Update src/seismic_hazard_forecasting.py
This commit is contained in:
@@ -1,10 +1,189 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
import numpy as np
|
||||
from scipy.stats import t, norm
|
||||
from scipy.optimize import root_scalar
|
||||
from timeit import default_timer as timer
|
||||
|
||||
from openquake.hazardlib.geo import Point #This class represents a geographical point in terms of longitude, latitude, and depth (with respect to the Earth surface).
|
||||
from openquake.hazardlib.geo.surface.planar import PlanarSurface
|
||||
from openquake.hazardlib.source.characteristic import CharacteristicFaultSource
|
||||
from openquake.hazardlib.mfd import ArbitraryMFD
|
||||
from openquake.hazardlib.tom import PoissonTOM
|
||||
from openquake.hazardlib.scalerel import WC1994 #Wells and Coppersmith magnitude – rupture area relationships
|
||||
from openquake.hazardlib.site import Site, SiteCollection
|
||||
from openquake.hazardlib.contexts import ContextMaker
|
||||
from openquake.hazardlib.valid import gsim
|
||||
from openquake.hazardlib.imt import PGA
|
||||
|
||||
|
||||
def my_trivial_task(x):
|
||||
"""
|
||||
A function that does a trivial task
|
||||
"""
|
||||
return x * x
|
||||
|
||||
def compute_IMT_exceedance(rx_lat, rx_lon, r, fr, p, lambdas, D, percentages_D, magnitudes, magnitude_pdf, magnitude_cdf, model, imt='PGA', IMT_min=0.01, IMT_max=2.0, rx_label=None, rtol=0.1, use_cython=False, **kwargs):
|
||||
|
||||
n_events = len(r)
|
||||
|
||||
try:
|
||||
gmpes = [gsim(model)]
|
||||
except:
|
||||
msg = f"{model} was not found in the openquake gsim directory"
|
||||
logger.error(msg)
|
||||
raise Exception(msg)
|
||||
|
||||
if model == 'Lasocki2013': #this model requires the number of earthquake records
|
||||
|
||||
if imt=='PGA': #extract number of records for PGA
|
||||
num_ground_motion_records = gmpes[0].COEFFS.non_sa_coeffs[PGA()]['N']
|
||||
else: #extract number of records for SA()
|
||||
freq = float(imt[imt.find('(')+1:imt.find(')')]) # get the desired frequency of SA
|
||||
first_index = np.where(gmpes[0].COEFFS.get_coeffs('N')[0]==freq)[0][0]
|
||||
num_ground_motion_records = gmpes[0].COEFFS.get_coeffs('N')[1][first_index][0]
|
||||
else:
|
||||
num_ground_motion_records = 0
|
||||
|
||||
#placeholder values that do not have any effect
|
||||
Mag = 5.0 #placeholder mag, must be valid for that context; will be overwritten in loop
|
||||
rupture_aratio = 1.5
|
||||
Strike = 0
|
||||
Dip = 90
|
||||
Rake = 0
|
||||
|
||||
Hypocenter = Point(rx_lon, rx_lat, 0.0) #does not matter in our case; just set eq location to be same as receiver
|
||||
#according to the magnitude and MSR calculate planar surface
|
||||
planar_surface = PlanarSurface.from_hypocenter(
|
||||
hypoc=Hypocenter,
|
||||
msr=WC1994(),
|
||||
mag=Mag,
|
||||
aratio=rupture_aratio,
|
||||
strike=Strike,
|
||||
dip=Dip,
|
||||
rake=Rake,
|
||||
)
|
||||
|
||||
# site for which we compute (receiver location)
|
||||
site_collection = SiteCollection([Site(location=Point(rx_lon, rx_lat, 0))])
|
||||
|
||||
imtls = {s: [0] for s in [imt]} #required for context maker, M = 2 IMTs
|
||||
|
||||
context_maker = ContextMaker('Induced', gmpes, {'imtls': imtls, 'mags': [Mag]}) #necessary contexts builder
|
||||
|
||||
src = CharacteristicFaultSource(source_id = 1,
|
||||
name = 'rup',
|
||||
tectonic_region_type = 'Induced',
|
||||
mfd = ArbitraryMFD([Mag], [0.01]), #this does not have any effect
|
||||
temporal_occurrence_model = PoissonTOM(50.), #this is also not really used
|
||||
surface = planar_surface,
|
||||
rake = Rake)
|
||||
|
||||
ctx = context_maker.from_srcs([src], site_collection)[0] #returns one context from the source for one rupture
|
||||
|
||||
if use_cython:
|
||||
|
||||
from cython_exceedance import exceedance_core
|
||||
|
||||
def exceedance_root_function(a):
|
||||
return exceedance_core(a, r, fr, lambdas, D, percentages_D, magnitudes,
|
||||
magnitude_pdf, magnitude_cdf, context_maker, ctx,
|
||||
model, num_ground_motion_records) - p
|
||||
|
||||
else:
|
||||
|
||||
def exceedance_root_function(a):
|
||||
exceedance_prob_sum = 0
|
||||
log_a = np.log(a) # Precompute log(a)
|
||||
|
||||
for j in range(len(lambdas)): #loop through all lambdas
|
||||
lambda_j = lambdas[j]
|
||||
D_j_val = percentages_D[j] * D # Use a different name to avoid shadowing D
|
||||
lambda_D_j = lambda_j * D_j_val
|
||||
denom_j = (1 - np.exp(-lambda_D_j))
|
||||
if denom_j == 0: # Avoid division by zero if lambda_D_j is very small or zero
|
||||
continue
|
||||
|
||||
for i in range(n_events): #loop through all events
|
||||
ri = r[i] # Epicentral distance
|
||||
fr_i = fr[i] # Location probability f(r)
|
||||
ctx.repi = ri
|
||||
|
||||
# Precompute terms only dependent on lambda_j, D_j, m
|
||||
lambda_D_j_f_m = lambda_D_j * magnitude_pdf
|
||||
exp_term_m = np.exp(-lambda_D_j * (1 - magnitude_cdf))
|
||||
f_conditional_base_m = (lambda_D_j_f_m * exp_term_m) / denom_j
|
||||
|
||||
for k in range(len(magnitudes)): #loop through all values of magnitude pdf and cdf
|
||||
m = magnitudes[k]
|
||||
ctx.mag = m # update context magnitude
|
||||
|
||||
# Calculate f_conditional (simpler now)
|
||||
f_conditional = f_conditional_base_m[k]
|
||||
|
||||
mean, sig, _, _ = context_maker.get_mean_stds(ctx)
|
||||
log_gm_predicted = mean[0][0][0]
|
||||
variance_term = sig[0][0][0]
|
||||
residual = log_a - log_gm_predicted # Use precomputed log_a
|
||||
|
||||
if residual <= 0:
|
||||
exceedance_probability = 1.0
|
||||
else:
|
||||
# Avoid division by zero or very small numbers if variance_term is ~0
|
||||
if variance_term < 1e-15: # Adjust threshold as needed
|
||||
exceedance_probability = 0.0
|
||||
else:
|
||||
t_value = residual / variance_term
|
||||
|
||||
if model == 'Lasocki2013':
|
||||
exceedance_probability = t.sf(t_value, num_ground_motion_records - 3) # student t distribution, degrees of freedom: n-3; sf = 1 - cdf
|
||||
else:
|
||||
exceedance_probability = norm.sf(t_value) # equivalent to 1.0 - norm.cdf(t_value)
|
||||
|
||||
location_exceedance_prob = exceedance_probability * f_conditional * fr_i
|
||||
exceedance_prob_sum += location_exceedance_prob
|
||||
|
||||
return exceedance_prob_sum - p
|
||||
|
||||
|
||||
|
||||
# Check function values at different test points
|
||||
IMT_mid = (IMT_max-IMT_min)/2
|
||||
lower_bound_value = exceedance_root_function(IMT_min)
|
||||
mid_point_value = exceedance_root_function(IMT_mid)
|
||||
upper_bound_value = exceedance_root_function(IMT_max)
|
||||
|
||||
logger.info(f"Receiver: {str(rx_label)}")
|
||||
logger.info(f"Function value at {imt} = {str(IMT_min)} : {lower_bound_value}")
|
||||
logger.info(f"Function value at {imt} = {str(IMT_mid)} : {mid_point_value}")
|
||||
logger.info(f"Function value at {imt} = {str(IMT_max)} : {upper_bound_value}")
|
||||
|
||||
if np.sign(lower_bound_value) == np.sign(upper_bound_value):
|
||||
msg = "Function values at the interval endpoints must differ in sign for fsolve to work. Expand the interval or use a different model."
|
||||
logger.error(msg)
|
||||
gm_est = np.nan
|
||||
return gm_est
|
||||
# raise ValueError(msg)
|
||||
|
||||
# Find root of function
|
||||
start = timer()
|
||||
|
||||
try:
|
||||
method='brenth'
|
||||
logger.debug("Now trying Scipy " + method)
|
||||
output = root_scalar(exceedance_root_function, bracket=[IMT_min, IMT_max], rtol=rtol, method=method)
|
||||
gm_est = output.root
|
||||
|
||||
except Exception as error:
|
||||
logger.error(f"An exception occurred: {error}")
|
||||
logger.info("Set ground motion value to nan")
|
||||
gm_est = np.nan
|
||||
|
||||
end = timer()
|
||||
logger.info(f"Ground motion estimation computation time: {round(end - start,1)} seconds")
|
||||
logger.info(f"Estimated {imt}: {gm_est}")
|
||||
|
||||
return gm_est
|
||||
|
||||
def main(catalog_file, mc_file, pdf_file, m_file, m_select, mag_label, mc, m_max,
|
||||
m_kde_method, xy_select, grid_dim, xy_win_method, rate_select, time_win_duration,
|
||||
forecast_select, custom_rate, forecast_len, time_unit, model, products_string, verbose):
|
||||
@@ -64,7 +243,7 @@ def main(catalog_file, mc_file, pdf_file, m_file, m_select, mag_label, mc, m_max
|
||||
from igfash.io import read_mat_cat, read_mat_m, read_mat_mc, read_mat_pdf, read_csv
|
||||
from igfash.window import win_CTL, win_CNE
|
||||
import igfash.kde as kde
|
||||
from igfash.gm import compute_IMT_exceedance
|
||||
#from igfash.gm import compute_IMT_exceedance
|
||||
from igfash.compute import get_cdf, hellinger_dist, cols_to_rows
|
||||
from igfash.rate import lambda_probs, calc_bins, bootstrap_forecast_rolling
|
||||
from igfash.mc import estimate_mc
|
||||
|
Reference in New Issue
Block a user