
licensing scheme. In all other cases the Licensor expressly
|
|
||||||
reserves any right to collect such royalties, including when
|
|
||||||
the Licensed Material is used other than for NonCommercial
|
|
||||||
purposes.
|
|
||||||
|
|
||||||
|
|
||||||
Section 3 -- License Conditions.
|
|
||||||
|
|
||||||
Your exercise of the Licensed Rights is expressly made subject to the
|
|
||||||
following conditions.
|
|
||||||
|
|
||||||
a. Attribution.
|
|
||||||
|
|
||||||
1. If You Share the Licensed Material (including in modified
|
|
||||||
form), You must:
|
|
||||||
|
|
||||||
a. retain the following if it is supplied by the Licensor
|
|
||||||
with the Licensed Material:
|
|
||||||
|
|
||||||
i. identification of the creator(s) of the Licensed
|
|
||||||
Material and any others designated to receive
|
|
||||||
attribution, in any reasonable manner requested by
|
|
||||||
the Licensor (including by pseudonym if
|
|
||||||
designated);
|
|
||||||
|
|
||||||
ii. a copyright notice;
|
|
||||||
|
|
||||||
iii. a notice that refers to this Public License;
|
|
||||||
|
|
||||||
iv. a notice that refers to the disclaimer of
|
|
||||||
warranties;
|
|
||||||
|
|
||||||
v. a URI or hyperlink to the Licensed Material to the
|
|
||||||
extent reasonably practicable;
|
|
||||||
|
|
||||||
b. indicate if You modified the Licensed Material and
|
|
||||||
retain an indication of any previous modifications; and
|
|
||||||
|
|
||||||
c. indicate the Licensed Material is licensed under this
|
|
||||||
Public License, and include the text of, or the URI or
|
|
||||||
hyperlink to, this Public License.
|
|
||||||
|
|
||||||
2. You may satisfy the conditions in Section 3(a)(1) in any
|
|
||||||
reasonable manner based on the medium, means, and context in
|
|
||||||
which You Share the Licensed Material. For example, it may be
|
|
||||||
reasonable to satisfy the conditions by providing a URI or
|
|
||||||
hyperlink to a resource that includes the required
|
|
||||||
information.
|
|
||||||
|
|
||||||
3. If requested by the Licensor, You must remove any of the
|
|
||||||
information required by Section 3(a)(1)(A) to the extent
|
|
||||||
reasonably practicable.
|
|
||||||
|
|
||||||
4. If You Share Adapted Material You produce, the Adapter's
|
|
||||||
License You apply must not prevent recipients of the Adapted
|
|
||||||
Material from complying with this Public License.
|
|
||||||
|
|
||||||
|
|
||||||
Section 4 -- Sui Generis Database Rights.
|
|
||||||
|
|
||||||
Where the Licensed Rights include Sui Generis Database Rights that
|
|
||||||
apply to Your use of the Licensed Material:
|
|
||||||
|
|
||||||
a. for the avoidance of doubt, Section 2(a)(1) grants You the right
|
|
||||||
to extract, reuse, reproduce, and Share all or a substantial
|
|
||||||
portion of the contents of the database for NonCommercial purposes
|
|
||||||
only;
|
|
||||||
|
|
||||||
b. if You include all or a substantial portion of the database
|
|
||||||
contents in a database in which You have Sui Generis Database
|
|
||||||
Rights, then the database in which You have Sui Generis Database
|
|
||||||
Rights (but not its individual contents) is Adapted Material; and
|
|
||||||
|
|
||||||
c. You must comply with the conditions in Section 3(a) if You Share
|
|
||||||
all or a substantial portion of the contents of the database.
|
|
||||||
|
|
||||||
For the avoidance of doubt, this Section 4 supplements and does not
|
|
||||||
replace Your obligations under this Public License where the Licensed
|
|
||||||
Rights include other Copyright and Similar Rights.
|
|
||||||
|
|
||||||
|
|
||||||
Section 5 -- Disclaimer of Warranties and Limitation of Liability.
|
|
||||||
|
|
||||||
a. UNLESS OTHERWISE SEPARATELY UNDERTAKEN BY THE LICENSOR, TO THE
|
|
||||||
EXTENT POSSIBLE, THE LICENSOR OFFERS THE LICENSED MATERIAL AS-IS
|
|
||||||
AND AS-AVAILABLE, AND MAKES NO REPRESENTATIONS OR WARRANTIES OF
|
|
||||||
ANY KIND CONCERNING THE LICENSED MATERIAL, WHETHER EXPRESS,
|
|
||||||
IMPLIED, STATUTORY, OR OTHER. THIS INCLUDES, WITHOUT LIMITATION,
|
|
||||||
WARRANTIES OF TITLE, MERCHANTABILITY, FITNESS FOR A PARTICULAR
|
|
||||||
PURPOSE, NON-INFRINGEMENT, ABSENCE OF LATENT OR OTHER DEFECTS,
|
|
||||||
ACCURACY, OR THE PRESENCE OR ABSENCE OF ERRORS, WHETHER OR NOT
|
|
||||||
KNOWN OR DISCOVERABLE. WHERE DISCLAIMERS OF WARRANTIES ARE NOT
|
|
||||||
ALLOWED IN FULL OR IN PART, THIS DISCLAIMER MAY NOT APPLY TO YOU.
|
|
||||||
|
|
||||||
b. TO THE EXTENT POSSIBLE, IN NO EVENT WILL THE LICENSOR BE LIABLE
|
|
||||||
TO YOU ON ANY LEGAL THEORY (INCLUDING, WITHOUT LIMITATION,
|
|
||||||
NEGLIGENCE) OR OTHERWISE FOR ANY DIRECT, SPECIAL, INDIRECT,
|
|
||||||
INCIDENTAL, CONSEQUENTIAL, PUNITIVE, EXEMPLARY, OR OTHER LOSSES,
|
|
||||||
COSTS, EXPENSES, OR DAMAGES ARISING OUT OF THIS PUBLIC LICENSE OR
|
|
||||||
USE OF THE LICENSED MATERIAL, EVEN IF THE LICENSOR HAS BEEN
|
|
||||||
ADVISED OF THE POSSIBILITY OF SUCH LOSSES, COSTS, EXPENSES, OR
|
|
||||||
DAMAGES. WHERE A LIMITATION OF LIABILITY IS NOT ALLOWED IN FULL OR
|
|
||||||
IN PART, THIS LIMITATION MAY NOT APPLY TO YOU.
|
|
||||||
|
|
||||||
c. The disclaimer of warranties and limitation of liability provided
|
|
||||||
above shall be interpreted in a manner that, to the extent
|
|
||||||
possible, most closely approximates an absolute disclaimer and
|
|
||||||
waiver of all liability.
|
|
||||||
|
|
||||||
|
|
||||||
Section 6 -- Term and Termination.
|
|
||||||
|
|
||||||
a. This Public License applies for the term of the Copyright and
|
|
||||||
Similar Rights licensed here. However, if You fail to comply with
|
|
||||||
this Public License, then Your rights under this Public License
|
|
||||||
terminate automatically.
|
|
||||||
|
|
||||||
b. Where Your right to use the Licensed Material has terminated under
|
|
||||||
Section 6(a), it reinstates:
|
|
||||||
|
|
||||||
1. automatically as of the date the violation is cured, provided
|
|
||||||
it is cured within 30 days of Your discovery of the
|
|
||||||
violation; or
|
|
||||||
|
|
||||||
2. upon express reinstatement by the Licensor.
|
|
||||||
|
|
||||||
For the avoidance of doubt, this Section 6(b) does not affect any
|
|
||||||
right the Licensor may have to seek remedies for Your violations
|
|
||||||
of this Public License.
|
|
||||||
|
|
||||||
c. For the avoidance of doubt, the Licensor may also offer the
|
|
||||||
Licensed Material under separate terms or conditions or stop
|
|
||||||
distributing the Licensed Material at any time; however, doing so
|
|
||||||
will not terminate this Public License.
|
|
||||||
|
|
||||||
d. Sections 1, 5, 6, 7, and 8 survive termination of this Public
|
|
||||||
License.
|
|
||||||
|
|
||||||
|
|
||||||
Section 7 -- Other Terms and Conditions.
|
|
||||||
|
|
||||||
a. The Licensor shall not be bound by any additional or different
|
|
||||||
terms or conditions communicated by You unless expressly agreed.
|
|
||||||
|
|
||||||
b. Any arrangements, understandings, or agreements regarding the
|
|
||||||
Licensed Material not stated herein are separate from and
|
|
||||||
independent of the terms and conditions of this Public License.
|
|
||||||
|
|
||||||
|
|
||||||
Section 8 -- Interpretation.
|
|
||||||
|
|
||||||
a. For the avoidance of doubt, this Public License does not, and
|
|
||||||
shall not be interpreted to, reduce, limit, restrict, or impose
|
|
||||||
conditions on any use of the Licensed Material that could lawfully
|
|
||||||
be made without permission under this Public License.
|
|
||||||
|
|
||||||
b. To the extent possible, if any provision of this Public License is
|
|
||||||
deemed unenforceable, it shall be automatically reformed to the
|
|
||||||
minimum extent necessary to make it enforceable. If the provision
|
|
||||||
cannot be reformed, it shall be severed from this Public License
|
|
||||||
without affecting the enforceability of the remaining terms and
|
|
||||||
conditions.
|
|
||||||
|
|
||||||
c. No term or condition of this Public License will be waived and no
|
|
||||||
failure to comply consented to unless expressly agreed to by the
|
|
||||||
Licensor.
|
|
||||||
|
|
||||||
d. Nothing in this Public License constitutes or may be interpreted
|
|
||||||
as a limitation upon, or waiver of, any privileges and immunities
|
|
||||||
that apply to the Licensor or You, including from the legal
|
|
||||||
processes of any jurisdiction or authority.
|
|
||||||
|
|
||||||
=======================================================================
|
|
||||||
|
|
||||||
Creative Commons is not a party to its public
|
|
||||||
licenses. Notwithstanding, Creative Commons may elect to apply one of
|
|
||||||
its public licenses to material it publishes and in those instances
|
|
||||||
will be considered the “Licensor.” The text of the Creative Commons
|
|
||||||
public licenses is dedicated to the public domain under the CC0 Public
|
|
||||||
Domain Dedication. Except for the limited purpose of indicating that
|
|
||||||
material is shared under a Creative Commons public license or as
|
|
||||||
otherwise permitted by the Creative Commons policies published at
|
|
||||||
creativecommons.org/policies, Creative Commons does not authorize the
|
|
||||||
use of the trademark "Creative Commons" or any other trademark or logo
|
|
||||||
of Creative Commons without its prior written consent including,
|
|
||||||
without limitation, in connection with any unauthorized modifications
|
|
||||||
to any of its public licenses or any other arrangements,
|
|
||||||
understandings, or agreements concerning use of licensed material. For
|
|
||||||
the avoidance of doubt, this paragraph does not form part of the
|
|
||||||
public licenses.
|
|
||||||
|
|
||||||
Creative Commons may be contacted at creativecommons.org.
|
|
||||||
|
|
||||||
@@ -1,12 +1,12 @@
|
|||||||
import sys
|
import sys
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
# import os
|
# import os
|
||||||
import scipy.io
|
import scipy.io
|
||||||
import logging
|
import logging
|
||||||
from geopy.distance import geodesic
|
from geopy.distance import geodesic
|
||||||
from geopy.point import Point
|
from geopy.point import Point
|
||||||
|
|
||||||
from util.base_logger import getDefaultLogger
|
from util.base_logger import getDefaultLogger
|
||||||
|
|
||||||
def main(Input_catalog, Input_injection_rate, time_win_in_hours, time_step_in_hour, time_win_type,
|
def main(Input_catalog, Input_injection_rate, time_win_in_hours, time_step_in_hour, time_win_type,
|
||||||
@@ -68,8 +68,7 @@ def main(Input_catalog, Input_injection_rate, time_win_in_hours, time_step_in_ho
|
|||||||
# Importing data
|
# Importing data
|
||||||
logger.info("Import data")
|
logger.info("Import data")
|
||||||
mat = scipy.io.loadmat(Input_catalog)
|
mat = scipy.io.loadmat(Input_catalog)
|
||||||
Cat_structure_name = scipy.io.whosmat(Input_catalog)[0][0]
|
Cat_structure = mat['Catalog']
|
||||||
Cat_structure = mat[Cat_structure_name]
|
|
||||||
Cat_id, Cat_t, Cat_m = [], [], []
|
Cat_id, Cat_t, Cat_m = [], [], []
|
||||||
Cat_x, Cat_y, Cat_z = [], [], []
|
Cat_x, Cat_y, Cat_z = [], [], []
|
||||||
Cat_lat, Cat_lon, Cat_elv, Cat_depth = [], [], [], []
|
Cat_lat, Cat_lon, Cat_elv, Cat_depth = [], [], [], []
|
||||||
@@ -206,10 +205,7 @@ def main(Input_catalog, Input_injection_rate, time_win_in_hours, time_step_in_ho
|
|||||||
Feat_dic['Param'][0]['C'] = C
|
Feat_dic['Param'][0]['C'] = C
|
||||||
|
|
||||||
if f_indx in [0,1,2,4]:
|
if f_indx in [0,1,2,4]:
|
||||||
if not b_method:
|
Feat_dic['Param'][0]['b_method'] = b_method
|
||||||
raise ValueError("Please choose an option for b-value")
|
|
||||||
else:
|
|
||||||
Feat_dic['Param'][0]['b_method'] = b_method
|
|
||||||
|
|
||||||
if f_indx in [0,4]:
|
if f_indx in [0,4]:
|
||||||
for cl_i in cl:
|
for cl_i in cl:
|
||||||
@@ -479,6 +475,181 @@ def main(Input_catalog, Input_injection_rate, time_win_in_hours, time_step_in_ho
|
|||||||
|
|
||||||
return In_arr[:i_row,:]
|
return In_arr[:i_row,:]
|
||||||
|
|
||||||
|
# Plotting models and parameters
|
||||||
|
def Plot_feature(Model_Param_array,Output_dict):
|
||||||
|
myVars = locals()
|
||||||
|
|
||||||
|
# Function for findin min-max of all similar parameters
|
||||||
|
def Extermom4All(Model_Param_array, itr_loc):
|
||||||
|
Mat1D = np.reshape(Model_Param_array[:,itr_loc], -1)
|
||||||
|
NotNone = np.isfinite(Mat1D)
|
||||||
|
if np.min(Mat1D[NotNone])>0:
|
||||||
|
return [np.min(Mat1D[NotNone])*0.95, np.max(Mat1D[NotNone])*1.05]
|
||||||
|
elif np.min(Mat1D[NotNone])<0 and np.max(Mat1D[NotNone])>0:
|
||||||
|
return [np.min(Mat1D[NotNone])*1.05, np.max(Mat1D[NotNone])*1.05]
|
||||||
|
elif np.max(Mat1D[NotNone])<0:
|
||||||
|
return [np.min(Mat1D[NotNone])*1.05, np.max(Mat1D[NotNone])*0.95]
|
||||||
|
|
||||||
|
# Function for setting relevant lagends in the plot
|
||||||
|
def Legend_label(loc):
|
||||||
|
l = Output_dict_c['label'][loc]
|
||||||
|
if Output_dict_c['b_method'][loc]:
|
||||||
|
if Output_dict_c['cl'][loc]:
|
||||||
|
l+='('+Output_dict_c['b_method'][loc]+', cl='+str(Output_dict_c['cl'][loc])+')'
|
||||||
|
else:
|
||||||
|
l+='('+Output_dict_c['b_method'][loc]+')'
|
||||||
|
|
||||||
|
return l
|
||||||
|
|
||||||
|
c_NotNone = [] # Removing all parameters with None or constant value
|
||||||
|
for i in range(Model_Param_array.shape[1]):
|
||||||
|
NotNone = np.isfinite(Model_Param_array[:,i])
|
||||||
|
Eq_value = np.mean(Model_Param_array[:,i])
|
||||||
|
if any(NotNone) and Eq_value != Model_Param_array[0,i]:
|
||||||
|
c_NotNone.append(i)
|
||||||
|
else:
|
||||||
|
logger.info(f"No-PLOT: All values of {Output_dict['Type'][i]} are {Model_Param_array[0,i]}!")
|
||||||
|
|
||||||
|
if len(c_NotNone) > 1:
|
||||||
|
Model_Param_array = Model_Param_array[:,c_NotNone]
|
||||||
|
# New output dictionary based on valid parameters for plotting
|
||||||
|
Output_dict_c = {'Type':[], 'label':[], 'b_method':[], 'cl':[]}
|
||||||
|
for i in range(len(c_NotNone)):
|
||||||
|
Output_dict_c['Type'].append(Output_dict['Type'][c_NotNone[i]])
|
||||||
|
Output_dict_c['label'].append(Output_dict['label'][c_NotNone[i]])
|
||||||
|
Output_dict_c['b_method'].append(Output_dict['b_method'][c_NotNone[i]])
|
||||||
|
Output_dict_c['cl'].append(Output_dict['cl'][c_NotNone[i]])
|
||||||
|
|
||||||
|
coloring=['blue','g','r','c','m','y',
|
||||||
|
'brown', 'darkolivegreen', 'teal', 'steelblue', 'slateblue',
|
||||||
|
'purple', 'darksalmon', '#c5b0d5', '#c49c94',
|
||||||
|
'#e377c2', '#f7b6d2', '#7f7f7f', '#c7c7c7', '#bcbd22', '#dbdb8d',
|
||||||
|
'#17becf', '#9edae5',
|
||||||
|
'brown', 'darkolivegreen', 'teal', 'steelblue', 'slateblue',]
|
||||||
|
# All parameters to be plotted
|
||||||
|
All_vars = Output_dict_c['Type'][2:]
|
||||||
|
Uniqe_var = list(dict.fromkeys([s for s in All_vars if 'Standard Error' not in s])) #list(set(All_vars))
|
||||||
|
|
||||||
|
# defining handels and labels to make final legend
|
||||||
|
All_handels = ['p0']
|
||||||
|
for i in range(1,len(All_vars)):
|
||||||
|
All_handels.append('p'+str(i))
|
||||||
|
handels = []
|
||||||
|
labels = []
|
||||||
|
|
||||||
|
# itr_loc: location of paramteres with similar type
|
||||||
|
itr_loc = np.where(np.array(All_vars) == Uniqe_var[0])[0]+2
|
||||||
|
fig, myVars[Output_dict_c['Type'][0]] = plt.subplots(1,1,figsize=(8+int(len(All_vars)/3),6))
|
||||||
|
fig.subplots_adjust(right=1-len(Uniqe_var)*0.09)
|
||||||
|
if Output_dict_c['label'][itr_loc[0]] == 'True Max-Mag': # plot with dash-line
|
||||||
|
myVars[All_handels[itr_loc[0]-2]], = myVars[Output_dict_c['Type'][0]].plot(Model_Param_array[:,1]/24/3600, Model_Param_array[:,itr_loc[0]], c= 'k', ls='--', lw = 2)
|
||||||
|
else:
|
||||||
|
myVars[All_handels[itr_loc[0]-2]], = myVars[Output_dict_c['Type'][0]].plot(Model_Param_array[:,1]/24/3600, Model_Param_array[:,itr_loc[0]], c= coloring[itr_loc[0]])
|
||||||
|
handels.append(All_handels[itr_loc[0]-2])
|
||||||
|
labels.append(Legend_label(itr_loc[0]))
|
||||||
|
myVars[Output_dict_c['Type'][0]].set_ylabel(Output_dict_c['Type'][itr_loc[0]])
|
||||||
|
myVars[Output_dict_c['Type'][0]].set_ylim(Extermom4All(Model_Param_array, itr_loc)[0], Extermom4All(Model_Param_array, itr_loc)[1])
|
||||||
|
myVars[Output_dict_c['Type'][0]].set_xlabel('Day (From start of the recording)')
|
||||||
|
if End_time:
|
||||||
|
myVars[Output_dict_c['Type'][0]].set_xlim(0,End_time)
|
||||||
|
|
||||||
|
# Plotting statndard error (if exists)
|
||||||
|
if itr_loc[0]+1 < len(Output_dict_c['Type']) and Output_dict_c['Type'][itr_loc[0]+1] == 'Standard Error':
|
||||||
|
myVars[Output_dict_c['Type'][0]].fill_between(Model_Param_array[:,1]/24/3600,
|
||||||
|
Model_Param_array[:,itr_loc[0]] - Model_Param_array[:,itr_loc[0]+1],
|
||||||
|
Model_Param_array[:,itr_loc[0]] + Model_Param_array[:,itr_loc[0]+1], color= coloring[itr_loc[0]], alpha=0.1)
|
||||||
|
# Plotting similar parameters on one axis
|
||||||
|
for j in range(1,len(itr_loc)):
|
||||||
|
if Output_dict_c['label'][itr_loc[j]] == 'True Max-Mag': # plot with dash-line
|
||||||
|
myVars[All_handels[itr_loc[j]-2]], = myVars[Output_dict_c['Type'][0]].plot(Model_Param_array[:,1]/24/3600, Model_Param_array[:,itr_loc[j]], c= 'k', ls='--', lw = 2)
|
||||||
|
else:
|
||||||
|
myVars[All_handels[itr_loc[j]-2]], = myVars[Output_dict_c['Type'][0]].plot(Model_Param_array[:,1]/24/3600, Model_Param_array[:,itr_loc[j]], c= coloring[itr_loc[j]])
|
||||||
|
handels.append(All_handels[itr_loc[j]-2])
|
||||||
|
labels.append(Legend_label(itr_loc[j]))
|
||||||
|
|
||||||
|
# Plotting statndard error (if exists)
|
||||||
|
if itr_loc[0]+1 < len(Output_dict_c['Type']) and Output_dict_c['Type'][itr_loc[j]+1] == 'Standard Error':
|
||||||
|
myVars[Output_dict_c['Type'][0]].fill_between(Model_Param_array[:,1]/24/3600,
|
||||||
|
Model_Param_array[:,itr_loc[j]] - Model_Param_array[:,itr_loc[j]+1],
|
||||||
|
Model_Param_array[:,itr_loc[j]] + Model_Param_array[:,itr_loc[j]+1], color= coloring[itr_loc[j]], alpha=0.1)
|
||||||
|
first_itr = 0
|
||||||
|
# Check if there is any more parameter to be plotted in second axes
|
||||||
|
# The procedure is similar to last plots.
|
||||||
|
if len(Uniqe_var) > 1:
|
||||||
|
for i in range(1,len(Uniqe_var)):
|
||||||
|
itr_loc = np.where(np.array(All_vars) == Uniqe_var[i])[0]+2
|
||||||
|
myVars[Uniqe_var[i]] = myVars[Output_dict_c['Type'][0]].twinx()
|
||||||
|
# if it is third or more axis, make a distance between them
|
||||||
|
if first_itr == 0:
|
||||||
|
first_itr += 1
|
||||||
|
set_right = 1
|
||||||
|
else:
|
||||||
|
set_right = 1 + first_itr*0.2
|
||||||
|
first_itr += 1
|
||||||
|
myVars[Uniqe_var[i]].spines.right.set_position(("axes", set_right))
|
||||||
|
if Output_dict_c['label'][itr_loc[0]] == 'True Max-Mag': # plot with dash-line
|
||||||
|
myVars[All_handels[itr_loc[0]-2]], = myVars[Uniqe_var[i]].plot(Model_Param_array[:,1]/24/3600, Model_Param_array[:,itr_loc[0]], c= 'k', ls='--', lw = 2)
|
||||||
|
else:
|
||||||
|
myVars[All_handels[itr_loc[0]-2]], = myVars[Uniqe_var[i]].plot(Model_Param_array[:,1]/24/3600, Model_Param_array[:,itr_loc[0]], c= coloring[itr_loc[0]])
|
||||||
|
handels.append(All_handels[itr_loc[0]-2])
|
||||||
|
labels.append(Legend_label(itr_loc[0]))
|
||||||
|
myVars[Uniqe_var[i]].set_ylabel(Output_dict_c['Type'][itr_loc[0]])
|
||||||
|
myVars[Uniqe_var[i]].yaxis.label.set_color(coloring[itr_loc[0]])
|
||||||
|
myVars[Uniqe_var[i]].spines["right"].set_edgecolor(coloring[itr_loc[0]])
|
||||||
|
myVars[Uniqe_var[i]].tick_params(axis='y', colors= coloring[itr_loc[0]])
|
||||||
|
myVars[Uniqe_var[i]].set_ylim(Extermom4All(Model_Param_array, itr_loc)[0], Extermom4All(Model_Param_array, itr_loc)[1])
|
||||||
|
if itr_loc[0]+1 < len(Output_dict_c['Type']) and Output_dict_c['Type'][itr_loc[0]+1] == 'Standard Error':
|
||||||
|
myVars[Uniqe_var[i]].fill_between(Model_Param_array[:,1]/24/3600,
|
||||||
|
Model_Param_array[:,itr_loc[0]] - Model_Param_array[:,itr_loc[0]+1],
|
||||||
|
Model_Param_array[:,itr_loc[0]] + Model_Param_array[:,itr_loc[0]+1], color= coloring[itr_loc[0]], alpha=0.1)
|
||||||
|
|
||||||
|
for j in range(1,len(itr_loc)):
|
||||||
|
if Output_dict_c['label'][itr_loc[j]] == 'True Max-Mag': # plot with dash-line
|
||||||
|
myVars[All_handels[itr_loc[j]-2]], = myVars[Uniqe_var[i]].plot(Model_Param_array[:,1]/24/3600, Model_Param_array[:,itr_loc[j]], c= 'k', ls = '--', lw = 2)
|
||||||
|
else:
|
||||||
|
myVars[All_handels[itr_loc[j]-2]], = myVars[Uniqe_var[i]].plot(Model_Param_array[:,1]/24/3600, Model_Param_array[:,itr_loc[j]], c= coloring[itr_loc[j]])
|
||||||
|
handels.append(All_handels[itr_loc[j]-2])
|
||||||
|
labels.append(Legend_label(itr_loc[j]))
|
||||||
|
if itr_loc[j]+1 < len(Output_dict_c['Type']) and Output_dict_c['Type'][itr_loc[j]+1] == 'Standard Error':
|
||||||
|
myVars[Uniqe_var[i]].fill_between(Model_Param_array[:,1]/24/3600,
|
||||||
|
Model_Param_array[:,itr_loc[j]] - Model_Param_array[:,itr_loc[j]+1],
|
||||||
|
Model_Param_array[:,itr_loc[j]] + Model_Param_array[:,itr_loc[j]+1], color= coloring[itr_loc[j]], alpha=0.1)
|
||||||
|
|
||||||
|
# If there are timing, plot them as vertical lines
|
||||||
|
if time_inj:
|
||||||
|
myVars['l1'], = plt.plot([time_inj,time_inj], [Extermom4All(Model_Param_array, itr_loc)[0],Extermom4All(Model_Param_array, itr_loc)[1]], ls='--', c='k')
|
||||||
|
handels.append('l1')
|
||||||
|
labels.append('Start-inj')
|
||||||
|
if time_shut_in:
|
||||||
|
myVars['l2'], = plt.plot([time_shut_in,time_shut_in], [Extermom4All(Model_Param_array, itr_loc)[0],Extermom4All(Model_Param_array, itr_loc)[1]], ls='-.', c='k')
|
||||||
|
handels.append('l2')
|
||||||
|
labels.append('Shut-in')
|
||||||
|
if time_big_ev:
|
||||||
|
myVars['l3'], = plt.plot([time_big_ev,time_big_ev], [Extermom4All(Model_Param_array, itr_loc)[0],Extermom4All(Model_Param_array, itr_loc)[1]], ls='dotted', c='k')
|
||||||
|
handels.append('l3')
|
||||||
|
labels.append('Large-Ev')
|
||||||
|
|
||||||
|
box = myVars[Output_dict_c['Type'][0]].get_position()
|
||||||
|
if len(handels) < 6:
|
||||||
|
myVars[Output_dict_c['Type'][0]].set_position([box.x0, box.y0 + box.height * 0.1,
|
||||||
|
box.width, box.height * 0.9])
|
||||||
|
plt.legend([myVars[ii] for ii in handels], labels, loc='upper center',
|
||||||
|
bbox_to_anchor=(0.5+0.06*first_itr, -0.15), fancybox=True, shadow=True, ncol=len(handels))
|
||||||
|
elif len(handels) < 13:
|
||||||
|
myVars[Output_dict_c['Type'][0]].set_position([box.x0, box.y0 + box.height * 0.04*int(len(handels)/2),
|
||||||
|
box.width, box.height * (1 - 0.04*int(len(handels)/2))])
|
||||||
|
plt.legend([myVars[ii] for ii in handels], labels, loc='upper center',
|
||||||
|
bbox_to_anchor=(0.5+0.1*first_itr, -0.04*int(len(handels)/2)), fancybox=True, shadow=True, ncol=int(len(handels)/2)+1, handleheight=2)
|
||||||
|
else:
|
||||||
|
myVars[Output_dict_c['Type'][0]].set_position([box.x0, box.y0 + box.height * 0.04*int(len(handels)/2),
|
||||||
|
box.width, box.height * (1 - 0.04*int(len(handels)/2))])
|
||||||
|
plt.legend([myVars[ii] for ii in handels], labels, loc='upper center',
|
||||||
|
bbox_to_anchor=(0.6+0.1*first_itr, -0.04*int(len(handels)/2)), fancybox=True, shadow=True, ncol=int(len(handels)/2)+1, handleheight=2)
|
||||||
|
plt.title(Model_name)
|
||||||
|
# plt.savefig(cwd+'/Results/'+Model_name+'.png', dpi=300)
|
||||||
|
plt.savefig('PLOT_Mmax_param.png', dpi=300)
|
||||||
|
# plt.show()
|
||||||
|
|
||||||
# Run functions based on the configurations -------------------
|
# Run functions based on the configurations -------------------
|
||||||
# Computing model
|
# Computing model
|
||||||
if time_step_in_hour > time_win_in_hours:
|
if time_step_in_hour > time_win_in_hours:
|
||||||
@@ -510,9 +681,7 @@ def main(Input_catalog, Input_injection_rate, time_win_in_hours, time_step_in_ho
|
|||||||
if Plot_flag > 0:
|
if Plot_flag > 0:
|
||||||
if Model_Param_array.any():
|
if Model_Param_array.any():
|
||||||
logger.info("Plotting results")
|
logger.info("Plotting results")
|
||||||
|
Plot_feature(Model_Param_array, Output_dict)
|
||||||
import Mmax_plot # Import locally to ensure Mmax_plot is required only when Plot_flag > 0
|
|
||||||
Mmax_plot.Plot_feature(Model_Param_array, Output_dict)
|
|
||||||
else:
|
else:
|
||||||
logger.info("Model_Param_array is empty or not enough values to plot. Check 'csv' file.")
|
logger.info("Model_Param_array is empty or not enough values to plot. Check 'csv' file.")
|
||||||
|
|
||||||
@@ -1,6 +1,3 @@
|
|||||||
# MaxMagnitudeDPModels — Official Application Repository
|
MaxMagnitudeDPModels app official repository
|
||||||
|
|
||||||
This repository contains the source code and configuration files for the `MaxMagnitudeDPModels` application used within the [EPISODES Platform](https://EpisodesPlatform.eu/).
|
Link to remote: https://epos-apps.grid.cyfronet.pl/official-apps/MaxMagnitudeDPModels
|
||||||
|
|
||||||
📦 To test or modify this application in the EPISODES Platform environment, follow the guide:
|
|
||||||
https://docs.cyfronet.pl/display/ISDOC/Editing+application+codes+guide
|
|
||||||
@@ -23,6 +23,8 @@ import argparse
|
|||||||
from Mmax import main as Mmax
|
from Mmax import main as Mmax
|
||||||
|
|
||||||
def main(argv):
|
def main(argv):
|
||||||
|
raise ValueError("Test error from repo official-apps/MaxMagnitudeDPModels branch experimental-test-live-code-editing")
|
||||||
|
|
||||||
parser = argparse.ArgumentParser()
|
parser = argparse.ArgumentParser()
|
||||||
parser.add_argument("Input_catalog", help="Input catalog: path to input file of type 'catalog'")
|
parser.add_argument("Input_catalog", help="Input catalog: path to input file of type 'catalog'")
|
||||||
parser.add_argument("Input_injection_rate", help="Input injection rate: path to input file of type 'injection_rate'")
|
parser.add_argument("Input_injection_rate", help="Input injection rate: path to input file of type 'injection_rate'")
|
||||||
206
src/Mmax_plot.py
206
src/Mmax_plot.py
@@ -1,206 +0,0 @@
|
|||||||
import matplotlib.pyplot as plt
|
|
||||||
import numpy as np
|
|
||||||
|
|
||||||
|
|
||||||
def Plot_feature(Model_Param_array,
|
|
||||||
Output_dict,
|
|
||||||
End_time=None,
|
|
||||||
time_inj=None,
|
|
||||||
time_shut_in=None,
|
|
||||||
time_big_ev=None,
|
|
||||||
Model_name="",
|
|
||||||
logger=None):
|
|
||||||
"""
|
|
||||||
Plotting function extracted from Mmax.py for plotting models and parameters.
|
|
||||||
|
|
||||||
Parameters
|
|
||||||
----------
|
|
||||||
Model_Param_array : np.ndarray
|
|
||||||
Computed matrix of model parameters as rows in time.
|
|
||||||
Output_dict : dict
|
|
||||||
Dictionary describing each column in Model_Param_array.
|
|
||||||
End_time : float, optional
|
|
||||||
The last time to show in the X-axis (days), if desired.
|
|
||||||
time_inj : float, optional
|
|
||||||
Time of injection start (days), if you want a vertical line.
|
|
||||||
time_shut_in : float, optional
|
|
||||||
Time of shut-in (days), if you want a vertical line.
|
|
||||||
time_big_ev : float, optional
|
|
||||||
Time of large event (days), if you want a vertical line.
|
|
||||||
Model_name : str, optional
|
|
||||||
Model name used for the plot title.
|
|
||||||
logger : logging.Logger, optional
|
|
||||||
Logger for printing info messages. If None, no logging happens.
|
|
||||||
"""
|
|
||||||
myVars = locals()
|
|
||||||
|
|
||||||
# Function for findin min-max of all similar parameters
|
|
||||||
def Extermom4All(Model_Param_array, itr_loc):
|
|
||||||
Mat1D = np.reshape(Model_Param_array[:,itr_loc], -1)
|
|
||||||
NotNone = np.isfinite(Mat1D)
|
|
||||||
if np.min(Mat1D[NotNone])>0:
|
|
||||||
return [np.min(Mat1D[NotNone])*0.95, np.max(Mat1D[NotNone])*1.05]
|
|
||||||
elif np.min(Mat1D[NotNone])<0 and np.max(Mat1D[NotNone])>0:
|
|
||||||
return [np.min(Mat1D[NotNone])*1.05, np.max(Mat1D[NotNone])*1.05]
|
|
||||||
elif np.max(Mat1D[NotNone])<0:
|
|
||||||
return [np.min(Mat1D[NotNone])*1.05, np.max(Mat1D[NotNone])*0.95]
|
|
||||||
|
|
||||||
# Function for setting relevant lagends in the plot
|
|
||||||
def Legend_label(loc):
|
|
||||||
l = Output_dict_c['label'][loc]
|
|
||||||
if Output_dict_c['b_method'][loc]:
|
|
||||||
if Output_dict_c['cl'][loc]:
|
|
||||||
l+='('+Output_dict_c['b_method'][loc]+', cl='+str(Output_dict_c['cl'][loc])+')'
|
|
||||||
else:
|
|
||||||
l+='('+Output_dict_c['b_method'][loc]+')'
|
|
||||||
|
|
||||||
return l
|
|
||||||
|
|
||||||
c_NotNone = [] # Removing all parameters with None or constant value
|
|
||||||
for i in range(Model_Param_array.shape[1]):
|
|
||||||
NotNone = np.isfinite(Model_Param_array[:,i])
|
|
||||||
Eq_value = np.mean(Model_Param_array[:,i])
|
|
||||||
if any(NotNone) and Eq_value != Model_Param_array[0,i]:
|
|
||||||
c_NotNone.append(i)
|
|
||||||
else:
|
|
||||||
logger.info(f"No-PLOT: All values of {Output_dict['Type'][i]} are {Model_Param_array[0,i]}!")
|
|
||||||
|
|
||||||
if len(c_NotNone) > 1:
|
|
||||||
Model_Param_array = Model_Param_array[:,c_NotNone]
|
|
||||||
# New output dictionary based on valid parameters for plotting
|
|
||||||
Output_dict_c = {'Type':[], 'label':[], 'b_method':[], 'cl':[]}
|
|
||||||
for i in range(len(c_NotNone)):
|
|
||||||
Output_dict_c['Type'].append(Output_dict['Type'][c_NotNone[i]])
|
|
||||||
Output_dict_c['label'].append(Output_dict['label'][c_NotNone[i]])
|
|
||||||
Output_dict_c['b_method'].append(Output_dict['b_method'][c_NotNone[i]])
|
|
||||||
Output_dict_c['cl'].append(Output_dict['cl'][c_NotNone[i]])
|
|
||||||
|
|
||||||
coloring=['blue','g','r','c','m','y',
|
|
||||||
'brown', 'darkolivegreen', 'teal', 'steelblue', 'slateblue',
|
|
||||||
'purple', 'darksalmon', '#c5b0d5', '#c49c94',
|
|
||||||
'#e377c2', '#f7b6d2', '#7f7f7f', '#c7c7c7', '#bcbd22', '#dbdb8d',
|
|
||||||
'#17becf', '#9edae5',
|
|
||||||
'brown', 'darkolivegreen', 'teal', 'steelblue', 'slateblue',]
|
|
||||||
# All parameters to be plotted
|
|
||||||
All_vars = Output_dict_c['Type'][2:]
|
|
||||||
Uniqe_var = list(dict.fromkeys([s for s in All_vars if 'Standard Error' not in s])) #list(set(All_vars))
|
|
||||||
|
|
||||||
# defining handels and labels to make final legend
|
|
||||||
All_handels = ['p0']
|
|
||||||
for i in range(1,len(All_vars)):
|
|
||||||
All_handels.append('p'+str(i))
|
|
||||||
handels = []
|
|
||||||
labels = []
|
|
||||||
|
|
||||||
# itr_loc: location of paramteres with similar type
|
|
||||||
itr_loc = np.where(np.array(All_vars) == Uniqe_var[0])[0]+2
|
|
||||||
fig, myVars[Output_dict_c['Type'][0]] = plt.subplots(1,1,figsize=(8+int(len(All_vars)/3),6))
|
|
||||||
fig.subplots_adjust(right=1-len(Uniqe_var)*0.09)
|
|
||||||
if Output_dict_c['label'][itr_loc[0]] == 'True Max-Mag': # plot with dash-line
|
|
||||||
myVars[All_handels[itr_loc[0]-2]], = myVars[Output_dict_c['Type'][0]].plot(Model_Param_array[:,1]/24/3600, Model_Param_array[:,itr_loc[0]], c= 'k', ls='--', lw = 2)
|
|
||||||
else:
|
|
||||||
myVars[All_handels[itr_loc[0]-2]], = myVars[Output_dict_c['Type'][0]].plot(Model_Param_array[:,1]/24/3600, Model_Param_array[:,itr_loc[0]], c= coloring[itr_loc[0]])
|
|
||||||
handels.append(All_handels[itr_loc[0]-2])
|
|
||||||
labels.append(Legend_label(itr_loc[0]))
|
|
||||||
myVars[Output_dict_c['Type'][0]].set_ylabel(Output_dict_c['Type'][itr_loc[0]])
|
|
||||||
myVars[Output_dict_c['Type'][0]].set_ylim(Extermom4All(Model_Param_array, itr_loc)[0], Extermom4All(Model_Param_array, itr_loc)[1])
|
|
||||||
myVars[Output_dict_c['Type'][0]].set_xlabel('Day (From start of the recording)')
|
|
||||||
if End_time:
|
|
||||||
myVars[Output_dict_c['Type'][0]].set_xlim(0,End_time)
|
|
||||||
|
|
||||||
# Plotting statndard error (if exists)
|
|
||||||
if itr_loc[0]+1 < len(Output_dict_c['Type']) and Output_dict_c['Type'][itr_loc[0]+1] == 'Standard Error':
|
|
||||||
myVars[Output_dict_c['Type'][0]].fill_between(Model_Param_array[:,1]/24/3600,
|
|
||||||
Model_Param_array[:,itr_loc[0]] - Model_Param_array[:,itr_loc[0]+1],
|
|
||||||
Model_Param_array[:,itr_loc[0]] + Model_Param_array[:,itr_loc[0]+1], color= coloring[itr_loc[0]], alpha=0.1)
|
|
||||||
# Plotting similar parameters on one axis
|
|
||||||
for j in range(1,len(itr_loc)):
|
|
||||||
if Output_dict_c['label'][itr_loc[j]] == 'True Max-Mag': # plot with dash-line
|
|
||||||
myVars[All_handels[itr_loc[j]-2]], = myVars[Output_dict_c['Type'][0]].plot(Model_Param_array[:,1]/24/3600, Model_Param_array[:,itr_loc[j]], c= 'k', ls='--', lw = 2)
|
|
||||||
else:
|
|
||||||
myVars[All_handels[itr_loc[j]-2]], = myVars[Output_dict_c['Type'][0]].plot(Model_Param_array[:,1]/24/3600, Model_Param_array[:,itr_loc[j]], c= coloring[itr_loc[j]])
|
|
||||||
handels.append(All_handels[itr_loc[j]-2])
|
|
||||||
labels.append(Legend_label(itr_loc[j]))
|
|
||||||
|
|
||||||
# Plotting statndard error (if exists)
|
|
||||||
if itr_loc[0]+1 < len(Output_dict_c['Type']) and Output_dict_c['Type'][itr_loc[j]+1] == 'Standard Error':
|
|
||||||
myVars[Output_dict_c['Type'][0]].fill_between(Model_Param_array[:,1]/24/3600,
|
|
||||||
Model_Param_array[:,itr_loc[j]] - Model_Param_array[:,itr_loc[j]+1],
|
|
||||||
Model_Param_array[:,itr_loc[j]] + Model_Param_array[:,itr_loc[j]+1], color= coloring[itr_loc[j]], alpha=0.1)
|
|
||||||
first_itr = 0
|
|
||||||
# Check if there is any more parameter to be plotted in second axes
|
|
||||||
# The procedure is similar to last plots.
|
|
||||||
if len(Uniqe_var) > 1:
|
|
||||||
for i in range(1,len(Uniqe_var)):
|
|
||||||
itr_loc = np.where(np.array(All_vars) == Uniqe_var[i])[0]+2
|
|
||||||
myVars[Uniqe_var[i]] = myVars[Output_dict_c['Type'][0]].twinx()
|
|
||||||
# if it is third or more axis, make a distance between them
|
|
||||||
if first_itr == 0:
|
|
||||||
first_itr += 1
|
|
||||||
set_right = 1
|
|
||||||
else:
|
|
||||||
set_right = 1 + first_itr*0.2
|
|
||||||
first_itr += 1
|
|
||||||
myVars[Uniqe_var[i]].spines.right.set_position(("axes", set_right))
|
|
||||||
if Output_dict_c['label'][itr_loc[0]] == 'True Max-Mag': # plot with dash-line
|
|
||||||
myVars[All_handels[itr_loc[0]-2]], = myVars[Uniqe_var[i]].plot(Model_Param_array[:,1]/24/3600, Model_Param_array[:,itr_loc[0]], c= 'k', ls='--', lw = 2)
|
|
||||||
else:
|
|
||||||
myVars[All_handels[itr_loc[0]-2]], = myVars[Uniqe_var[i]].plot(Model_Param_array[:,1]/24/3600, Model_Param_array[:,itr_loc[0]], c= coloring[itr_loc[0]])
|
|
||||||
handels.append(All_handels[itr_loc[0]-2])
|
|
||||||
labels.append(Legend_label(itr_loc[0]))
|
|
||||||
myVars[Uniqe_var[i]].set_ylabel(Output_dict_c['Type'][itr_loc[0]])
|
|
||||||
myVars[Uniqe_var[i]].yaxis.label.set_color(coloring[itr_loc[0]])
|
|
||||||
myVars[Uniqe_var[i]].spines["right"].set_edgecolor(coloring[itr_loc[0]])
|
|
||||||
myVars[Uniqe_var[i]].tick_params(axis='y', colors= coloring[itr_loc[0]])
|
|
||||||
myVars[Uniqe_var[i]].set_ylim(Extermom4All(Model_Param_array, itr_loc)[0], Extermom4All(Model_Param_array, itr_loc)[1])
|
|
||||||
if itr_loc[0]+1 < len(Output_dict_c['Type']) and Output_dict_c['Type'][itr_loc[0]+1] == 'Standard Error':
|
|
||||||
myVars[Uniqe_var[i]].fill_between(Model_Param_array[:,1]/24/3600,
|
|
||||||
Model_Param_array[:,itr_loc[0]] - Model_Param_array[:,itr_loc[0]+1],
|
|
||||||
Model_Param_array[:,itr_loc[0]] + Model_Param_array[:,itr_loc[0]+1], color= coloring[itr_loc[0]], alpha=0.1)
|
|
||||||
|
|
||||||
for j in range(1,len(itr_loc)):
|
|
||||||
if Output_dict_c['label'][itr_loc[j]] == 'True Max-Mag': # plot with dash-line
|
|
||||||
myVars[All_handels[itr_loc[j]-2]], = myVars[Uniqe_var[i]].plot(Model_Param_array[:,1]/24/3600, Model_Param_array[:,itr_loc[j]], c= 'k', ls = '--', lw = 2)
|
|
||||||
else:
|
|
||||||
myVars[All_handels[itr_loc[j]-2]], = myVars[Uniqe_var[i]].plot(Model_Param_array[:,1]/24/3600, Model_Param_array[:,itr_loc[j]], c= coloring[itr_loc[j]])
|
|
||||||
handels.append(All_handels[itr_loc[j]-2])
|
|
||||||
labels.append(Legend_label(itr_loc[j]))
|
|
||||||
if itr_loc[j]+1 < len(Output_dict_c['Type']) and Output_dict_c['Type'][itr_loc[j]+1] == 'Standard Error':
|
|
||||||
myVars[Uniqe_var[i]].fill_between(Model_Param_array[:,1]/24/3600,
|
|
||||||
Model_Param_array[:,itr_loc[j]] - Model_Param_array[:,itr_loc[j]+1],
|
|
||||||
Model_Param_array[:,itr_loc[j]] + Model_Param_array[:,itr_loc[j]+1], color= coloring[itr_loc[j]], alpha=0.1)
|
|
||||||
|
|
||||||
# If there are timing, plot them as vertical lines
|
|
||||||
if time_inj:
|
|
||||||
myVars['l1'], = plt.plot([time_inj,time_inj], [Extermom4All(Model_Param_array, itr_loc)[0],Extermom4All(Model_Param_array, itr_loc)[1]], ls='--', c='k')
|
|
||||||
handels.append('l1')
|
|
||||||
labels.append('Start-inj')
|
|
||||||
if time_shut_in:
|
|
||||||
myVars['l2'], = plt.plot([time_shut_in,time_shut_in], [Extermom4All(Model_Param_array, itr_loc)[0],Extermom4All(Model_Param_array, itr_loc)[1]], ls='-.', c='k')
|
|
||||||
handels.append('l2')
|
|
||||||
labels.append('Shut-in')
|
|
||||||
if time_big_ev:
|
|
||||||
myVars['l3'], = plt.plot([time_big_ev,time_big_ev], [Extermom4All(Model_Param_array, itr_loc)[0],Extermom4All(Model_Param_array, itr_loc)[1]], ls='dotted', c='k')
|
|
||||||
handels.append('l3')
|
|
||||||
labels.append('Large-Ev')
|
|
||||||
|
|
||||||
box = myVars[Output_dict_c['Type'][0]].get_position()
|
|
||||||
if len(handels) < 6:
|
|
||||||
myVars[Output_dict_c['Type'][0]].set_position([box.x0, box.y0 + box.height * 0.1,
|
|
||||||
box.width, box.height * 0.9])
|
|
||||||
plt.legend([myVars[ii] for ii in handels], labels, loc='upper center',
|
|
||||||
bbox_to_anchor=(0.5+0.06*first_itr, -0.15), fancybox=True, shadow=True, ncol=len(handels))
|
|
||||||
elif len(handels) < 13:
|
|
||||||
myVars[Output_dict_c['Type'][0]].set_position([box.x0, box.y0 + box.height * 0.04*int(len(handels)/2),
|
|
||||||
box.width, box.height * (1 - 0.04*int(len(handels)/2))])
|
|
||||||
plt.legend([myVars[ii] for ii in handels], labels, loc='upper center',
|
|
||||||
bbox_to_anchor=(0.5+0.1*first_itr, -0.04*int(len(handels)/2)), fancybox=True, shadow=True, ncol=int(len(handels)/2)+1, handleheight=2)
|
|
||||||
else:
|
|
||||||
myVars[Output_dict_c['Type'][0]].set_position([box.x0, box.y0 + box.height * 0.04*int(len(handels)/2),
|
|
||||||
box.width, box.height * (1 - 0.04*int(len(handels)/2))])
|
|
||||||
plt.legend([myVars[ii] for ii in handels], labels, loc='upper center',
|
|
||||||
bbox_to_anchor=(0.6+0.1*first_itr, -0.04*int(len(handels)/2)), fancybox=True, shadow=True, ncol=int(len(handels)/2)+1, handleheight=2)
|
|
||||||
plt.title(Model_name)
|
|
||||||
# plt.savefig(cwd+'/Results/'+Model_name+'.png', dpi=300)
|
|
||||||
plt.savefig('PLOT_Mmax_param.png', dpi=300)
|
|
||||||
# plt.show()
|
|
||||||
Reference in New Issue
Block a user