Compare commits

..

8 Commits

View File

@ -48,7 +48,7 @@ def main(catalog_file, mc_file, pdf_file, m_file, m_select, mag_label, mc, m_max
import logging import logging
from base_logger import getDefaultLogger from base_logger import getDefaultLogger
from timeit import default_timer as timer from timeit import default_timer as timer
from math import ceil, floor from math import ceil, floor, isnan
import numpy as np import numpy as np
import scipy import scipy
import obspy import obspy
@ -70,8 +70,6 @@ def main(catalog_file, mc_file, pdf_file, m_file, m_select, mag_label, mc, m_max
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
from matplotlib.ticker import MultipleLocator from matplotlib.ticker import MultipleLocator
from matplotlib.contour import ContourSet from matplotlib.contour import ContourSet
import xml.etree.ElementTree as ET
import json
logger = getDefaultLogger('igfash') logger = getDefaultLogger('igfash')
@ -241,9 +239,6 @@ verbose: {verbose}")
grid_y_max = int(ceil(y_max / grid_dim) * grid_dim) grid_y_max = int(ceil(y_max / grid_dim) * grid_dim)
grid_y_min = int(floor(y_min / grid_dim) * grid_dim) grid_y_min = int(floor(y_min / grid_dim) * grid_dim)
grid_lat_max, grid_lon_max = utm.to_latlon(grid_x_max, grid_y_max, utm_zone_number, utm_zone_letter)
grid_lat_min, grid_lon_min = utm.to_latlon(grid_x_min, grid_y_min, utm_zone_number, utm_zone_letter)
# rectangular grid # rectangular grid
nx = int((grid_x_max - grid_x_min) / grid_dim) + 1 nx = int((grid_x_max - grid_x_min) / grid_dim) + 1
ny = int((grid_y_max - grid_y_min) / grid_dim) + 1 ny = int((grid_y_max - grid_y_min) / grid_dim) + 1
@ -441,20 +436,39 @@ verbose: {verbose}")
# use dask parallel computing # use dask parallel computing
start = timer() start = timer()
pbar = ProgressBar()
pbar.register()
# iter = range(0,len(distances))
iter = indices
iml_grid_raw = [] # raw ground motion grids
for imt in products:
logger.info(f"Estimating {imt}")
imls = [dask.delayed(compute_IMT_exceedance)(rx_lat[i], rx_lon[i], distances[i].flatten(), fr, p, lambdas, use_pp = False
forecast_len, lambdas_perc, m_range, m_pdf, m_cdf, model,
log_level=logging.DEBUG, imt=imt, IMT_min=0.0, IMT_max=2.0, if use_pp:
rx_label=i) for i in iter] pbar = ProgressBar()
iml = dask.compute(*imls) pbar.register()
iml_grid_raw.append(list(iml)) # iter = range(0,len(distances))
iter = indices
iml_grid_raw = [] # raw ground motion grids
for imt in products:
logger.info(f"Estimating {imt}")
imls = [dask.delayed(compute_IMT_exceedance)(rx_lat[i], rx_lon[i], distances[i].flatten(), fr, p, lambdas,
forecast_len, lambdas_perc, m_range, m_pdf, m_cdf, model,
log_level=logging.DEBUG, imt=imt, IMT_min=0.0, IMT_max=2.0, rx_label=i,
rtol=0.1, use_cython=False) for i in iter]
iml = dask.compute(*imls)
iml_grid_raw.append(list(iml))
else:
iml_grid_raw = []
iter = indices
for imt in products:
iml = []
for i in iter:
iml_i = compute_IMT_exceedance(rx_lat[i], rx_lon[i], distances[i].flatten(), fr, p, lambdas, forecast_len,
lambdas_perc, m_range, m_pdf, m_cdf, model, imt=imt, IMT_min = 0.0,
IMT_max = 2.0, rx_label = i, rtol = 0.1, use_cython=False)
iml.append(iml_i)
logger.info(f"Estimated {imt} at rx {i} is {iml_i}")
iml_grid_raw.append(iml)
end = timer() end = timer()
logger.info(f"Ground motion exceedance computation time: {round(end - start, 1)} seconds") logger.info(f"Ground motion exceedance computation time: {round(end - start, 1)} seconds")
@ -486,6 +500,12 @@ verbose: {verbose}")
mode='reflect', anti_aliasing=False) mode='reflect', anti_aliasing=False)
iml_grid_hd[iml_grid_hd == 0.0] = np.nan # change zeroes back to nan iml_grid_hd[iml_grid_hd == 0.0] = np.nan # change zeroes back to nan
# trim edges so the grid is not so blocky
vmin_hd = min(x for x in iml_grid_hd.flatten() if not isnan(x))
vmax_hd = max(x for x in iml_grid_hd.flatten() if not isnan(x))
trim_thresh = vmin
iml_grid_hd[iml_grid_hd < trim_thresh] = np.nan
# generate image overlay # generate image overlay
north, south = lat.max(), lat.min() # Latitude range north, south = lat.max(), lat.min() # Latitude range
east, west = lon.max(), lon.min() # Longitude range east, west = lon.max(), lon.min() # Longitude range
@ -494,26 +514,18 @@ verbose: {verbose}")
map_center = [np.mean([north, south]), np.mean([east, west])] map_center = [np.mean([north, south]), np.mean([east, west])]
# Create an image from the grid # Create an image from the grid
cmap_name = 'viridis'
cmap = plt.get_cmap(cmap_name)
fig, ax = plt.subplots(figsize=(6, 6)) fig, ax = plt.subplots(figsize=(6, 6))
ax.imshow(iml_grid_hd, origin='lower', cmap='viridis') ax.imshow(iml_grid_hd, origin='lower', cmap=cmap, vmin=vmin, vmax=vmax)
ax.axis('off') ax.axis('off')
# Save the figure # Save the figure
fig.canvas.draw() fig.canvas.draw()
overlay_filename = f"overlay_{j}.svg" plt.savefig("overlay_" + str(j) + ".svg", bbox_inches="tight", pad_inches=0, transparent=True)
plt.savefig(overlay_filename, bbox_inches="tight", pad_inches=0, transparent=True)
plt.close(fig) plt.close(fig)
# Embed geographic bounding box into the SVG
map_bounds = dict(zip(("south", "west", "north", "east"),
map(float, (grid_lat_min, grid_lon_min, grid_lat_max, grid_lon_max))))
tree = ET.parse(overlay_filename)
tree.getroot().set("data-map-bounds", json.dumps(map_bounds))
tree.write(overlay_filename, encoding="utf-8", xml_declaration=True)
logger.info(f"Saved geographic bounds to SVG metadata (data-map-bounds): {overlay_filename} → {map_bounds}")
# Make the color bar # Make the color bar
cmap_name = 'viridis'
width = 50 width = 50
height = 500 height = 500
@ -523,14 +535,14 @@ verbose: {verbose}")
fig, ax = plt.subplots(figsize=((width + 40) / 100.0, (height + 20) / 100.0), fig, ax = plt.subplots(figsize=((width + 40) / 100.0, (height + 20) / 100.0),
dpi=100) # Increase fig size for labels dpi=100) # Increase fig size for labels
ax.imshow(gradient, aspect='auto', cmap=plt.get_cmap(cmap_name), ax.imshow(gradient, aspect='auto', cmap=cmap.reversed(),
extent=[0, 1, vmin, vmax]) # Note: extent order is different for vertical extent=[0, 1, vmin, vmax_hd]) # Note: extent order is different for vertical
ax.set_xticks([]) # Remove x-ticks for vertical colorbar ax.set_xticks([]) # Remove x-ticks for vertical colorbar
num_ticks = 11 # Show more ticks num_ticks = 11 # Show more ticks
tick_positions = np.linspace(vmin, vmax, num_ticks) tick_positions = np.linspace(vmin, vmax_hd, num_ticks)
ax.set_yticks(tick_positions) ax.set_yticks(tick_positions)
ax.set_yticklabels([f"{tick:.2f}" for tick in tick_positions]) # format tick labels ax.set_yticklabels([f"{tick:.2f}" for tick in tick_positions]) # format tick labels
ax.set_title(imt, pad=15) ax.set_title(products[j], pad=15)
fig.subplots_adjust(left=0.25, right=0.75, bottom=0.05, top=0.95) # Adjust Layout fig.subplots_adjust(left=0.25, right=0.75, bottom=0.05, top=0.95) # Adjust Layout
fig.savefig("colorbar_" + str(j) + ".svg", bbox_inches='tight') fig.savefig("colorbar_" + str(j) + ".svg", bbox_inches='tight')
plt.close(fig) plt.close(fig)