Compare commits

..

8 Commits

View File

@ -48,7 +48,7 @@ def main(catalog_file, mc_file, pdf_file, m_file, m_select, mag_label, mc, m_max
import logging
from base_logger import getDefaultLogger
from timeit import default_timer as timer
from math import ceil, floor
from math import ceil, floor, isnan
import numpy as np
import scipy
import obspy
@ -70,8 +70,6 @@ def main(catalog_file, mc_file, pdf_file, m_file, m_select, mag_label, mc, m_max
import matplotlib.pyplot as plt
from matplotlib.ticker import MultipleLocator
from matplotlib.contour import ContourSet
import xml.etree.ElementTree as ET
import json
logger = getDefaultLogger('igfash')
@ -241,9 +239,6 @@ verbose: {verbose}")
grid_y_max = int(ceil(y_max / grid_dim) * grid_dim)
grid_y_min = int(floor(y_min / grid_dim) * grid_dim)
grid_lat_max, grid_lon_max = utm.to_latlon(grid_x_max, grid_y_max, utm_zone_number, utm_zone_letter)
grid_lat_min, grid_lon_min = utm.to_latlon(grid_x_min, grid_y_min, utm_zone_number, utm_zone_letter)
# rectangular grid
nx = int((grid_x_max - grid_x_min) / grid_dim) + 1
ny = int((grid_y_max - grid_y_min) / grid_dim) + 1
@ -441,6 +436,10 @@ verbose: {verbose}")
# use dask parallel computing
start = timer()
use_pp = False
if use_pp:
pbar = ProgressBar()
pbar.register()
# iter = range(0,len(distances))
@ -451,10 +450,25 @@ verbose: {verbose}")
imls = [dask.delayed(compute_IMT_exceedance)(rx_lat[i], rx_lon[i], distances[i].flatten(), fr, p, lambdas,
forecast_len, lambdas_perc, m_range, m_pdf, m_cdf, model,
log_level=logging.DEBUG, imt=imt, IMT_min=0.0, IMT_max=2.0,
rx_label=i) for i in iter]
log_level=logging.DEBUG, imt=imt, IMT_min=0.0, IMT_max=2.0, rx_label=i,
rtol=0.1, use_cython=False) for i in iter]
iml = dask.compute(*imls)
iml_grid_raw.append(list(iml))
else:
iml_grid_raw = []
iter = indices
for imt in products:
iml = []
for i in iter:
iml_i = compute_IMT_exceedance(rx_lat[i], rx_lon[i], distances[i].flatten(), fr, p, lambdas, forecast_len,
lambdas_perc, m_range, m_pdf, m_cdf, model, imt=imt, IMT_min = 0.0,
IMT_max = 2.0, rx_label = i, rtol = 0.1, use_cython=False)
iml.append(iml_i)
logger.info(f"Estimated {imt} at rx {i} is {iml_i}")
iml_grid_raw.append(iml)
end = timer()
logger.info(f"Ground motion exceedance computation time: {round(end - start, 1)} seconds")
@ -486,6 +500,12 @@ verbose: {verbose}")
mode='reflect', anti_aliasing=False)
iml_grid_hd[iml_grid_hd == 0.0] = np.nan # change zeroes back to nan
# trim edges so the grid is not so blocky
vmin_hd = min(x for x in iml_grid_hd.flatten() if not isnan(x))
vmax_hd = max(x for x in iml_grid_hd.flatten() if not isnan(x))
trim_thresh = vmin
iml_grid_hd[iml_grid_hd < trim_thresh] = np.nan
# generate image overlay
north, south = lat.max(), lat.min() # Latitude range
east, west = lon.max(), lon.min() # Longitude range
@ -494,26 +514,18 @@ verbose: {verbose}")
map_center = [np.mean([north, south]), np.mean([east, west])]
# Create an image from the grid
cmap_name = 'viridis'
cmap = plt.get_cmap(cmap_name)
fig, ax = plt.subplots(figsize=(6, 6))
ax.imshow(iml_grid_hd, origin='lower', cmap='viridis')
ax.imshow(iml_grid_hd, origin='lower', cmap=cmap, vmin=vmin, vmax=vmax)
ax.axis('off')
# Save the figure
fig.canvas.draw()
overlay_filename = f"overlay_{j}.svg"
plt.savefig(overlay_filename, bbox_inches="tight", pad_inches=0, transparent=True)
plt.savefig("overlay_" + str(j) + ".svg", bbox_inches="tight", pad_inches=0, transparent=True)
plt.close(fig)
# Embed geographic bounding box into the SVG
map_bounds = dict(zip(("south", "west", "north", "east"),
map(float, (grid_lat_min, grid_lon_min, grid_lat_max, grid_lon_max))))
tree = ET.parse(overlay_filename)
tree.getroot().set("data-map-bounds", json.dumps(map_bounds))
tree.write(overlay_filename, encoding="utf-8", xml_declaration=True)
logger.info(f"Saved geographic bounds to SVG metadata (data-map-bounds): {overlay_filename} → {map_bounds}")
# Make the color bar
cmap_name = 'viridis'
width = 50
height = 500
@ -523,14 +535,14 @@ verbose: {verbose}")
fig, ax = plt.subplots(figsize=((width + 40) / 100.0, (height + 20) / 100.0),
dpi=100) # Increase fig size for labels
ax.imshow(gradient, aspect='auto', cmap=plt.get_cmap(cmap_name),
extent=[0, 1, vmin, vmax]) # Note: extent order is different for vertical
ax.imshow(gradient, aspect='auto', cmap=cmap.reversed(),
extent=[0, 1, vmin, vmax_hd]) # Note: extent order is different for vertical
ax.set_xticks([]) # Remove x-ticks for vertical colorbar
num_ticks = 11 # Show more ticks
tick_positions = np.linspace(vmin, vmax, num_ticks)
tick_positions = np.linspace(vmin, vmax_hd, num_ticks)
ax.set_yticks(tick_positions)
ax.set_yticklabels([f"{tick:.2f}" for tick in tick_positions]) # format tick labels
ax.set_title(imt, pad=15)
ax.set_title(products[j], pad=15)
fig.subplots_adjust(left=0.25, right=0.75, bottom=0.05, top=0.95) # Adjust Layout
fig.savefig("colorbar_" + str(j) + ".svg", bbox_inches='tight')
plt.close(fig)