Compare commits
3 Commits
Author | SHA1 | Date | |
---|---|---|---|
6dae0b6f07 | |||
59cc14e4da | |||
bda00e225c |
@ -48,7 +48,7 @@ def main(catalog_file, mc_file, pdf_file, m_file, m_select, mag_label, mc, m_max
|
|||||||
import logging
|
import logging
|
||||||
from base_logger import getDefaultLogger
|
from base_logger import getDefaultLogger
|
||||||
from timeit import default_timer as timer
|
from timeit import default_timer as timer
|
||||||
from math import ceil, floor
|
from math import ceil, floor, isnan
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import scipy
|
import scipy
|
||||||
import obspy
|
import obspy
|
||||||
@ -125,7 +125,7 @@ verbose: {verbose}")
|
|||||||
|
|
||||||
logger.debug(f"BASELINE CPU LOAD% {psutil.cpu_percent(interval=None, percpu=True)}")
|
logger.debug(f"BASELINE CPU LOAD% {psutil.cpu_percent(interval=None, percpu=True)}")
|
||||||
|
|
||||||
dask.config.set(scheduler='processes')
|
|
||||||
|
|
||||||
# run magnitude distribution modeling if selected by user and no magnitude pdf file provided
|
# run magnitude distribution modeling if selected by user and no magnitude pdf file provided
|
||||||
if m_select and m_range[0] == None and m_pdf[0] == None:
|
if m_select and m_range[0] == None and m_pdf[0] == None:
|
||||||
@ -439,22 +439,40 @@ verbose: {verbose}")
|
|||||||
|
|
||||||
PGA = np.zeros(shape=(nx * ny))
|
PGA = np.zeros(shape=(nx * ny))
|
||||||
|
|
||||||
# use dask parallel computing
|
|
||||||
start = timer()
|
start = timer()
|
||||||
pbar = ProgressBar()
|
|
||||||
pbar.register()
|
|
||||||
# iter = range(0,len(distances))
|
|
||||||
iter = indices
|
|
||||||
iml_grid_raw = [] # raw ground motion grids
|
|
||||||
for imt in products:
|
|
||||||
logger.info(f"Estimating {imt}")
|
|
||||||
|
|
||||||
imls = [dask.delayed(compute_IMT_exceedance)(rx_lat[i], rx_lon[i], distances[i].flatten(), fr, p, lambdas,
|
use_pp = True
|
||||||
forecast_len, lambdas_perc, m_range, m_pdf, m_cdf, model,
|
|
||||||
log_level=logging.DEBUG, imt=imt, IMT_min=0.0, IMT_max=2.0,
|
if use_pp: # use dask parallel computing
|
||||||
rx_label=i) for i in iter]
|
dask.config.set(scheduler='processes', num_workers = 16)
|
||||||
iml = dask.compute(*imls)
|
pbar = ProgressBar()
|
||||||
iml_grid_raw.append(list(iml))
|
pbar.register()
|
||||||
|
# iter = range(0,len(distances))
|
||||||
|
iter = indices
|
||||||
|
iml_grid_raw = [] # raw ground motion grids
|
||||||
|
for imt in products:
|
||||||
|
logger.info(f"Estimating {imt}")
|
||||||
|
|
||||||
|
imls = [dask.delayed(compute_IMT_exceedance)(rx_lat[i], rx_lon[i], distances[i].flatten(), fr, p, lambdas,
|
||||||
|
forecast_len, lambdas_perc, m_range, m_pdf, m_cdf, model,
|
||||||
|
imt=imt, IMT_min=0.0, IMT_max=2.0, rx_label=i,
|
||||||
|
rtol=0.1, use_cython=False) for i in iter]
|
||||||
|
iml = dask.compute(*imls)
|
||||||
|
iml_grid_raw.append(list(iml))
|
||||||
|
|
||||||
|
else:
|
||||||
|
iml_grid_raw = []
|
||||||
|
iter = indices
|
||||||
|
for imt in products:
|
||||||
|
iml = []
|
||||||
|
for i in iter:
|
||||||
|
iml_i = compute_IMT_exceedance(rx_lat[i], rx_lon[i], distances[i].flatten(), fr, p, lambdas, forecast_len,
|
||||||
|
lambdas_perc, m_range, m_pdf, m_cdf, model, imt=imt, IMT_min = 0.0,
|
||||||
|
IMT_max = 2.0, rx_label = i, rtol = 0.1, use_cython=False)
|
||||||
|
iml.append(iml_i)
|
||||||
|
logger.info(f"Estimated {imt} at rx {i} is {iml_i}")
|
||||||
|
iml_grid_raw.append(iml)
|
||||||
|
|
||||||
end = timer()
|
end = timer()
|
||||||
logger.info(f"Ground motion exceedance computation time: {round(end - start, 1)} seconds")
|
logger.info(f"Ground motion exceedance computation time: {round(end - start, 1)} seconds")
|
||||||
|
|
||||||
@ -486,6 +504,12 @@ verbose: {verbose}")
|
|||||||
mode='reflect', anti_aliasing=False)
|
mode='reflect', anti_aliasing=False)
|
||||||
iml_grid_hd[iml_grid_hd == 0.0] = np.nan # change zeroes back to nan
|
iml_grid_hd[iml_grid_hd == 0.0] = np.nan # change zeroes back to nan
|
||||||
|
|
||||||
|
# trim edges so the grid is not so blocky
|
||||||
|
vmin_hd = min(x for x in iml_grid_hd.flatten() if not isnan(x))
|
||||||
|
vmax_hd = max(x for x in iml_grid_hd.flatten() if not isnan(x))
|
||||||
|
trim_thresh = vmin
|
||||||
|
iml_grid_hd[iml_grid_hd < trim_thresh] = np.nan
|
||||||
|
|
||||||
# generate image overlay
|
# generate image overlay
|
||||||
north, south = lat.max(), lat.min() # Latitude range
|
north, south = lat.max(), lat.min() # Latitude range
|
||||||
east, west = lon.max(), lon.min() # Longitude range
|
east, west = lon.max(), lon.min() # Longitude range
|
||||||
@ -494,8 +518,10 @@ verbose: {verbose}")
|
|||||||
map_center = [np.mean([north, south]), np.mean([east, west])]
|
map_center = [np.mean([north, south]), np.mean([east, west])]
|
||||||
|
|
||||||
# Create an image from the grid
|
# Create an image from the grid
|
||||||
|
cmap_name = 'viridis'
|
||||||
|
cmap = plt.get_cmap(cmap_name)
|
||||||
fig, ax = plt.subplots(figsize=(6, 6))
|
fig, ax = plt.subplots(figsize=(6, 6))
|
||||||
ax.imshow(iml_grid_hd, origin='lower', cmap='viridis')
|
ax.imshow(iml_grid_hd, origin='lower', cmap=cmap, vmin=vmin, vmax=vmax)
|
||||||
ax.axis('off')
|
ax.axis('off')
|
||||||
|
|
||||||
# Save the figure
|
# Save the figure
|
||||||
@ -513,7 +539,6 @@ verbose: {verbose}")
|
|||||||
logger.info(f"Saved geographic bounds to SVG metadata (data-map-bounds): {overlay_filename} → {map_bounds}")
|
logger.info(f"Saved geographic bounds to SVG metadata (data-map-bounds): {overlay_filename} → {map_bounds}")
|
||||||
|
|
||||||
# Make the color bar
|
# Make the color bar
|
||||||
cmap_name = 'viridis'
|
|
||||||
width = 50
|
width = 50
|
||||||
height = 500
|
height = 500
|
||||||
|
|
||||||
@ -523,14 +548,14 @@ verbose: {verbose}")
|
|||||||
|
|
||||||
fig, ax = plt.subplots(figsize=((width + 40) / 100.0, (height + 20) / 100.0),
|
fig, ax = plt.subplots(figsize=((width + 40) / 100.0, (height + 20) / 100.0),
|
||||||
dpi=100) # Increase fig size for labels
|
dpi=100) # Increase fig size for labels
|
||||||
ax.imshow(gradient, aspect='auto', cmap=plt.get_cmap(cmap_name),
|
ax.imshow(gradient, aspect='auto', cmap=cmap.reversed(),
|
||||||
extent=[0, 1, vmin, vmax]) # Note: extent order is different for vertical
|
extent=[0, 1, vmin, vmax_hd]) # Note: extent order is different for vertical
|
||||||
ax.set_xticks([]) # Remove x-ticks for vertical colorbar
|
ax.set_xticks([]) # Remove x-ticks for vertical colorbar
|
||||||
num_ticks = 11 # Show more ticks
|
num_ticks = 11 # Show more ticks
|
||||||
tick_positions = np.linspace(vmin, vmax, num_ticks)
|
tick_positions = np.linspace(vmin, vmax_hd, num_ticks)
|
||||||
ax.set_yticks(tick_positions)
|
ax.set_yticks(tick_positions)
|
||||||
ax.set_yticklabels([f"{tick:.2f}" for tick in tick_positions]) # format tick labels
|
ax.set_yticklabels([f"{tick:.2f}" for tick in tick_positions]) # format tick labels
|
||||||
ax.set_title(imt, pad=15)
|
ax.set_title(products[j], pad=15)
|
||||||
fig.subplots_adjust(left=0.25, right=0.75, bottom=0.05, top=0.95) # Adjust Layout
|
fig.subplots_adjust(left=0.25, right=0.75, bottom=0.05, top=0.95) # Adjust Layout
|
||||||
fig.savefig("colorbar_" + str(j) + ".svg", bbox_inches='tight')
|
fig.savefig("colorbar_" + str(j) + ".svg", bbox_inches='tight')
|
||||||
plt.close(fig)
|
plt.close(fig)
|
||||||
|
Loading…
Reference in New Issue
Block a user