|
|
@@ -17,7 +17,7 @@ def main(catalog_file, mc_file, pdf_file, m_file, m_select, mag_label, mc, m_max
|
|
|
|
then the program looks for a label of 'Mw' for magnitude in the catalog
|
|
|
|
then the program looks for a label of 'Mw' for magnitude in the catalog
|
|
|
|
mc: The magnitude of completeness (Mc) of the catalog
|
|
|
|
mc: The magnitude of completeness (Mc) of the catalog
|
|
|
|
m_max:M_max. The magnitude distribution is estimated for the range from Mc to M_max. If no value is provided,
|
|
|
|
m_max:M_max. The magnitude distribution is estimated for the range from Mc to M_max. If no value is provided,
|
|
|
|
then the program sets M_max to be 3 magnitude units above the maximum magnitude value in the catalog.
|
|
|
|
then the program sets M_max to be 1 magnitude units above the maximum magnitude value in the catalog.
|
|
|
|
m_kde_method: The kernel density estimator to use.
|
|
|
|
m_kde_method: The kernel density estimator to use.
|
|
|
|
xy_select: If True, perform an estimation of the magnitude distribution using KDE with the chosen KDE method
|
|
|
|
xy_select: If True, perform an estimation of the magnitude distribution using KDE with the chosen KDE method
|
|
|
|
grid_dim: The grid cell size (in metres) of the final ground motion product map. A smaller cell size will
|
|
|
|
grid_dim: The grid cell size (in metres) of the final ground motion product map. A smaller cell size will
|
|
|
@@ -45,22 +45,19 @@ def main(catalog_file, mc_file, pdf_file, m_file, m_select, mag_label, mc, m_max
|
|
|
|
"""
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
|
|
import sys
|
|
|
|
import sys
|
|
|
|
|
|
|
|
from importlib.metadata import version
|
|
|
|
import logging
|
|
|
|
import logging
|
|
|
|
from base_logger import getDefaultLogger
|
|
|
|
from base_logger import getDefaultLogger
|
|
|
|
from timeit import default_timer as timer
|
|
|
|
from timeit import default_timer as timer
|
|
|
|
from math import ceil, floor
|
|
|
|
from math import ceil, floor, isnan
|
|
|
|
import numpy as np
|
|
|
|
import numpy as np
|
|
|
|
import scipy
|
|
|
|
|
|
|
|
import obspy
|
|
|
|
|
|
|
|
import dask
|
|
|
|
import dask
|
|
|
|
from dask.diagnostics import ProgressBar # use Dask progress bar
|
|
|
|
from dask.diagnostics import ProgressBar # use Dask progress bar
|
|
|
|
import kalepy as kale
|
|
|
|
import kalepy as kale
|
|
|
|
import utm
|
|
|
|
import utm
|
|
|
|
from skimage.transform import resize
|
|
|
|
from skimage.transform import resize
|
|
|
|
import psutil
|
|
|
|
|
|
|
|
import openquake.engine
|
|
|
|
|
|
|
|
import igfash
|
|
|
|
import igfash
|
|
|
|
from igfash.io import read_mat_cat, read_mat_m, read_mat_pdf, read_csv
|
|
|
|
from igfash.io import read_mat_cat, read_mat_m, read_mat_mc, read_mat_pdf, read_csv
|
|
|
|
from igfash.window import win_CTL, win_CNE
|
|
|
|
from igfash.window import win_CTL, win_CNE
|
|
|
|
import igfash.kde as kde
|
|
|
|
import igfash.kde as kde
|
|
|
|
from igfash.gm import compute_IMT_exceedance
|
|
|
|
from igfash.gm import compute_IMT_exceedance
|
|
|
@@ -70,6 +67,8 @@ def main(catalog_file, mc_file, pdf_file, m_file, m_select, mag_label, mc, m_max
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
from matplotlib.ticker import MultipleLocator
|
|
|
|
from matplotlib.ticker import MultipleLocator
|
|
|
|
from matplotlib.contour import ContourSet
|
|
|
|
from matplotlib.contour import ContourSet
|
|
|
|
|
|
|
|
import xml.etree.ElementTree as ET
|
|
|
|
|
|
|
|
import json
|
|
|
|
|
|
|
|
|
|
|
|
logger = getDefaultLogger('igfash')
|
|
|
|
logger = getDefaultLogger('igfash')
|
|
|
|
|
|
|
|
|
|
|
@@ -82,6 +81,7 @@ def main(catalog_file, mc_file, pdf_file, m_file, m_select, mag_label, mc, m_max
|
|
|
|
m_range = [None]
|
|
|
|
m_range = [None]
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|
m_range = read_mat_m(m_file)
|
|
|
|
m_range = read_mat_m(m_file)
|
|
|
|
|
|
|
|
m_max = m_range[-1] # take m_max from the m_file
|
|
|
|
|
|
|
|
|
|
|
|
if verbose:
|
|
|
|
if verbose:
|
|
|
|
logger.setLevel(logging.DEBUG)
|
|
|
|
logger.setLevel(logging.DEBUG)
|
|
|
@@ -103,25 +103,13 @@ verbose: {verbose}")
|
|
|
|
|
|
|
|
|
|
|
|
# print key package version numbers
|
|
|
|
# print key package version numbers
|
|
|
|
logger.debug(f"Python version {sys.version}")
|
|
|
|
logger.debug(f"Python version {sys.version}")
|
|
|
|
logger.debug(f"Numpy version {np.__version__}")
|
|
|
|
logger.debug(f"Numpy version {version('numpy')}")
|
|
|
|
logger.debug(f"Scipy version {scipy.__version__}")
|
|
|
|
logger.debug(f"Scipy version {version('scipy')}")
|
|
|
|
logger.debug(f"Obspy version {obspy.__version__}")
|
|
|
|
logger.debug(f"Obspy version {version('obspy')}")
|
|
|
|
logger.debug(f"Openquake version {openquake.engine.__version__}")
|
|
|
|
logger.debug(f"Openquake version {version('openquake.engine')}")
|
|
|
|
logger.debug(f"Igfash version {igfash.__version__}")
|
|
|
|
logger.debug(f"Igfash version {version('igfash')}")
|
|
|
|
|
|
|
|
logger.debug(f"Rbeast version {version('rbeast')}")
|
|
|
|
# print number of cpu cores available
|
|
|
|
logger.debug(f"Dask version {version('dask')}")
|
|
|
|
ncpu = psutil.cpu_count(logical=False)
|
|
|
|
|
|
|
|
logger.debug(f"Number of cpu cores available: {ncpu}")
|
|
|
|
|
|
|
|
for process in psutil.process_iter():
|
|
|
|
|
|
|
|
with process.oneshot():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# cpu = process.cpu_percent()
|
|
|
|
|
|
|
|
cpu = process.cpu_percent() / ncpu
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if cpu > 1:
|
|
|
|
|
|
|
|
logger.debug(f"{process.name()}, {cpu}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
logger.debug(f"BASELINE CPU LOAD% {psutil.cpu_percent(interval=None, percpu=True)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dask.config.set(scheduler='processes')
|
|
|
|
dask.config.set(scheduler='processes')
|
|
|
|
|
|
|
|
|
|
|
@@ -143,12 +131,18 @@ verbose: {verbose}")
|
|
|
|
|
|
|
|
|
|
|
|
time, mag, lat, lon, depth = read_mat_cat(catalog_file, mag_label=mag_label, catalog_label='Catalog')
|
|
|
|
time, mag, lat, lon, depth = read_mat_cat(catalog_file, mag_label=mag_label, catalog_label='Catalog')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# check for null magnitude values
|
|
|
|
|
|
|
|
m_null_idx = np.where(np.isnan(mag))[0]
|
|
|
|
|
|
|
|
if len(m_null_idx) > 0:
|
|
|
|
|
|
|
|
msg = f"There are null values in the magnitude column of the catalog at indices {m_null_idx}"
|
|
|
|
|
|
|
|
logger.error(msg)
|
|
|
|
|
|
|
|
raise Exception(msg)
|
|
|
|
if mc != None:
|
|
|
|
if mc != None:
|
|
|
|
logger.info("Mc value provided by user")
|
|
|
|
logger.info("Mc value provided by user")
|
|
|
|
trim_to_mc = True
|
|
|
|
trim_to_mc = True
|
|
|
|
elif mc_file != None:
|
|
|
|
elif mc_file != None:
|
|
|
|
logger.info("Mc estimation output file provided; selecting largest Mc from the list")
|
|
|
|
logger.info("Mc estimation output file provided; selecting largest Mc from the list")
|
|
|
|
mc = read_mc(mc_file)
|
|
|
|
mc = read_mat_mc(mc_file)
|
|
|
|
trim_to_mc = True
|
|
|
|
trim_to_mc = True
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|
logger.info("No Mc provided; using all magnitudes from the catalog")
|
|
|
|
logger.info("No Mc provided; using all magnitudes from the catalog")
|
|
|
@@ -164,9 +158,10 @@ verbose: {verbose}")
|
|
|
|
lat = np.delete(lat, indices)
|
|
|
|
lat = np.delete(lat, indices)
|
|
|
|
lon = np.delete(lon, indices)
|
|
|
|
lon = np.delete(lon, indices)
|
|
|
|
|
|
|
|
|
|
|
|
# if user does not provide a m_max, set m_max to 3 magnitude units above max magnitude in catalog
|
|
|
|
# if user does not provide a m_max, set m_max to 1 magnitude unit above max magnitude in catalog
|
|
|
|
if m_max == None:
|
|
|
|
if m_max == None:
|
|
|
|
m_max = mag.max() + 3.0
|
|
|
|
m_max = mag.max() + 1.0
|
|
|
|
|
|
|
|
logger.info(f"No m_max was given. Therefore m_max is automatically set to: {m_max}")
|
|
|
|
|
|
|
|
|
|
|
|
start = timer()
|
|
|
|
start = timer()
|
|
|
|
|
|
|
|
|
|
|
@@ -231,14 +226,15 @@ verbose: {verbose}")
|
|
|
|
y_min = y.min()
|
|
|
|
y_min = y.min()
|
|
|
|
x_max = x.max()
|
|
|
|
x_max = x.max()
|
|
|
|
y_max = y.max()
|
|
|
|
y_max = y.max()
|
|
|
|
z_min = depth.min()
|
|
|
|
|
|
|
|
z_max = depth.max()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
grid_x_max = int(ceil(x_max / grid_dim) * grid_dim)
|
|
|
|
grid_x_max = int(ceil(x_max / grid_dim) * grid_dim)
|
|
|
|
grid_x_min = int(floor(x_min / grid_dim) * grid_dim)
|
|
|
|
grid_x_min = int(floor(x_min / grid_dim) * grid_dim)
|
|
|
|
grid_y_max = int(ceil(y_max / grid_dim) * grid_dim)
|
|
|
|
grid_y_max = int(ceil(y_max / grid_dim) * grid_dim)
|
|
|
|
grid_y_min = int(floor(y_min / grid_dim) * grid_dim)
|
|
|
|
grid_y_min = int(floor(y_min / grid_dim) * grid_dim)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
grid_lat_max, grid_lon_max = utm.to_latlon(grid_x_max, grid_y_max, utm_zone_number, utm_zone_letter)
|
|
|
|
|
|
|
|
grid_lat_min, grid_lon_min = utm.to_latlon(grid_x_min, grid_y_min, utm_zone_number, utm_zone_letter)
|
|
|
|
|
|
|
|
|
|
|
|
# rectangular grid
|
|
|
|
# rectangular grid
|
|
|
|
nx = int((grid_x_max - grid_x_min) / grid_dim) + 1
|
|
|
|
nx = int((grid_x_max - grid_x_min) / grid_dim) + 1
|
|
|
|
ny = int((grid_y_max - grid_y_min) / grid_dim) + 1
|
|
|
|
ny = int((grid_y_max - grid_y_min) / grid_dim) + 1
|
|
|
@@ -325,8 +321,8 @@ verbose: {verbose}")
|
|
|
|
lambdas = [None]
|
|
|
|
lambdas = [None]
|
|
|
|
if custom_rate != None and forecast_select:
|
|
|
|
if custom_rate != None and forecast_select:
|
|
|
|
logger.info(f"Using activity rate specified by user: {custom_rate} per {time_unit}")
|
|
|
|
logger.info(f"Using activity rate specified by user: {custom_rate} per {time_unit}")
|
|
|
|
lambdas = [custom_rate]
|
|
|
|
lambdas = np.array([custom_rate], dtype='d')
|
|
|
|
lambdas_perc = [1]
|
|
|
|
lambdas_perc = np.array([1], dtype='d')
|
|
|
|
|
|
|
|
|
|
|
|
elif rate_select:
|
|
|
|
elif rate_select:
|
|
|
|
logger.info(f"Activity rate modeling selected")
|
|
|
|
logger.info(f"Activity rate modeling selected")
|
|
|
@@ -344,6 +340,12 @@ verbose: {verbose}")
|
|
|
|
elif time_unit == 'years':
|
|
|
|
elif time_unit == 'years':
|
|
|
|
multiplicator = 1 / 365
|
|
|
|
multiplicator = 1 / 365
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Raise an exception when time_win_duration from the user is too large relative to the catalog
|
|
|
|
|
|
|
|
if time_win_duration/multiplicator > 0.5*(time[-1] - time[0]):
|
|
|
|
|
|
|
|
msg = "Activity rate estimation time window must be less than half the catalog length. Use a shorter time window."
|
|
|
|
|
|
|
|
logger.error(msg)
|
|
|
|
|
|
|
|
raise Exception(msg)
|
|
|
|
|
|
|
|
|
|
|
|
# Selects dates in datenum format and procceeds to forecast value
|
|
|
|
# Selects dates in datenum format and procceeds to forecast value
|
|
|
|
start_date = datenum_data[-1] - (2 * time_win_duration / multiplicator)
|
|
|
|
start_date = datenum_data[-1] - (2 * time_win_duration / multiplicator)
|
|
|
|
dates_calc = [date for date in datenum_data if start_date <= date <= datenum_data[-1]]
|
|
|
|
dates_calc = [date for date in datenum_data if start_date <= date <= datenum_data[-1]]
|
|
|
@@ -360,7 +362,7 @@ verbose: {verbose}")
|
|
|
|
act_rate, bin_counts, bin_edges, out, pprs, rt, idx, u_e = calc_bins(np.array(datenum_data), time_unit,
|
|
|
|
act_rate, bin_counts, bin_edges, out, pprs, rt, idx, u_e = calc_bins(np.array(datenum_data), time_unit,
|
|
|
|
time_win_duration, dates_calc,
|
|
|
|
time_win_duration, dates_calc,
|
|
|
|
rate_forecast, rate_unc_high, rate_unc_low,
|
|
|
|
rate_forecast, rate_unc_high, rate_unc_low,
|
|
|
|
multiplicator, quiet=True)
|
|
|
|
multiplicator, quiet=True, figsize=(14,9))
|
|
|
|
|
|
|
|
|
|
|
|
# Assign probabilities
|
|
|
|
# Assign probabilities
|
|
|
|
lambdas, lambdas_perc = lambda_probs(act_rate, dates_calc, bin_edges)
|
|
|
|
lambdas, lambdas_perc = lambda_probs(act_rate, dates_calc, bin_edges)
|
|
|
@@ -372,18 +374,29 @@ verbose: {verbose}")
|
|
|
|
|
|
|
|
|
|
|
|
if forecast_select:
|
|
|
|
if forecast_select:
|
|
|
|
products = products_string.split()
|
|
|
|
products = products_string.split()
|
|
|
|
logger.info(
|
|
|
|
logger.info(f"Ground motion forecasting selected with ground motion model {model} and IMT products {products_string}")
|
|
|
|
f"Ground motion forecasting selected with ground motion model {model} and IMT products {products_string}")
|
|
|
|
|
|
|
|
|
|
|
|
# validate m_max against the grond motion model
|
|
|
|
|
|
|
|
models_anthro_limited = ['Lasocki2013', 'Atkinson2015', 'ConvertitoEtAl2012Geysers'] # these models require that m_max<=4.5
|
|
|
|
|
|
|
|
if m_max > 4.5 and model in models_anthro_limited:
|
|
|
|
|
|
|
|
if m_file is None:
|
|
|
|
|
|
|
|
msg = f"The selected ground motion model {model} is only valid for magnitudes up to 4.5. Please select a lower maximum magnitude."
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
msg = f"The selected ground motion model {model} is only valid for magnitudes up to 4.5, but the provided magnitude file includes values up to {m_max}. Please adjust the magnitude range in the file accordingly."
|
|
|
|
|
|
|
|
logger.error(msg)
|
|
|
|
|
|
|
|
raise Exception(msg)
|
|
|
|
|
|
|
|
|
|
|
|
if not xy_select:
|
|
|
|
if not xy_select:
|
|
|
|
msg = "Event location distribution modeling was not selected; cannot continue..."
|
|
|
|
msg = "Event location distribution modeling was not selected; cannot continue..."
|
|
|
|
logger.error(msg)
|
|
|
|
logger.error(msg)
|
|
|
|
raise Exception(msg)
|
|
|
|
raise Exception(msg)
|
|
|
|
elif m_pdf[0] == None:
|
|
|
|
|
|
|
|
|
|
|
|
if m_pdf[0] == None:
|
|
|
|
msg = "Magnitude distribution modeling was not selected and magnitude PDF file was not provided; cannot continue..."
|
|
|
|
msg = "Magnitude distribution modeling was not selected and magnitude PDF file was not provided; cannot continue..."
|
|
|
|
logger.error(msg)
|
|
|
|
logger.error(msg)
|
|
|
|
raise Exception(msg)
|
|
|
|
raise Exception(msg)
|
|
|
|
elif lambdas[0] == None:
|
|
|
|
|
|
|
|
|
|
|
|
if lambdas[0] == None:
|
|
|
|
msg = "Activity rate modeling was not selected and custom activity rate was not provided; cannot continue..."
|
|
|
|
msg = "Activity rate modeling was not selected and custom activity rate was not provided; cannot continue..."
|
|
|
|
logger.error(msg)
|
|
|
|
logger.error(msg)
|
|
|
|
raise Exception(msg)
|
|
|
|
raise Exception(msg)
|
|
|
@@ -421,7 +434,10 @@ verbose: {verbose}")
|
|
|
|
rx_lat[i], rx_lon[i] = utm.to_latlon(x_rx[i], y_rx[i], utm_zone_number,
|
|
|
|
rx_lat[i], rx_lon[i] = utm.to_latlon(x_rx[i], y_rx[i], utm_zone_number,
|
|
|
|
utm_zone_letter) # get receiver location as lat,lon
|
|
|
|
utm_zone_letter) # get receiver location as lat,lon
|
|
|
|
|
|
|
|
|
|
|
|
# experimental - compute ground motion only at grid points that have minimum probability density of thresh_fxy
|
|
|
|
# convert distances from m to km because openquake ground motion models take input distances in kilometres
|
|
|
|
|
|
|
|
distances = distances/1000.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# compute ground motion only at grid points that have minimum probability density of thresh_fxy
|
|
|
|
if exclude_low_fxy:
|
|
|
|
if exclude_low_fxy:
|
|
|
|
indices = list(np.where(fxy.flatten() > thresh_fxy)[0])
|
|
|
|
indices = list(np.where(fxy.flatten() > thresh_fxy)[0])
|
|
|
|
else:
|
|
|
|
else:
|
|
|
@@ -434,25 +450,47 @@ verbose: {verbose}")
|
|
|
|
|
|
|
|
|
|
|
|
PGA = np.zeros(shape=(nx * ny))
|
|
|
|
PGA = np.zeros(shape=(nx * ny))
|
|
|
|
|
|
|
|
|
|
|
|
# use dask parallel computing
|
|
|
|
|
|
|
|
start = timer()
|
|
|
|
start = timer()
|
|
|
|
pbar = ProgressBar()
|
|
|
|
|
|
|
|
pbar.register()
|
|
|
|
|
|
|
|
# iter = range(0,len(distances))
|
|
|
|
|
|
|
|
iter = indices
|
|
|
|
|
|
|
|
iml_grid_raw = [] # raw ground motion grids
|
|
|
|
|
|
|
|
for imt in products:
|
|
|
|
|
|
|
|
logger.info(f"Estimating {imt}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
imls = [dask.delayed(compute_IMT_exceedance)(rx_lat[i], rx_lon[i], distances[i].flatten(), fr, p, lambdas,
|
|
|
|
use_pp = False
|
|
|
|
forecast_len, lambdas_perc, m_range, m_pdf, m_cdf, model,
|
|
|
|
|
|
|
|
log_level=logging.DEBUG, imt=imt, IMT_min=0.0, IMT_max=2.0,
|
|
|
|
if use_pp: # use dask parallel computing
|
|
|
|
rx_label=i) for i in iter]
|
|
|
|
pbar = ProgressBar()
|
|
|
|
iml = dask.compute(*imls)
|
|
|
|
pbar.register()
|
|
|
|
iml_grid_raw.append(list(iml))
|
|
|
|
# iter = range(0,len(distances))
|
|
|
|
|
|
|
|
iter = indices
|
|
|
|
|
|
|
|
iml_grid_raw = [] # raw ground motion grids
|
|
|
|
|
|
|
|
for imt in products:
|
|
|
|
|
|
|
|
logger.info(f"Estimating {imt}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
imls = [dask.delayed(compute_IMT_exceedance)(rx_lat[i], rx_lon[i], distances[i].flatten(), fr, p, lambdas,
|
|
|
|
|
|
|
|
forecast_len, lambdas_perc, m_range, m_pdf, m_cdf, model,
|
|
|
|
|
|
|
|
log_level=logging.DEBUG, imt=imt, IMT_min=0.0, IMT_max=2.0, rx_label=i,
|
|
|
|
|
|
|
|
rtol=0.1, use_cython=True) for i in iter]
|
|
|
|
|
|
|
|
iml = dask.compute(*imls)
|
|
|
|
|
|
|
|
iml_grid_raw.append(list(iml))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
iml_grid_raw = []
|
|
|
|
|
|
|
|
iter = indices
|
|
|
|
|
|
|
|
for imt in products:
|
|
|
|
|
|
|
|
iml = []
|
|
|
|
|
|
|
|
for i in iter:
|
|
|
|
|
|
|
|
iml_i = compute_IMT_exceedance(rx_lat[i], rx_lon[i], distances[i].flatten(), fr, p, lambdas, forecast_len,
|
|
|
|
|
|
|
|
lambdas_perc, m_range, m_pdf, m_cdf, model, imt=imt, IMT_min = 0.0,
|
|
|
|
|
|
|
|
IMT_max = 2.0, rx_label = i, rtol = 0.1, use_cython=True)
|
|
|
|
|
|
|
|
iml.append(iml_i)
|
|
|
|
|
|
|
|
logger.info(f"Estimated {imt} at rx {i} is {iml_i}")
|
|
|
|
|
|
|
|
iml_grid_raw.append(iml)
|
|
|
|
|
|
|
|
|
|
|
|
end = timer()
|
|
|
|
end = timer()
|
|
|
|
logger.info(f"Ground motion exceedance computation time: {round(end - start, 1)} seconds")
|
|
|
|
logger.info(f"Ground motion exceedance computation time: {round(end - start, 1)} seconds")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if np.isnan(iml_grid_raw).all():
|
|
|
|
|
|
|
|
msg = "No valid ground motion intensity measures were forecasted. Try a different ground motion model."
|
|
|
|
|
|
|
|
logger.error(msg)
|
|
|
|
|
|
|
|
raise Exception(msg)
|
|
|
|
|
|
|
|
|
|
|
|
# create list of one empty list for each imt
|
|
|
|
# create list of one empty list for each imt
|
|
|
|
iml_grid = [[] for _ in range(len(products))] # final ground motion grids
|
|
|
|
iml_grid = [[] for _ in range(len(products))] # final ground motion grids
|
|
|
|
iml_grid_prep = iml_grid.copy() # temp ground motion grids
|
|
|
|
iml_grid_prep = iml_grid.copy() # temp ground motion grids
|
|
|
@@ -481,6 +519,12 @@ verbose: {verbose}")
|
|
|
|
mode='reflect', anti_aliasing=False)
|
|
|
|
mode='reflect', anti_aliasing=False)
|
|
|
|
iml_grid_hd[iml_grid_hd == 0.0] = np.nan # change zeroes back to nan
|
|
|
|
iml_grid_hd[iml_grid_hd == 0.0] = np.nan # change zeroes back to nan
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# trim edges so the grid is not so blocky
|
|
|
|
|
|
|
|
vmin_hd = min(x for x in iml_grid_hd.flatten() if not isnan(x))
|
|
|
|
|
|
|
|
vmax_hd = max(x for x in iml_grid_hd.flatten() if not isnan(x))
|
|
|
|
|
|
|
|
trim_thresh = vmin
|
|
|
|
|
|
|
|
iml_grid_hd[iml_grid_hd < trim_thresh] = np.nan
|
|
|
|
|
|
|
|
|
|
|
|
# generate image overlay
|
|
|
|
# generate image overlay
|
|
|
|
north, south = lat.max(), lat.min() # Latitude range
|
|
|
|
north, south = lat.max(), lat.min() # Latitude range
|
|
|
|
east, west = lon.max(), lon.min() # Longitude range
|
|
|
|
east, west = lon.max(), lon.min() # Longitude range
|
|
|
@@ -489,17 +533,27 @@ verbose: {verbose}")
|
|
|
|
map_center = [np.mean([north, south]), np.mean([east, west])]
|
|
|
|
map_center = [np.mean([north, south]), np.mean([east, west])]
|
|
|
|
|
|
|
|
|
|
|
|
# Create an image from the grid
|
|
|
|
# Create an image from the grid
|
|
|
|
|
|
|
|
cmap_name = 'YlOrRd'
|
|
|
|
|
|
|
|
cmap = plt.get_cmap(cmap_name)
|
|
|
|
fig, ax = plt.subplots(figsize=(6, 6))
|
|
|
|
fig, ax = plt.subplots(figsize=(6, 6))
|
|
|
|
ax.imshow(iml_grid_hd, origin='lower', cmap='viridis')
|
|
|
|
ax.imshow(iml_grid_hd, origin='lower', cmap=cmap, vmin=vmin, vmax=vmax)
|
|
|
|
ax.axis('off')
|
|
|
|
ax.axis('off')
|
|
|
|
|
|
|
|
|
|
|
|
# Save the figure
|
|
|
|
# Save the figure
|
|
|
|
fig.canvas.draw()
|
|
|
|
fig.canvas.draw()
|
|
|
|
plt.savefig("overlay_" + str(j) + ".svg", bbox_inches="tight", pad_inches=0, transparent=True)
|
|
|
|
overlay_filename = f"overlay_{j}.svg"
|
|
|
|
|
|
|
|
plt.savefig(overlay_filename, bbox_inches="tight", pad_inches=0, transparent=True)
|
|
|
|
plt.close(fig)
|
|
|
|
plt.close(fig)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Embed geographic bounding box into the SVG
|
|
|
|
|
|
|
|
map_bounds = dict(zip(("south", "west", "north", "east"),
|
|
|
|
|
|
|
|
map(float, (grid_lat_min, grid_lon_min, grid_lat_max, grid_lon_max))))
|
|
|
|
|
|
|
|
tree = ET.parse(overlay_filename)
|
|
|
|
|
|
|
|
tree.getroot().set("data-map-bounds", json.dumps(map_bounds))
|
|
|
|
|
|
|
|
tree.write(overlay_filename, encoding="utf-8", xml_declaration=True)
|
|
|
|
|
|
|
|
logger.info(f"Saved geographic bounds to SVG metadata (data-map-bounds): {overlay_filename} → {map_bounds}")
|
|
|
|
|
|
|
|
|
|
|
|
# Make the color bar
|
|
|
|
# Make the color bar
|
|
|
|
cmap_name = 'viridis'
|
|
|
|
|
|
|
|
width = 50
|
|
|
|
width = 50
|
|
|
|
height = 500
|
|
|
|
height = 500
|
|
|
|
|
|
|
|
|
|
|
@@ -507,16 +561,20 @@ verbose: {verbose}")
|
|
|
|
gradient = np.vstack((gradient, gradient)).T
|
|
|
|
gradient = np.vstack((gradient, gradient)).T
|
|
|
|
gradient = np.tile(gradient, (1, width))
|
|
|
|
gradient = np.tile(gradient, (1, width))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
colorbar_title = products[j]
|
|
|
|
|
|
|
|
if "PGA" in colorbar_title or "SA" in colorbar_title:
|
|
|
|
|
|
|
|
colorbar_title = colorbar_title + " (g)"
|
|
|
|
|
|
|
|
|
|
|
|
fig, ax = plt.subplots(figsize=((width + 40) / 100.0, (height + 20) / 100.0),
|
|
|
|
fig, ax = plt.subplots(figsize=((width + 40) / 100.0, (height + 20) / 100.0),
|
|
|
|
dpi=100) # Increase fig size for labels
|
|
|
|
dpi=100) # Increase fig size for labels
|
|
|
|
ax.imshow(gradient, aspect='auto', cmap=plt.get_cmap(cmap_name),
|
|
|
|
ax.imshow(gradient, aspect='auto', cmap=cmap.reversed(),
|
|
|
|
extent=[0, 1, vmin, vmax]) # Note: extent order is different for vertical
|
|
|
|
extent=[0, 1, vmin, vmax_hd]) # Note: extent order is different for vertical
|
|
|
|
ax.set_xticks([]) # Remove x-ticks for vertical colorbar
|
|
|
|
ax.set_xticks([]) # Remove x-ticks for vertical colorbar
|
|
|
|
num_ticks = 11 # Show more ticks
|
|
|
|
num_ticks = 11 # Show more ticks
|
|
|
|
tick_positions = np.linspace(vmin, vmax, num_ticks)
|
|
|
|
tick_positions = np.linspace(vmin, vmax_hd, num_ticks)
|
|
|
|
ax.set_yticks(tick_positions)
|
|
|
|
ax.set_yticks(tick_positions)
|
|
|
|
ax.set_yticklabels([f"{tick:.2f}" for tick in tick_positions]) # format tick labels
|
|
|
|
ax.set_yticklabels([f"{tick:.2f}" for tick in tick_positions]) # format tick labels
|
|
|
|
ax.set_title(imt, pad=15)
|
|
|
|
ax.set_title(colorbar_title, loc='right', pad=15)
|
|
|
|
fig.subplots_adjust(left=0.25, right=0.75, bottom=0.05, top=0.95) # Adjust Layout
|
|
|
|
fig.subplots_adjust(left=0.25, right=0.75, bottom=0.05, top=0.95) # Adjust Layout
|
|
|
|
fig.savefig("colorbar_" + str(j) + ".svg", bbox_inches='tight')
|
|
|
|
fig.savefig("colorbar_" + str(j) + ".svg", bbox_inches='tight')
|
|
|
|
plt.close(fig)
|
|
|
|
plt.close(fig)
|
|
|
|