MaxMagnitudeDPModels/Mmax.py

724 lines
36 KiB
Python

import sys
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
# import os
import scipy.io
import logging
from geopy.distance import geodesic
from geopy.point import Point
from util.base_logger import getDefaultLogger
def main(Input_catalog, Input_injection_rate, time_win_in_hours, time_step_in_hour, time_win_type,
End_time, ev_limit, Model_index, Mc, Mu, G, ssd, C, b_value_type, cl, mag_name, time_inj=None, time_shut_in=None,
time_big_ev=None, Inpar = ["SER", "dv", "d_num"]):
"""
Main function for application: MAXIMUM_MAGNITUDE_DETERMINISTIC_MODELS
Arguments:
Input catalog: path to input file of type 'catalog'
Input injection rate: path to input file of type 'injection_rate'
**kwargs: Model paramters.
Returns:
'PLOT_Mmax_param': Plot of all results (also check 'application.log' for more info)
'DATA_Mmax_param': Results with 'csv' format
'application.log': Logging file
"""
f_indx = Model_index
b_method = b_value_type
Plot_flag = 0
# Setting up the logfile--------------------------------
logger = getDefaultLogger(__name__)
# Importing utilities ----------------------
logger.info("Import utilities")
from util.Find_idx4Time import Find_idx4Time
from util.CandidateEventsTS import CandidateEventsTS
from util.M_max_models import M_max_models
def latlon_to_enu(lat, lon, alt):
lat0 = np.mean(lat)
lon0 = np.mean(lon)
alt0 = 0
# Reference point (origin)
origin = Point(lat0, lon0, alt0)
east = np.zeros_like(lon)
north = np.zeros_like(lat)
up = np.zeros_like(alt)
for i in range(len(lon)):
# Target point
target = Point(lat[i], lon[i], alt[i])
# Calculate East-North-Up
east[i] = geodesic((lat0, lon0), (lat0, lon[i])).meters
if lon[i] < lon0:
east[i] = -east[i]
north[i] = geodesic((lat0, lon0), (lat[i], lon0)).meters
if lat[i] < lat0:
north[i] = -north[i]
up = alt - alt0
return east, north, up
# Importing data
logger.info("Import data")
mat = scipy.io.loadmat(Input_catalog)
Cat_structure = mat['Catalog']
Cat_id, Cat_t, Cat_m = [], [], []
Cat_x, Cat_y, Cat_z = [], [], []
Cat_lat, Cat_lon, Cat_elv, Cat_depth = [], [], [], []
for i in range(1,Cat_structure.shape[1]):
if Cat_structure.T[i][0][0][0] == 'X':
Cat_x = Cat_structure.T[i][0][2]
if not all(np.isfinite(Cat_x)):
raise ValueError("Catalog-X contains infinite value")
if Cat_structure.T[i][0][3][0] == 'km':
Cat_x *= 1000
if Cat_structure.T[i][0][0][0] == 'Lat':
Cat_lat = Cat_structure.T[i][0][2]
if not all(np.isfinite(Cat_lat)):
raise ValueError("Catalog-Lat contains infinite value")
if Cat_structure.T[i][0][0][0] == 'Y':
Cat_y = Cat_structure.T[i][0][2]
if not all(np.isfinite(Cat_y)):
raise ValueError("Catalog-Y contains infinite value")
if Cat_structure.T[i][0][3][0] == 'km':
Cat_y *= 1000
if Cat_structure.T[i][0][0][0] == 'Long':
Cat_lon = Cat_structure.T[i][0][2]
if not all(np.isfinite(Cat_lon)):
raise ValueError("Catalog-Long contains infinite value")
if Cat_structure.T[i][0][0][0] == 'Z':
Cat_z = Cat_structure.T[i][0][2]
if not all(np.isfinite(Cat_z)):
raise ValueError("Catalog-Z contains infinite value")
if Cat_structure.T[i][0][3][0] == 'km':
Cat_z *= 1000
if Cat_structure.T[i][0][0][0] == 'Depth':
Cat_depth = Cat_structure.T[i][0][2]
if not all(np.isfinite(Cat_depth)):
raise ValueError("Catalog-Depth contains infinite value")
if Cat_structure.T[i][0][3][0] == 'km':
Cat_depth *= 1000
if Cat_structure.T[i][0][0][0] == 'Elevation':
Cat_elv = Cat_structure.T[i][0][2]
if not all(np.isfinite(Cat_elv)):
raise ValueError("Catalog-Elevation contains infinite value")
if Cat_structure.T[i][0][3][0] == 'km':
Cat_elv *= 1000
if Cat_structure.T[i][0][0][0] == 'Time':
Cat_t = Cat_structure.T[i][0][2]
if not all(np.isfinite(Cat_t)):
raise ValueError("Catalog-Time contains infinite value")
if Cat_structure.T[i][0][0][0] == mag_name:
Cat_m = Cat_structure.T[i][0][2]
# if not all(np.isfinite(Cat_m)):
if np.argwhere(all(np.isfinite(Cat_m))):
raise ValueError("Catalog-Magnitude contains infinite value")
if any(Cat_x):
Cat_id = np.linspace(0,Cat_x.shape[0],Cat_x.shape[0]).reshape((Cat_x.shape[0],1))
arg = (Cat_id, Cat_x, Cat_y, Cat_z, Cat_t, Cat_m)
Cat = np.concatenate(arg, axis=1)
elif any(Cat_lat):
if any(Cat_elv):
Cat_x, Cat_y, Cat_z = latlon_to_enu(Cat_lat, Cat_lon, Cat_elv)
elif any(Cat_depth):
Cat_x, Cat_y, Cat_z = latlon_to_enu(Cat_lat, Cat_lon, Cat_depth)
else:
raise ValueError("Catalog Depth or Elevation is not available")
Cat_id = np.linspace(0,Cat_x.shape[0],Cat_x.shape[0]).reshape((Cat_x.shape[0],1))
arg = (Cat_id, Cat_x, Cat_y, Cat_z, Cat_t, Cat_m)
Cat = np.concatenate(arg, axis=1)
else:
raise ValueError("Catalog data are not available")
mat = scipy.io.loadmat(Input_injection_rate)
Inj_structure = mat['d']
if 'Date' in Inj_structure.dtype.names:
inj_date = Inj_structure['Date'][0,0]
inj_rate = Inj_structure['Injection_rate'][0,0]
Hyd = np.concatenate((inj_date,inj_rate), axis=1)
else:
raise ValueError("Injection data are not available")
if Cat[0,4]>np.max(Hyd[:,0]) or Hyd[0,0]>np.max(Cat[:,4]):
raise ValueError('Catalog and injection data do not have time coverage!')
if Hyd[0,0] < Cat[0,4]:
same_time_idx = Find_idx4Time(Hyd[:,0], Cat[0,4])
Hyd = Hyd[same_time_idx:,:]
Hyd[:,0] = (Hyd[:,0] - Cat[0,4])*24*3600
Cat[:,4] = (Cat[:,4] - Cat[0,4])*24*3600
logger.info('Start of the computations is based on the time of catalog data.')
# Model dictionary
Feat_dic = {
'indx' :[0 ,1 ,2 ,3 ,4 ,5 ],
'Full_names':['All_M_max' ,'McGarr' ,'Hallo' ,'Li' ,'van-der-Elst','Shapiro' ],
'Short_name':['max_all' , 'max_mcg', 'max_hlo', 'max_li', 'max_vde' , 'max_shp'],
'f_num' :[5 ,4 ,4 ,1 ,6 ,4 ],
'Param' :[{'Mc': 0.8, 'b_method': ['b'], 'cl': [0.37], 'Inpar': ['dv','d_num'], 'Mu':0.6, 'G': 35*10**(9), 'ssd': 3*10**6, 'C': 0.95, 'ev_limit': 20, 'num_bootstraps': 100}]
}
Feat_dic['Param'][0]['Inpar'] = Inpar
Feat_dic['Param'][0]['ev_limit'] = ev_limit
num_bootstraps = 100 # Number of bootstraping for standard error computation
Feat_dic['Param'][0]['num_bootstraps'] = num_bootstraps
if f_indx in [0,1,2,4]:
if Mc < np.min(Cat[:,-1]) or Mc > np.max(Cat[:,-1]):
raise ValueError("Completeness magnitude (Mc) is out of magnitude range")
Feat_dic['Param'][0]['Mc'] = Mc
if f_indx in [0,1,2]:
if Mu < 0.2 or Mu > 0.8:
raise ValueError("Friction coefficient (Mu) must be between [0.2, 0.8]")
Feat_dic['Param'][0]['Mu'] = Mu
if f_indx in [0,1,2,3]:
if G < 1*10**(9) or G > 100*10**(9):
raise ValueError("Shear modulus of reservoir rock (G) must be between [1, 100] GPa")
Feat_dic['Param'][0]['G'] = G
if f_indx in [0,5]:
if ssd < 0.1*10**(6) or ssd > 100*10**(6):
raise ValueError("Static stress drop (ssd) must be between [0.1, 100] MPa")
Feat_dic['Param'][0]['ssd'] = ssd
if f_indx in [0,5]:
if C < 0.5 or C > 5:
raise ValueError("Geometrical constant (C) of Shaprio's model must be between [0.5, 5]")
Feat_dic['Param'][0]['C'] = C
if f_indx in [0,1,2,4]:
Feat_dic['Param'][0]['b_method'] = b_method
if f_indx in [0,4]:
for cl_i in cl:
if cl_i < 0 or cl_i > 1:
raise ValueError("Confidence level (cl) of van der Elst model must be between [0, 1]")
Feat_dic['Param'][0]['cl'] = cl
# Setting up based on the config and model dic --------------
ModelClass = M_max_models()
Model_name = Feat_dic['Full_names'][f_indx]
ModelClass.f_name = Feat_dic['Short_name'][f_indx]
f_num = Feat_dic['f_num'][f_indx]
if Feat_dic['Param'][0]['Mc']:
ModelClass.Mc = Mc
else:
Mc = np.min(Cat[:,-1])
ModelClass.Mc = Mc
time_win = time_win_in_hours*3600 # in sec
ModelClass.time_win = time_win
if f_indx == 0:
# Only first b_methods is used
Feat_dic['Param'][0]['b_method'] = b_method[0]
ModelClass.b_method = Feat_dic['Param'][0]['b_method']
logger.info(f"All models are based on b_method: { b_method[0]}")
Feat_dic['Param'][0]['cl'] = [cl[0]]
ModelClass.cl = Feat_dic['Param'][0]['cl']
logger.info(f"All models are based on cl: { cl[0]}")
ModelClass.Mu = Feat_dic['Param'][0]['Mu']
ModelClass.G = Feat_dic['Param'][0]['G']
ModelClass.ssd = Feat_dic['Param'][0]['ssd']
ModelClass.C = Feat_dic['Param'][0]['C']
ModelClass.num_bootstraps = Feat_dic['Param'][0]['num_bootstraps']
if f_indx == 1 or f_indx == 2:
ModelClass.b_method = Feat_dic['Param'][0]['b_method']
ModelClass.Mu = Feat_dic['Param'][0]['Mu']
ModelClass.G = Feat_dic['Param'][0]['G']
ModelClass.num_bootstraps = Feat_dic['Param'][0]['num_bootstraps']
Feat_dic['Param'][0]['cl'] = [None]
if f_indx == 3:
Feat_dic['Param'][0]['b_method'] = [None]
ModelClass.G = Feat_dic['Param'][0]['G']
Feat_dic['Param'][0]['cl'] = [None]
if f_indx == 4:
ModelClass.b_method = Feat_dic['Param'][0]['b_method']
ModelClass.num_bootstraps = Feat_dic['Param'][0]['num_bootstraps']
ModelClass.G = Feat_dic['Param'][0]['G']
ModelClass.cl = Feat_dic['Param'][0]['cl']
if f_indx == 5:
ModelClass.ssd = Feat_dic['Param'][0]['ssd']
ModelClass.C = Feat_dic['Param'][0]['C']
Feat_dic['Param'][0]['b_method'] = [None]
Feat_dic['Param'][0]['cl'] = [None]
# Output dictionary --------------------------------
Output_dict = {
'Type' :['idx', 'Time[day]'],
'label' :[None, None],
'b_method' :[None, None],
'cl' :[None, None],
}
c_out = 2
if any(Feat_dic['Param'][0]['b_method']) and any(Feat_dic['Param'][0]['cl']):
for i in range(len(Feat_dic['Param'][0]['b_method'])):
for j in range(len(Feat_dic['Param'][0]['cl'])):
if f_indx == 0: # f_index == 0
for i in Feat_dic['Full_names'][1:]:
Output_dict['Type'].append('Maximum magnitude')
Output_dict['label'].append(i)
Output_dict['b_method'].append(None)
Output_dict['cl'].append(None)
c_out += 1
elif j == 0: # f_index == 4
Output_dict['Type'].append('b_value')
Output_dict['label'].append('b_value')
Output_dict['b_method'].append(Feat_dic['Param'][0]['b_method'][i])
Output_dict['cl'].append(None)
Output_dict['Type'].append('Standard Error')
Output_dict['label'].append('b_std_err')
Output_dict['b_method'].append(Feat_dic['Param'][0]['b_method'][i])
Output_dict['cl'].append(None)
Output_dict['Type'].append('Seismogenic Index')
Output_dict['label'].append('SI')
Output_dict['b_method'].append(Feat_dic['Param'][0]['b_method'][i])
Output_dict['cl'].append(None)
Output_dict['Type'].append('Standard Error')
Output_dict['label'].append('si_std_err')
Output_dict['b_method'].append(Feat_dic['Param'][0]['b_method'][i])
Output_dict['cl'].append(None)
Output_dict['Type'].append('Maximum magnitude')
Output_dict['label'].append(Model_name)
Output_dict['b_method'].append(Feat_dic['Param'][0]['b_method'][i])
Output_dict['cl'].append(Feat_dic['Param'][0]['cl'][j])
Output_dict['Type'].append('Standard Error')
Output_dict['label'].append('M_std_err')
Output_dict['b_method'].append(Feat_dic['Param'][0]['b_method'][i])
Output_dict['cl'].append(None)
c_out += 6
else: # f_index == 4
Output_dict['Type'].append('Maximum magnitude')
Output_dict['label'].append(Model_name)
Output_dict['b_method'].append(Feat_dic['Param'][0]['b_method'][i])
Output_dict['cl'].append(Feat_dic['Param'][0]['cl'][j])
Output_dict['Type'].append('Standard Error')
Output_dict['label'].append('M_std_err')
Output_dict['b_method'].append(Feat_dic['Param'][0]['b_method'][i])
Output_dict['cl'].append(None)
c_out += 2
elif any(Feat_dic['Param'][0]['b_method']): # f_index == 1, 2
for i in range(len(Feat_dic['Param'][0]['b_method'])):
Output_dict['Type'].append('b_value')
Output_dict['label'].append('b_value')
Output_dict['b_method'].append(Feat_dic['Param'][0]['b_method'][i])
Output_dict['cl'].append(None)
Output_dict['Type'].append('Standard Error')
Output_dict['label'].append('b_std_err')
Output_dict['b_method'].append(Feat_dic['Param'][0]['b_method'][i])
Output_dict['cl'].append(None)
Output_dict['Type'].append('Maximum magnitude')
Output_dict['label'].append(Model_name)
Output_dict['b_method'].append(Feat_dic['Param'][0]['b_method'][i])
Output_dict['cl'].append(None)
Output_dict['Type'].append('Standard Error')
Output_dict['label'].append('M_std_err')
Output_dict['b_method'].append(Feat_dic['Param'][0]['b_method'][i])
Output_dict['cl'].append(None)
c_out += 4
elif f_indx == 5: # f_index == 5
# for i in ['L(max)','L(int)','L(min)', 'L(avg)']:
# Output_dict['Type'].append('Length[m]')
# Output_dict['label'].append(i)
# Output_dict['b_method'].append(None)
# Output_dict['cl'].append(None)
# Output_dict['Type'].append('Maximum magnitude')
# Output_dict['label'].append(Model_name)
# Output_dict['b_method'].append(None)
# Output_dict['cl'].append(None)
# c_out += 5
for i in ['Shapiro (Lmax)','Shapiro (Lint)','Shapiro (Lmin)', 'Shapiro (Lavg)']:
Output_dict['Type'].append('Maximum magnitude')
Output_dict['label'].append(i)
Output_dict['b_method'].append(None)
Output_dict['cl'].append(None)
c_out += 4
else: # f_index == 3
Output_dict['Type'].append('Maximum magnitude')
Output_dict['label'].append(Model_name)
Output_dict['b_method'].append(None)
Output_dict['cl'].append(None)
c_out += 1
# Add True maximum magnitude to the outputs
Output_dict['Type'].append('Maximum magnitude')
Output_dict['label'].append('True Max-Mag')
Output_dict['b_method'].append(None)
Output_dict['cl'].append(None)
c_out += 1
# if any(Feat_dic['Param'][0]['Inpar']): # Input parameters
if Inpar:
for i in Feat_dic['Param'][0]['Inpar']:
if i == 'd_num':
Output_dict['Type'].append('Number of events')
Output_dict['label'].append('Ev_Num')
elif i == 'dv':
Output_dict['Type'].append('Volume[m3]')
Output_dict['label'].append('Vol')
elif i == 'Mo':
Output_dict['Type'].append('Seismic moment')
Output_dict['label'].append('Mo')
elif i == 'SER':
Output_dict['Type'].append('Seismic efficiency ratio')
Output_dict['label'].append('SER')
Output_dict['b_method'].append(None)
Output_dict['cl'].append(None)
c_out += 1
# Functions ------------------------------
# Computing in extending time or time window
def Feature_in_Time(In_arr):
SER_l = 0
SER_c = 0
i_row = 0
for i in np.arange(1,Times):
# Defining time window and data
if time_win_type == 0:
ModelClass.time_win = i*time_step
candidate_events = CandidateEventsTS(Cat, i*time_step, None, i*time_step)
else:
candidate_events = CandidateEventsTS(Cat, i*time_step, None, time_win)
data = candidate_events.filter_data()
# USER: Check if cumulative dv is correctly computed !!!
end_time_indx = Find_idx4Time(Hyd[:,0], i*time_step)
# ModelClass.dv = np.sum(Hyd[:end_time_indx,1])
ModelClass.dv = np.trapz(Hyd[:end_time_indx,1], Hyd[:end_time_indx,0])/60
if len(data) > Feat_dic['Param'][0]['ev_limit'] and ModelClass.dv > 0:
ModelClass.Mo = np.sum(10**(1.5*data[:end_time_indx,5]+9.1))
if f_indx != 5: # Parameters have not been assinged for f_index == 5
SER_c = ModelClass.Mo/(2.0*ModelClass.G*ModelClass.dv)
SER_l = np.max((SER_c, SER_l))
ModelClass.SER = SER_l
ModelClass.data = data
In_arr[i_row,0] = i # index
In_arr[i_row,1] = i*time_step # Currecnt time
c = 2
if any(Feat_dic['Param'][0]['b_method']) and any(Feat_dic['Param'][0]['cl']):
for ii in range(len(Feat_dic['Param'][0]['b_method'])):
ModelClass.b_method = Feat_dic['Param'][0]['b_method'][ii]
for jj in range(len(Feat_dic['Param'][0]['cl'])): # f_index == 4
ModelClass.cl = Feat_dic['Param'][0]['cl'][jj]
Out = ModelClass.ComputeModel()
if jj == 0:
In_arr[i_row,c:c+f_num] = Out
c += f_num
else:
In_arr[i_row,c:c+2] = Out[-2:]
c += 2
elif any(Feat_dic['Param'][0]['b_method']): # f_index == 1, 2
for ii in range(len(Feat_dic['Param'][0]['b_method'])):
ModelClass.b_method = Feat_dic['Param'][0]['b_method'][ii]
In_arr[i_row,c:c+f_num] = ModelClass.ComputeModel()
c += f_num
else: # f_index = 0, 3, 5
In_arr[i_row,c:c+f_num] = ModelClass.ComputeModel()
c += f_num
# Compute true maximum magnitude in the data
In_arr[i_row,c] = np.max(data[:end_time_indx,5])
c += 1
if Inpar:
for ii in range(len(Feat_dic['Param'][0]['Inpar'])): # Add input parameters
if Feat_dic['Param'][0]['Inpar'][ii] == 'd_num':
In_arr[i_row,c+ii] = data.shape[0]
elif Feat_dic['Param'][0]['Inpar'][ii] == 'dv':
In_arr[i_row,c+ii] = ModelClass.dv
elif Feat_dic['Param'][0]['Inpar'][ii] == 'Mo':
In_arr[i_row,c+ii] = ModelClass.Mo
elif Feat_dic['Param'][0]['Inpar'][ii] == 'SER':
if ModelClass.SER:
In_arr[i_row,c+ii] = ModelClass.SER
i_row += 1
return In_arr[:i_row,:]
# Plotting models and parameters
def Plot_feature(Model_Param_array,Output_dict):
myVars = locals()
# Function for findin min-max of all similar parameters
def Extermom4All(Model_Param_array, itr_loc):
Mat1D = np.reshape(Model_Param_array[:,itr_loc], -1)
NotNone = np.isfinite(Mat1D)
if np.min(Mat1D[NotNone])>0:
return [np.min(Mat1D[NotNone])*0.95, np.max(Mat1D[NotNone])*1.05]
elif np.min(Mat1D[NotNone])<0 and np.max(Mat1D[NotNone])>0:
return [np.min(Mat1D[NotNone])*1.05, np.max(Mat1D[NotNone])*1.05]
elif np.max(Mat1D[NotNone])<0:
return [np.min(Mat1D[NotNone])*1.05, np.max(Mat1D[NotNone])*0.95]
# Function for setting relevant lagends in the plot
def Legend_label(loc):
l = Output_dict_c['label'][loc]
if Output_dict_c['b_method'][loc]:
if Output_dict_c['cl'][loc]:
l+='('+Output_dict_c['b_method'][loc]+', cl='+str(Output_dict_c['cl'][loc])+')'
else:
l+='('+Output_dict_c['b_method'][loc]+')'
return l
c_NotNone = [] # Removing all parameters with None or constant value
for i in range(Model_Param_array.shape[1]):
NotNone = np.isfinite(Model_Param_array[:,i])
Eq_value = np.mean(Model_Param_array[:,i])
if any(NotNone) and Eq_value != Model_Param_array[0,i]:
c_NotNone.append(i)
else:
logger.info(f"No-PLOT: All values of {Output_dict['Type'][i]} are {Model_Param_array[0,i]}!")
if len(c_NotNone) > 1:
Model_Param_array = Model_Param_array[:,c_NotNone]
# New output dictionary based on valid parameters for plotting
Output_dict_c = {'Type':[], 'label':[], 'b_method':[], 'cl':[]}
for i in range(len(c_NotNone)):
Output_dict_c['Type'].append(Output_dict['Type'][c_NotNone[i]])
Output_dict_c['label'].append(Output_dict['label'][c_NotNone[i]])
Output_dict_c['b_method'].append(Output_dict['b_method'][c_NotNone[i]])
Output_dict_c['cl'].append(Output_dict['cl'][c_NotNone[i]])
coloring=['blue','g','r','c','m','y',
'brown', 'darkolivegreen', 'teal', 'steelblue', 'slateblue',
'purple', 'darksalmon', '#c5b0d5', '#c49c94',
'#e377c2', '#f7b6d2', '#7f7f7f', '#c7c7c7', '#bcbd22', '#dbdb8d',
'#17becf', '#9edae5',
'brown', 'darkolivegreen', 'teal', 'steelblue', 'slateblue',]
# All parameters to be plotted
All_vars = Output_dict_c['Type'][2:]
Uniqe_var = list(dict.fromkeys([s for s in All_vars if 'Standard Error' not in s])) #list(set(All_vars))
# defining handels and labels to make final legend
All_handels = ['p0']
for i in range(1,len(All_vars)):
All_handels.append('p'+str(i))
handels = []
labels = []
# itr_loc: location of paramteres with similar type
itr_loc = np.where(np.array(All_vars) == Uniqe_var[0])[0]+2
fig, myVars[Output_dict_c['Type'][0]] = plt.subplots(1,1,figsize=(8+int(len(All_vars)/3),6))
fig.subplots_adjust(right=1-len(Uniqe_var)*0.09)
if Output_dict_c['label'][itr_loc[0]] == 'True Max-Mag': # plot with dash-line
myVars[All_handels[itr_loc[0]-2]], = myVars[Output_dict_c['Type'][0]].plot(Model_Param_array[:,1]/24/3600, Model_Param_array[:,itr_loc[0]], c= 'k', ls='--', lw = 2)
else:
myVars[All_handels[itr_loc[0]-2]], = myVars[Output_dict_c['Type'][0]].plot(Model_Param_array[:,1]/24/3600, Model_Param_array[:,itr_loc[0]], c= coloring[itr_loc[0]])
handels.append(All_handels[itr_loc[0]-2])
labels.append(Legend_label(itr_loc[0]))
myVars[Output_dict_c['Type'][0]].set_ylabel(Output_dict_c['Type'][itr_loc[0]])
myVars[Output_dict_c['Type'][0]].set_ylim(Extermom4All(Model_Param_array, itr_loc)[0], Extermom4All(Model_Param_array, itr_loc)[1])
myVars[Output_dict_c['Type'][0]].set_xlabel('Day (From start of the recording)')
if End_time:
myVars[Output_dict_c['Type'][0]].set_xlim(0,End_time)
# Plotting statndard error (if exists)
if itr_loc[0]+1 < len(Output_dict_c['Type']) and Output_dict_c['Type'][itr_loc[0]+1] == 'Standard Error':
myVars[Output_dict_c['Type'][0]].fill_between(Model_Param_array[:,1]/24/3600,
Model_Param_array[:,itr_loc[0]] - Model_Param_array[:,itr_loc[0]+1],
Model_Param_array[:,itr_loc[0]] + Model_Param_array[:,itr_loc[0]+1], color= coloring[itr_loc[0]], alpha=0.1)
# Plotting similar parameters on one axis
for j in range(1,len(itr_loc)):
if Output_dict_c['label'][itr_loc[j]] == 'True Max-Mag': # plot with dash-line
myVars[All_handels[itr_loc[j]-2]], = myVars[Output_dict_c['Type'][0]].plot(Model_Param_array[:,1]/24/3600, Model_Param_array[:,itr_loc[j]], c= 'k', ls='--', lw = 2)
else:
myVars[All_handels[itr_loc[j]-2]], = myVars[Output_dict_c['Type'][0]].plot(Model_Param_array[:,1]/24/3600, Model_Param_array[:,itr_loc[j]], c= coloring[itr_loc[j]])
handels.append(All_handels[itr_loc[j]-2])
labels.append(Legend_label(itr_loc[j]))
# Plotting statndard error (if exists)
if itr_loc[0]+1 < len(Output_dict_c['Type']) and Output_dict_c['Type'][itr_loc[j]+1] == 'Standard Error':
myVars[Output_dict_c['Type'][0]].fill_between(Model_Param_array[:,1]/24/3600,
Model_Param_array[:,itr_loc[j]] - Model_Param_array[:,itr_loc[j]+1],
Model_Param_array[:,itr_loc[j]] + Model_Param_array[:,itr_loc[j]+1], color= coloring[itr_loc[j]], alpha=0.1)
first_itr = 0
# Check if there is any more parameter to be plotted in second axes
# The procedure is similar to last plots.
if len(Uniqe_var) > 1:
for i in range(1,len(Uniqe_var)):
itr_loc = np.where(np.array(All_vars) == Uniqe_var[i])[0]+2
myVars[Uniqe_var[i]] = myVars[Output_dict_c['Type'][0]].twinx()
# if it is third or more axis, make a distance between them
if first_itr == 0:
first_itr += 1
set_right = 1
else:
set_right = 1 + first_itr*0.2
first_itr += 1
myVars[Uniqe_var[i]].spines.right.set_position(("axes", set_right))
if Output_dict_c['label'][itr_loc[0]] == 'True Max-Mag': # plot with dash-line
myVars[All_handels[itr_loc[0]-2]], = myVars[Uniqe_var[i]].plot(Model_Param_array[:,1]/24/3600, Model_Param_array[:,itr_loc[0]], c= 'k', ls='--', lw = 2)
else:
myVars[All_handels[itr_loc[0]-2]], = myVars[Uniqe_var[i]].plot(Model_Param_array[:,1]/24/3600, Model_Param_array[:,itr_loc[0]], c= coloring[itr_loc[0]])
handels.append(All_handels[itr_loc[0]-2])
labels.append(Legend_label(itr_loc[0]))
myVars[Uniqe_var[i]].set_ylabel(Output_dict_c['Type'][itr_loc[0]])
myVars[Uniqe_var[i]].yaxis.label.set_color(coloring[itr_loc[0]])
myVars[Uniqe_var[i]].spines["right"].set_edgecolor(coloring[itr_loc[0]])
myVars[Uniqe_var[i]].tick_params(axis='y', colors= coloring[itr_loc[0]])
myVars[Uniqe_var[i]].set_ylim(Extermom4All(Model_Param_array, itr_loc)[0], Extermom4All(Model_Param_array, itr_loc)[1])
if itr_loc[0]+1 < len(Output_dict_c['Type']) and Output_dict_c['Type'][itr_loc[0]+1] == 'Standard Error':
myVars[Uniqe_var[i]].fill_between(Model_Param_array[:,1]/24/3600,
Model_Param_array[:,itr_loc[0]] - Model_Param_array[:,itr_loc[0]+1],
Model_Param_array[:,itr_loc[0]] + Model_Param_array[:,itr_loc[0]+1], color= coloring[itr_loc[0]], alpha=0.1)
for j in range(1,len(itr_loc)):
if Output_dict_c['label'][itr_loc[j]] == 'True Max-Mag': # plot with dash-line
myVars[All_handels[itr_loc[j]-2]], = myVars[Uniqe_var[i]].plot(Model_Param_array[:,1]/24/3600, Model_Param_array[:,itr_loc[j]], c= 'k', ls = '--', lw = 2)
else:
myVars[All_handels[itr_loc[j]-2]], = myVars[Uniqe_var[i]].plot(Model_Param_array[:,1]/24/3600, Model_Param_array[:,itr_loc[j]], c= coloring[itr_loc[j]])
handels.append(All_handels[itr_loc[j]-2])
labels.append(Legend_label(itr_loc[j]))
if itr_loc[j]+1 < len(Output_dict_c['Type']) and Output_dict_c['Type'][itr_loc[j]+1] == 'Standard Error':
myVars[Uniqe_var[i]].fill_between(Model_Param_array[:,1]/24/3600,
Model_Param_array[:,itr_loc[j]] - Model_Param_array[:,itr_loc[j]+1],
Model_Param_array[:,itr_loc[j]] + Model_Param_array[:,itr_loc[j]+1], color= coloring[itr_loc[j]], alpha=0.1)
# If there are timing, plot them as vertical lines
if time_inj:
myVars['l1'], = plt.plot([time_inj,time_inj], [Extermom4All(Model_Param_array, itr_loc)[0],Extermom4All(Model_Param_array, itr_loc)[1]], ls='--', c='k')
handels.append('l1')
labels.append('Start-inj')
if time_shut_in:
myVars['l2'], = plt.plot([time_shut_in,time_shut_in], [Extermom4All(Model_Param_array, itr_loc)[0],Extermom4All(Model_Param_array, itr_loc)[1]], ls='-.', c='k')
handels.append('l2')
labels.append('Shut-in')
if time_big_ev:
myVars['l3'], = plt.plot([time_big_ev,time_big_ev], [Extermom4All(Model_Param_array, itr_loc)[0],Extermom4All(Model_Param_array, itr_loc)[1]], ls='dotted', c='k')
handels.append('l3')
labels.append('Large-Ev')
box = myVars[Output_dict_c['Type'][0]].get_position()
if len(handels) < 6:
myVars[Output_dict_c['Type'][0]].set_position([box.x0, box.y0 + box.height * 0.1,
box.width, box.height * 0.9])
plt.legend([myVars[ii] for ii in handels], labels, loc='upper center',
bbox_to_anchor=(0.5+0.06*first_itr, -0.15), fancybox=True, shadow=True, ncol=len(handels))
elif len(handels) < 13:
myVars[Output_dict_c['Type'][0]].set_position([box.x0, box.y0 + box.height * 0.04*int(len(handels)/2),
box.width, box.height * (1 - 0.04*int(len(handels)/2))])
plt.legend([myVars[ii] for ii in handels], labels, loc='upper center',
bbox_to_anchor=(0.5+0.1*first_itr, -0.04*int(len(handels)/2)), fancybox=True, shadow=True, ncol=int(len(handels)/2)+1, handleheight=2)
else:
myVars[Output_dict_c['Type'][0]].set_position([box.x0, box.y0 + box.height * 0.04*int(len(handels)/2),
box.width, box.height * (1 - 0.04*int(len(handels)/2))])
plt.legend([myVars[ii] for ii in handels], labels, loc='upper center',
bbox_to_anchor=(0.6+0.1*first_itr, -0.04*int(len(handels)/2)), fancybox=True, shadow=True, ncol=int(len(handels)/2)+1, handleheight=2)
plt.title(Model_name)
# plt.savefig(cwd+'/Results/'+Model_name+'.png', dpi=300)
plt.savefig('PLOT_Mmax_param.png', dpi=300)
# plt.show()
# Run functions based on the configurations -------------------
# Computing model
if time_step_in_hour > time_win_in_hours:
raise ValueError('Time steps should be <= time window.')
if (time_win_in_hours+time_step_in_hour)*3600 > np.max(Cat[:,4]):
raise ValueError('Time window and time steps are like that no more than three computations is possible. Use smaller value for either time window or time step.')
time_step = time_step_in_hour*3600
if End_time:
if End_time*24*3600 > np.max(Cat[:,4])+24*3600:
raise ValueError(f'End_time is longer than the maximum time of catalog, which is {np.ceil(np.max(Cat[:,4])/24/3600)} day!')
elif time_step > 0:
Times = int(np.floor((End_time*24*3600 - Cat[0,4]) / time_step))
else:
Times = 2
time_step = time_win
elif time_step > 0:
Times = int(np.floor((np.max(Cat[:,4]) - Cat[0,4]) / time_step))
else:
Times = 2
time_step = time_win
Model_Param_array = np.zeros((Times,c_out))
logger.info("Computing input parameter(s) and the model(s)")
Model_Param_array = Feature_in_Time(Model_Param_array)
# Plotting
if Plot_flag > 0:
if Model_Param_array.any():
logger.info("Plotting results")
Plot_feature(Model_Param_array, Output_dict)
else:
logger.info("Model_Param_array is empty or not enough values to plot. Check 'csv' file.")
# Saving
logger.info("Saving results")
# Save models and parameters in
def OneLineHeader(loc):
l = Output_dict['Type'][loc]
if Output_dict['b_method'][loc]:
if Output_dict['label'][loc] != 'b_value' and Output_dict['label'][loc] != 'b_std_err' and Output_dict['label'][loc] != 'M_std_err':
l += '_'+Output_dict['label'][loc]
else:
l = Output_dict['label'][loc]
if Output_dict['cl'][loc]:
l += '(b_method: '+Output_dict['b_method'][loc]+', q='+str(Output_dict['cl'][loc])+')'
else:
l += '(b_method: '+Output_dict['b_method'][loc]+')'
elif Output_dict['label'][loc]:
l += '('+ Output_dict['label'][loc] +')'
return l
db_df = pd.DataFrame(data = Model_Param_array,
columns = [OneLineHeader(i) for i in range(len(Output_dict['Type']))])
db_df = db_df.round(4)
# db_df.to_excel(cwd+'/Results/'+Full_feat_name+'.xlsx')
db_df.to_csv('DATA_Mmax_param.csv', sep=';', index=False)
# np.savez_compressed(cwd+'/Results/'+Full_feat_name+'.npz', Model_Param_array = Model_Param_array) # change the name!
if __name__=='__main__':
# Input_catalog = 'Data/Cooper_Basin_Catalog_HAB_1_2003_Reprocessed.mat'
# Input_injection_rate = 'Data/Cooper_Basin_HAB_1_2003_Injection_Rate.mat'
# Model_index = 4
# b_value_type = 'TGR'
main(Input_catalog, Input_injection_rate, time_win_in_hours, time_step_in_hour, time_win_type,
End_time, ev_limit, Inpar, time_inj, time_shut_in, time_big_ev, Model_index,
Mc, Mu, G, ssd, C, b_value_type, cl, mag_name)