523 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			523 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # -*- coding: utf-8 -*-
 | |
| 
 | |
| 
 | |
| def main(catalog_file, mc_file, pdf_file, m_file, m_select, mag_label, mc, m_max,
 | |
|          m_kde_method, xy_select, grid_dim, xy_win_method, rate_select, time_win_duration,
 | |
|          forecast_select, custom_rate, forecast_len, time_unit, model, products_string, verbose):
 | |
|     """
 | |
|     Python application that reads an earthquake catalog and performs seismic hazard forecasting.
 | |
|     Arguments:
 | |
|         catalog_file: Path to input file of type 'catalog'
 | |
|         mc_file: Path to input file of type 'mccalc_output'
 | |
|         pdf_file: Path to input file of type 'PDF'
 | |
|         m_file: Path to input file of type 'm'
 | |
|         m_select: If True, perform an estimation of the magnitude distribution using KDE with the chosen KDE method
 | |
|         mag_label: The name of the column corresponding to magnitude in the catalog. Different catalogs can have
 | |
|                     different magnitude labels and sometimes more than one magnitude column. If no value is provided,
 | |
|                     then the program looks for a label of 'Mw' for magnitude in the catalog
 | |
|         mc: The magnitude of completeness (Mc) of the catalog
 | |
|         m_max:M_max. The magnitude distribution is estimated for the range from Mc to M_max. If no value is provided,
 | |
|                     then the program sets M_max to be 3 magnitude units above the maximum magnitude value in the catalog.
 | |
|         m_kde_method: The kernel density estimator to use.
 | |
|         xy_select: If True, perform an estimation of the magnitude distribution using KDE with the chosen KDE method
 | |
|         grid_dim: The grid cell size (in metres) of the final ground motion product map. A smaller cell size will
 | |
|                     allow for a higher resolution at the cost of computation time.
 | |
|         xy_win_method: If True, use an exponential time weighting function to give more weight to recent earthquakes
 | |
|                     when performing the location distribution estimation.
 | |
|         rate_select: If True, estimate the activity rate of the catalog using the Rbeast package.
 | |
|         time_win_duration: The time window to use in estimating the activity rate. The units are specified in the
 | |
|                     'Time units' input further down.
 | |
|         forecast_select: If True, forecast the seismic hazard for the time period of Forecast length and produce
 | |
|                     a seismic hazard map of the selected Ground Motion Products
 | |
|         custom_rate: The user has the option of providing a single value activity rate of the catalog to be used in
 | |
|                     forecasting.
 | |
|         forecast_len: Length of the forecast for seismic hazard assessment.
 | |
|         time_unit: Times units for the inputs Time Window Duration, Custom Activity Rate, and Forecast Length.
 | |
|         model: Select from the following ground motion models available. Other models in the Openquake library are
 | |
|                     available but have not yet been tested.
 | |
|         products_string: The ground motion intensity types to output. Use a space between names to select more than
 | |
|                     one. E.g. “PGA SA(1.0) SA(10)”
 | |
|         verbose: If True, will increase the amount of details in the log file.
 | |
|         ...
 | |
|     Returns:
 | |
|         SVG file image overlays for display in Google Maps.
 | |
|         ...
 | |
|     """
 | |
| 
 | |
|     import sys
 | |
|     import logging
 | |
|     from base_logger import getDefaultLogger
 | |
|     from timeit import default_timer as timer
 | |
|     from math import ceil, floor
 | |
|     import numpy as np
 | |
|     import scipy
 | |
|     import obspy
 | |
|     import dask
 | |
|     from dask.diagnostics import ProgressBar  # use Dask progress bar
 | |
|     import kalepy as kale
 | |
|     import utm
 | |
|     from skimage.transform import resize
 | |
|     import psutil
 | |
|     import openquake.engine
 | |
|     import igfash
 | |
|     from igfash.io import read_mat_cat, read_mat_m, read_mat_pdf, read_csv
 | |
|     from igfash.window import win_CTL, win_CNE
 | |
|     import igfash.kde as kde
 | |
|     from igfash.gm import compute_IMT_exceedance
 | |
|     from igfash.compute import get_cdf, hellinger_dist, cols_to_rows
 | |
|     from igfash.rate import lambda_probs, calc_bins, bootstrap_forecast_rolling
 | |
|     from igfash.mc import estimate_mc
 | |
|     import matplotlib.pyplot as plt
 | |
|     from matplotlib.ticker import MultipleLocator
 | |
|     from matplotlib.contour import ContourSet
 | |
| 
 | |
|     logger = getDefaultLogger('igfash')
 | |
| 
 | |
|     if pdf_file is None:  # magnitude PDF file provided
 | |
|         m_pdf = [None]
 | |
|     else:
 | |
|         m_pdf = read_mat_pdf(pdf_file)
 | |
| 
 | |
|     if m_file is None:  # magnitude range file provided
 | |
|         m_range = [None]
 | |
|     else:
 | |
|         m_range = read_mat_m(m_file)
 | |
| 
 | |
|     if verbose:
 | |
|         logger.setLevel(logging.DEBUG)
 | |
|     else:
 | |
|         logger.setLevel(logging.INFO)
 | |
| 
 | |
|     # temporary hard-coded configuration
 | |
|     # exclude_low_fxy = False
 | |
|     exclude_low_fxy = True
 | |
|     thresh_fxy = 1e-3  # minimum fxy value (location PDF) needed to do PGA estimation (to skip low probability areas); also should scale according to number of grid points
 | |
| 
 | |
|     # log user selections
 | |
|     logger.debug(f"User input files\n Catalog: {catalog_file}\n Mc: {mc_file}\n Mag_PDF: {pdf_file}\n Mag: {m_file}")
 | |
|     logger.debug(
 | |
|         f"User options\n m_select: {m_select}\n mag_label: {mag_label}\n mc: {mc}\n m_max:{m_max}\n m_kde_method: {m_kde_method}\n \
 | |
| xy_select: {xy_select}\n grid_dim: {grid_dim}\n xy_win_method: {xy_win_method}\n rate_select: {rate_select}\n time_win_duration: {time_win_duration}\n \
 | |
| forecast_select: {forecast_select}\n custom_rate: {custom_rate}\n forecast_len: {forecast_len}\n time_unit: {time_unit}\n model: {model}\n products: {products_string}\n \
 | |
| verbose: {verbose}")
 | |
| 
 | |
|     # print key package version numbers
 | |
|     logger.debug(f"Python version {sys.version}")
 | |
|     logger.debug(f"Numpy version {np.__version__}")
 | |
|     logger.debug(f"Scipy version {scipy.__version__}")
 | |
|     logger.debug(f"Obspy version {obspy.__version__}")
 | |
|     logger.debug(f"Openquake version {openquake.engine.__version__}")
 | |
|     logger.debug(f"Igfash version {igfash.__version__}")
 | |
| 
 | |
|     # print number of cpu cores available
 | |
|     ncpu = psutil.cpu_count(logical=False)
 | |
|     logger.debug(f"Number of cpu cores available: {ncpu}")
 | |
|     for process in psutil.process_iter():
 | |
|         with process.oneshot():
 | |
| 
 | |
|             # cpu = process.cpu_percent()
 | |
|             cpu = process.cpu_percent() / ncpu
 | |
| 
 | |
|             if cpu > 1:
 | |
|                 logger.debug(f"{process.name()}, {cpu}")
 | |
| 
 | |
|     logger.debug(f"BASELINE CPU LOAD% {psutil.cpu_percent(interval=None, percpu=True)}")
 | |
| 
 | |
|     dask.config.set(scheduler='processes')
 | |
| 
 | |
|     # run magnitude distribution modeling if selected by user and no magnitude pdf file provided
 | |
|     if m_select and m_range[0] == None and m_pdf[0] == None:
 | |
|         logger.info("Magnitude distribution modeling selected")
 | |
| 
 | |
|         if m_kde_method == None:
 | |
|             logger.info("No KDE method specified, therefore use diffKDE by default")
 | |
|             m_kde_method = 'diffKDE'
 | |
| 
 | |
|         if mag_label == None:
 | |
|             logger.info("No magnitude label of catalog specified, therefore try Mw by default")
 | |
|             mag_label = 'Mw'
 | |
| 
 | |
|         # if cat_label == None:
 | |
|         #   print("No magnitude label of catalog specified, therefore try 'Catalog' by default")
 | |
|         #   cat_label='Catalog'
 | |
| 
 | |
|         time, mag, lat, lon, depth = read_mat_cat(catalog_file, mag_label=mag_label, catalog_label='Catalog')
 | |
| 
 | |
|         if mc != None:
 | |
|             logger.info("Mc value provided by user")
 | |
|             trim_to_mc = True
 | |
|         elif mc_file != None:
 | |
|             logger.info("Mc estimation output file provided; selecting largest Mc from the list")
 | |
|             mc = read_mc(mc_file)
 | |
|             trim_to_mc = True
 | |
|         else:
 | |
|             logger.info("No Mc provided; using all magnitudes from the catalog")
 | |
|             trim_to_mc = False
 | |
|             mc = mag.min()
 | |
| 
 | |
|         # remove events below mc
 | |
|         if trim_to_mc:
 | |
|             logger.info(f"Removing all magnitudes below {mc}")
 | |
|             indices = np.argwhere(mag < mc)
 | |
|             mag = np.delete(mag, indices)
 | |
|             time = np.delete(time, indices)
 | |
|             lat = np.delete(lat, indices)
 | |
|             lon = np.delete(lon, indices)
 | |
| 
 | |
|         # if user does not provide a m_max, set m_max to 3 magnitude units above max magnitude in catalog
 | |
|         if m_max == None:
 | |
|             m_max = mag.max() + 3.0
 | |
| 
 | |
|         start = timer()
 | |
| 
 | |
|         t_windowed, r_windowed = win_CNE(time, [lon, lat, mag], win_size=len(mag), win_overlap=0, min_events=1)
 | |
|         m_windowed = [r[2] for r in r_windowed]  # extract only magnitude windows
 | |
| 
 | |
|         if m_kde_method[:5] == 'KDEpy':
 | |
|             pdf = kde.compute_kde(m_windowed, xmin=mc, xmax=m_max, bw_method=m_kde_method[6:], pp=False)
 | |
|         elif m_kde_method == 'adaptiveKDE':
 | |
|             pdf = kde.compute_adaptivekde(m_windowed, bw_method="adaptive-local", xmin=mc, xmax=m_max, pp=False)
 | |
|         elif m_kde_method == 'diffKDE':
 | |
|             pdf = kde.compute_diffkde(m_windowed, xmin=mc, xmax=m_max, pp=False)
 | |
|         elif m_kde_method[:5] == 'arviz':
 | |
|             pdf = kde.compute_arvizkde(m_windowed, xmin=mc, xmax=m_max, bw_method=m_kde_method[6:], pp=False)
 | |
| 
 | |
|         end = timer()
 | |
|         logger.info(f"Magnitude KDE Computation time: {round(end - start, 1)} seconds")
 | |
| 
 | |
|         m_pdf = 2 * pdf[-1]  # select last window's pdf as the one to use for forecasting
 | |
|         m_range = np.linspace(mc, m_max, 256)
 | |
| 
 | |
|         bin_width = 0.1
 | |
|         bins = np.arange(min(m_windowed[-1]), max(m_windowed[-1]) + bin_width, bin_width)
 | |
| 
 | |
|         # plot only the last window
 | |
|         fig = plt.figure(dpi=300, figsize=(8, 6))
 | |
|         plt.hist(m_windowed[-1], bins=bins, color='blue', edgecolor='black', alpha=0.6, density=True,
 | |
|                  label='Magnitude bins')
 | |
|         plt.plot(m_range, m_pdf, color='red', linewidth=2.5, label='KDE')
 | |
|         plt.legend()
 | |
| 
 | |
|         # configure ticks
 | |
|         ax = plt.gca()
 | |
|         ax.xaxis.set_major_locator(MultipleLocator(0.2))  # Major ticks every 0.2
 | |
|         ax.xaxis.set_minor_locator(MultipleLocator(0.1))  # Minor ticks every 0.1
 | |
|         ax.tick_params(axis='x', which='major', labelsize=10)  # Labels only for major ticks
 | |
|         ax.tick_params(axis='x', which='minor', length=5, labelsize=0)  # No labels for minor ticks
 | |
| 
 | |
|         plt.xticks(rotation=45)  # Rotate ticks by 45 degrees
 | |
|         plt.ylabel("f(M)")
 | |
|         plt.xlabel("Magnitude")
 | |
|         plt.savefig('KDE_magnitude_PDF.png')
 | |
| 
 | |
|         np.savetxt('KDE_magnitude_PDF.csv', np.c_[m_range, m_pdf])
 | |
| 
 | |
|     # run location distribution modeling
 | |
|     if xy_select:
 | |
|         logger.info("Event location distribution modeling selected")
 | |
| 
 | |
|         time, mag, lat, lon, depth = read_mat_cat(catalog_file)
 | |
| 
 | |
|         # convert to UTM
 | |
|         u = utm.from_latlon(lat, lon)
 | |
|         x = u[0]
 | |
|         y = u[1]
 | |
|         utm_zone_number = u[2]
 | |
|         utm_zone_letter = u[3]
 | |
|         logger.debug(f"Latitude / Longitude coordinates correspond to UTM zone {utm_zone_number}{utm_zone_letter}")
 | |
| 
 | |
|         # define corners of grid based on global dataset
 | |
|         x_min = x.min()
 | |
|         y_min = y.min()
 | |
|         x_max = x.max()
 | |
|         y_max = y.max()
 | |
|         z_min = depth.min()
 | |
|         z_max = depth.max()
 | |
| 
 | |
|         grid_x_max = int(ceil(x_max / grid_dim) * grid_dim)
 | |
|         grid_x_min = int(floor(x_min / grid_dim) * grid_dim)
 | |
|         grid_y_max = int(ceil(y_max / grid_dim) * grid_dim)
 | |
|         grid_y_min = int(floor(y_min / grid_dim) * grid_dim)
 | |
| 
 | |
|         # rectangular grid
 | |
|         nx = int((grid_x_max - grid_x_min) / grid_dim) + 1
 | |
|         ny = int((grid_y_max - grid_y_min) / grid_dim) + 1
 | |
| 
 | |
|         # ensure a square grid is used
 | |
|         if nx > ny:  # enlarge y dimension to match x
 | |
|             ny = nx
 | |
|             grid_y_max = int(grid_y_min + (ny - 1) * grid_dim)
 | |
| 
 | |
|         else:  # enlarge x dimension to match y
 | |
|             nx = ny
 | |
|             grid_x_max = int(grid_x_min + (nx - 1) * grid_dim)
 | |
| 
 | |
|         # new x and y range
 | |
|         x_range = np.linspace(grid_x_min, grid_x_max, nx)
 | |
|         y_range = np.linspace(grid_y_min, grid_y_max, ny)
 | |
| 
 | |
|         t_windowed = time
 | |
|         r_windowed = [[x, y]]
 | |
| 
 | |
|         # %% compute KDE and extract PDF
 | |
|         start = timer()
 | |
| 
 | |
|         if xy_win_method == "TW":
 | |
|             logger.info("Time weighting function selected")
 | |
| 
 | |
|             x_weights = np.linspace(0, 15, len(t_windowed))
 | |
|             weighting_fcn = np.exp(x_weights)  # exponential weighting
 | |
|             output_kale, output_kde = kde.compute_2d_kde([grid_x_min, grid_x_max, grid_y_min, grid_y_max], r_windowed,
 | |
|                                                          n_kde=nx, weighting_fcn=weighting_fcn)
 | |
|         else:
 | |
|             output_kale, output_kde = kde.compute_2d_kde([grid_x_min, grid_x_max, grid_y_min, grid_y_max], r_windowed,
 | |
|                                                          n_kde=nx)
 | |
| 
 | |
|         end = timer()
 | |
|         logger.info(f"Location KDE Computation time: {round(end - start, 1)} seconds")
 | |
| 
 | |
|         xy_kale = output_kale[0]
 | |
|         xy_kde = output_kde[0]
 | |
| 
 | |
|         # plot location PDF
 | |
|         xy_kale_km = type(xy_kale)(xy_kale.dataset / 1000)
 | |
|         corner = kale.corner(xy_kale_km, quantiles=[0.025, 0.16, 0.50, 0.84, 0.975], cmap='hot')
 | |
| 
 | |
|         # modify bottom left plot
 | |
|         ax00 = corner[0].axes[0][0]
 | |
|         ax00.set_ylabel("Probability Density")
 | |
|         # Remove the PDF ticks below zero
 | |
|         yticks = ax00.get_yticks()
 | |
|         new_yticks = yticks[yticks >= 0]
 | |
|         ax00.set_yticks(new_yticks)
 | |
| 
 | |
|         # ax01 = corner[0].axes[0][1] # bottom right plot
 | |
| 
 | |
|         # modify top left plot
 | |
|         ax10 = corner[0].axes[1][0]
 | |
|         ax10.set_xlabel("UTM X (km)")
 | |
|         ax10.set_ylabel("UTM Y (km)")
 | |
|         ax10.ticklabel_format(style='plain')
 | |
|         for coll in ax10.collections:
 | |
|             if isinstance(coll, ContourSet):  # Check if it's a contour plot
 | |
|                 ax10.clabel(coll, inline=True, fontsize='smaller', fmt="%.1f")
 | |
| 
 | |
|         # modify top right plot
 | |
|         ax11 = corner[0].axes[1][1]
 | |
|         ax11.set_xlabel("Probability Density")
 | |
|         ax11.ticklabel_format(style='plain')
 | |
| 
 | |
|         # Remove the PDF ticks below zero
 | |
|         xticks = ax11.get_xticks()
 | |
|         new_xticks = xticks[xticks >= 0]
 | |
|         ax11.set_xticks(new_xticks)
 | |
|         ax11.set_yticklabels([])  # This removes the ytick labels
 | |
| 
 | |
|         # Rotate x-axis tick labels for all bottom-row plots
 | |
|         for ax in corner[0].axes[-1, :]:  # Last row corresponds to the bottom x-axes
 | |
|             for label in ax.get_xticklabels():
 | |
|                 label.set_rotation(46)
 | |
| 
 | |
|         corner[0].fig.savefig('KDE_location_PDF', bbox_inches="tight", dpi=300)
 | |
|         np.savetxt('KDE_location_PDF.csv', np.array(output_kde[0][0]))
 | |
| 
 | |
|     # run activity rate modeling
 | |
|     lambdas = [None]
 | |
|     if custom_rate != None and forecast_select:
 | |
|         logger.info(f"Using activity rate specified by user: {custom_rate} per {time_unit}")
 | |
|         lambdas = [custom_rate]
 | |
|         lambdas_perc = [1]
 | |
| 
 | |
|     elif rate_select:
 | |
|         logger.info(f"Activity rate modeling selected")
 | |
| 
 | |
|         time, mag_dummy, lat_dummy, lon_dummy, depth_dummy = read_mat_cat(catalog_file, output_datenum=True)
 | |
| 
 | |
|         datenum_data = time  # REMEMBER THE DECIMAL DENOTES DAYS
 | |
| 
 | |
|         if time_unit == 'hours':
 | |
|             multiplicator = 24
 | |
|         elif time_unit == 'days':
 | |
|             multiplicator = 1
 | |
|         elif time_unit == 'weeks':
 | |
|             multiplicator = 1 / 7
 | |
|         elif time_unit == 'years':
 | |
|             multiplicator = 1 / 365
 | |
| 
 | |
|         # Selects dates in datenum format and procceeds to forecast value
 | |
|         start_date = datenum_data[-1] - (2 * time_win_duration / multiplicator)
 | |
|         dates_calc = [date for date in datenum_data if start_date <= date <= datenum_data[-1]]
 | |
|         forecasts, bca_conf95, rate_mean = bootstrap_forecast_rolling(dates_calc, multiplicator)
 | |
| 
 | |
|         # FINAL VALUES OF RATE AND ITS UNCERTAINTY IN THE 5-95 PERCENTILE
 | |
|         unc_bca05 = [ci.low for ci in bca_conf95];
 | |
|         unc_bca95 = [ci.high for ci in bca_conf95]
 | |
|         rate_unc_high = multiplicator / np.array(unc_bca05);
 | |
|         rate_unc_low = multiplicator / np.array(unc_bca95);
 | |
|         rate_forecast = multiplicator / np.median(forecasts)  # [per time unit]
 | |
| 
 | |
|         # Plot of forecasted activity rate with previous binned activity rate
 | |
|         act_rate, bin_counts, bin_edges, out, pprs, rt, idx, u_e = calc_bins(np.array(datenum_data), time_unit,
 | |
|                                                                              time_win_duration, dates_calc,
 | |
|                                                                              rate_forecast, rate_unc_high, rate_unc_low,
 | |
|                                                                              multiplicator, quiet=True)
 | |
| 
 | |
|         # Assign probabilities 
 | |
|         lambdas, lambdas_perc = lambda_probs(act_rate, dates_calc, bin_edges)
 | |
| 
 | |
|         # print("Forecasted activity rates: ", lambdas, "events per", time_unit[:-1])
 | |
|         logger.info(f"Forecasted activity rates: {lambdas} events per {time_unit} with percentages {lambdas_perc}")
 | |
|         np.savetxt('activity_rate.csv', np.vstack((lambdas, lambdas_perc)).T, header="lambda, percentage",
 | |
|                    delimiter=',', fmt='%1.4f')
 | |
| 
 | |
|     if forecast_select:
 | |
|         products = products_string.split()
 | |
|         logger.info(
 | |
|             f"Ground motion forecasting selected with ground motion model {model} and IMT products {products_string}")
 | |
| 
 | |
|         if not xy_select:
 | |
|             msg = "Event location distribution modeling was not selected; cannot continue..."
 | |
|             logger.error(msg)
 | |
|             raise Exception(msg)
 | |
|         elif m_pdf[0] == None:
 | |
|             msg = "Magnitude distribution modeling was not selected and magnitude PDF file was not provided; cannot continue..."
 | |
|             logger.error(msg)
 | |
|             raise Exception(msg)
 | |
|         elif lambdas[0] == None:
 | |
|             msg = "Activity rate modeling was not selected and custom activity rate was not provided; cannot continue..."
 | |
|             logger.error(msg)
 | |
|             raise Exception(msg)
 | |
| 
 | |
|         Mag = 5.0  # placeholder mag, must be valid for that context; will be overwritten during function call
 | |
|         rupture_aratio = 1.5
 | |
|         Strike = 0
 | |
|         Dip = 90
 | |
|         Rake = 0
 | |
| 
 | |
|         p = 0.05  # Probability of exceedance
 | |
| 
 | |
|         m_cdf = get_cdf(m_pdf)
 | |
| 
 | |
|         fxy = xy_kde[0]
 | |
|         logger.debug(f"Normalization check; sum of all f(x,y) values = {np.sum(fxy)}")
 | |
| 
 | |
|         xx, yy = np.meshgrid(x_range, y_range, indexing='ij')  # grid points
 | |
| 
 | |
|         # set every grid point to be a receiver
 | |
|         x_rx = xx.flatten()
 | |
|         y_rx = yy.flatten()
 | |
| 
 | |
|         # compute distance matrix for each receiver
 | |
|         distances = np.zeros(shape=(nx * ny, nx, ny))
 | |
|         rx_lat = np.zeros(nx * ny)
 | |
|         rx_lon = np.zeros(nx * ny)
 | |
| 
 | |
|         for i in range(nx * ny):
 | |
|             # Compute the squared distances directly using NumPy's vectorized operations
 | |
|             squared_distances = (xx - x_rx[i]) ** 2 + (yy - y_rx[i]) ** 2
 | |
|             distances[i] = np.sqrt(squared_distances)
 | |
| 
 | |
|             # create context object for receiver and append to list
 | |
|             rx_lat[i], rx_lon[i] = utm.to_latlon(x_rx[i], y_rx[i], utm_zone_number,
 | |
|                                                  utm_zone_letter)  # get receiver location as lat,lon
 | |
| 
 | |
|         # experimental - compute ground motion only at grid points that have minimum probability density of thresh_fxy
 | |
|         if exclude_low_fxy:
 | |
|             indices = list(np.where(fxy.flatten() > thresh_fxy)[0])
 | |
|         else:
 | |
|             indices = range(0, len(distances))
 | |
| 
 | |
|         fr = fxy.flatten()
 | |
| 
 | |
|         # For each receiver compute estimated ground motion values
 | |
|         logger.info(f"Estimating ground motion intensity at {len(indices)} grid points...")
 | |
| 
 | |
|         PGA = np.zeros(shape=(nx * ny))
 | |
| 
 | |
|         # use dask parallel computing
 | |
|         start = timer()
 | |
|         pbar = ProgressBar()
 | |
|         pbar.register()
 | |
|         # iter = range(0,len(distances))
 | |
|         iter = indices
 | |
|         iml_grid_raw = []  # raw ground motion grids
 | |
|         for imt in products:
 | |
|             logger.info(f"Estimating {imt}")
 | |
| 
 | |
|             imls = [dask.delayed(compute_IMT_exceedance)(rx_lat[i], rx_lon[i], distances[i].flatten(), fr, p, lambdas,
 | |
|                                                          forecast_len, lambdas_perc, m_range, m_pdf, m_cdf, model,
 | |
|                                                          log_level=logging.DEBUG, imt=imt, IMT_min=0.0, IMT_max=2.0,
 | |
|                                                          rx_label=i) for i in iter]
 | |
|             iml = dask.compute(*imls)
 | |
|             iml_grid_raw.append(list(iml))
 | |
|         end = timer()
 | |
|         logger.info(f"Ground motion exceedance computation time: {round(end - start, 1)} seconds")
 | |
| 
 | |
|         # create list of one empty list for each imt
 | |
|         iml_grid = [[] for _ in range(len(products))]  # final ground motion grids
 | |
|         iml_grid_prep = iml_grid.copy()  # temp ground motion grids
 | |
| 
 | |
|         if exclude_low_fxy:
 | |
|             for i in range(0, len(distances)):
 | |
|                 if i in indices:
 | |
|                     for j in range(0, len(products)):
 | |
|                         iml_grid_prep[j].append(iml_grid_raw[j].pop(0))
 | |
|                 else:
 | |
|                     list(map(lambda lst: lst.append(np.nan),
 | |
|                              iml_grid_prep))  # use np.nan to indicate grid point excluded
 | |
|         else:
 | |
|             iml_grid_prep = iml_grid_raw
 | |
| 
 | |
|         for j in range(0, len(products)):
 | |
|             vmin = min(x for x in iml_grid_prep[j] if x is not np.nan)
 | |
|             vmax = max(x for x in iml_grid_prep[j] if x is not np.nan)
 | |
|             iml_grid[j] = np.reshape(iml_grid_prep[j], (nx, ny)).astype(
 | |
|                 dtype=np.float64)  # this reduces values to 8 decimal places
 | |
|             iml_grid_tmp = np.nan_to_num(iml_grid[j])  # change nans to zeroes
 | |
| 
 | |
|             # upscale the grid
 | |
|             up_factor = 4
 | |
|             iml_grid_hd = resize(iml_grid_tmp, (up_factor * len(iml_grid_tmp), up_factor * len(iml_grid_tmp)),
 | |
|                                  mode='reflect', anti_aliasing=False)
 | |
|             iml_grid_hd[iml_grid_hd == 0.0] = np.nan  # change zeroes back to nan
 | |
| 
 | |
|             # generate image overlay
 | |
|             north, south = lat.max(), lat.min()  # Latitude range
 | |
|             east, west = lon.max(), lon.min()  # Longitude range
 | |
|             bounds = [[south, west], [north, east]]
 | |
| 
 | |
|             map_center = [np.mean([north, south]), np.mean([east, west])]
 | |
| 
 | |
|             # Create an image from the grid
 | |
|             fig, ax = plt.subplots(figsize=(6, 6))
 | |
|             ax.imshow(iml_grid_hd, origin='lower', cmap='viridis')
 | |
|             ax.axis('off')
 | |
| 
 | |
|             # Save the figure
 | |
|             fig.canvas.draw()
 | |
|             plt.savefig("overlay_" + str(j) + ".png", bbox_inches="tight", pad_inches=0, transparent=True)
 | |
|             plt.close(fig)
 | |
| 
 | |
|             # Make the color bar
 | |
|             cmap_name = 'viridis'
 | |
|             width = 50
 | |
|             height = 500
 | |
| 
 | |
|             gradient = np.linspace(0, 1, height)
 | |
|             gradient = np.vstack((gradient, gradient)).T
 | |
|             gradient = np.tile(gradient, (1, width))
 | |
| 
 | |
|             fig, ax = plt.subplots(figsize=((width + 40) / 100.0, (height + 20) / 100.0),
 | |
|                                    dpi=100)  # Increase fig size for labels
 | |
|             ax.imshow(gradient, aspect='auto', cmap=plt.get_cmap(cmap_name),
 | |
|                       extent=[0, 1, vmin, vmax])  # Note: extent order is different for vertical
 | |
|             ax.set_xticks([])  # Remove x-ticks for vertical colorbar
 | |
|             num_ticks = 11  # Show more ticks
 | |
|             tick_positions = np.linspace(vmin, vmax, num_ticks)
 | |
|             ax.set_yticks(tick_positions)
 | |
|             ax.set_yticklabels([f"{tick:.2f}" for tick in tick_positions])  # format tick labels
 | |
|             ax.set_title(imt, pad=15)
 | |
|             fig.subplots_adjust(left=0.25, right=0.75, bottom=0.05, top=0.95)  # Adjust Layout
 | |
|             fig.savefig("colorbar_" + str(j) + ".png", bbox_inches='tight')
 | |
|             plt.close(fig)
 |