generated from official-apps/MaxMagnitudeDPModels
ISEPOS-2360 Move spectral parameter source code from apps_to_migrate from official-apps-artifact-builder
This commit is contained in:
parent
8d7613d9e8
commit
537e376d6c
552
src/Mmax.py
552
src/Mmax.py
@ -1,552 +0,0 @@
|
||||
import sys
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
# import os
|
||||
import scipy.io
|
||||
import logging
|
||||
from geopy.distance import geodesic
|
||||
from geopy.point import Point
|
||||
|
||||
from util.base_logger import getDefaultLogger
|
||||
|
||||
def main(Input_catalog, Input_injection_rate, time_win_in_hours, time_step_in_hour, time_win_type,
|
||||
End_time, ev_limit, Model_index, Mc, Mu, G, ssd, C, b_value_type, cl, mag_name, time_inj=None, time_shut_in=None,
|
||||
time_big_ev=None, Inpar = ["SER", "dv", "d_num"]):
|
||||
"""
|
||||
Main function for application: MAXIMUM_MAGNITUDE_DETERMINISTIC_MODELS
|
||||
Arguments:
|
||||
Input catalog: path to input file of type 'catalog'
|
||||
Input injection rate: path to input file of type 'injection_rate'
|
||||
**kwargs: Model paramters.
|
||||
Returns:
|
||||
'PLOT_Mmax_param': Plot of all results (also check 'application.log' for more info)
|
||||
'DATA_Mmax_param': Results with 'csv' format
|
||||
'application.log': Logging file
|
||||
"""
|
||||
|
||||
f_indx = Model_index
|
||||
b_method = b_value_type
|
||||
Plot_flag = 0
|
||||
|
||||
# Setting up the logfile--------------------------------
|
||||
logger = getDefaultLogger(__name__)
|
||||
|
||||
# Importing utilities ----------------------
|
||||
logger.info("Import utilities")
|
||||
from util.Find_idx4Time import Find_idx4Time
|
||||
from util.CandidateEventsTS import CandidateEventsTS
|
||||
from util.M_max_models import M_max_models
|
||||
|
||||
def latlon_to_enu(lat, lon, alt):
|
||||
lat0 = np.mean(lat)
|
||||
lon0 = np.mean(lon)
|
||||
alt0 = 0
|
||||
|
||||
# Reference point (origin)
|
||||
origin = Point(lat0, lon0, alt0)
|
||||
|
||||
east = np.zeros_like(lon)
|
||||
north = np.zeros_like(lat)
|
||||
up = np.zeros_like(alt)
|
||||
|
||||
for i in range(len(lon)):
|
||||
|
||||
# Target point
|
||||
target = Point(lat[i], lon[i], alt[i])
|
||||
|
||||
# Calculate East-North-Up
|
||||
east[i] = geodesic((lat0, lon0), (lat0, lon[i])).meters
|
||||
if lon[i] < lon0:
|
||||
east[i] = -east[i]
|
||||
north[i] = geodesic((lat0, lon0), (lat[i], lon0)).meters
|
||||
if lat[i] < lat0:
|
||||
north[i] = -north[i]
|
||||
up = alt - alt0
|
||||
|
||||
return east, north, up
|
||||
|
||||
# Importing data
|
||||
logger.info("Import data")
|
||||
mat = scipy.io.loadmat(Input_catalog)
|
||||
Cat_structure_name = scipy.io.whosmat(Input_catalog)[0][0]
|
||||
Cat_structure = mat[Cat_structure_name]
|
||||
Cat_id, Cat_t, Cat_m = [], [], []
|
||||
Cat_x, Cat_y, Cat_z = [], [], []
|
||||
Cat_lat, Cat_lon, Cat_elv, Cat_depth = [], [], [], []
|
||||
for i in range(1,Cat_structure.shape[1]):
|
||||
if Cat_structure.T[i][0][0][0] == 'X':
|
||||
Cat_x = Cat_structure.T[i][0][2]
|
||||
if not all(np.isfinite(Cat_x)):
|
||||
raise ValueError("Catalog-X contains infinite value")
|
||||
if Cat_structure.T[i][0][3][0] == 'km':
|
||||
Cat_x *= 1000
|
||||
|
||||
if Cat_structure.T[i][0][0][0] == 'Lat':
|
||||
Cat_lat = Cat_structure.T[i][0][2]
|
||||
if not all(np.isfinite(Cat_lat)):
|
||||
raise ValueError("Catalog-Lat contains infinite value")
|
||||
|
||||
if Cat_structure.T[i][0][0][0] == 'Y':
|
||||
Cat_y = Cat_structure.T[i][0][2]
|
||||
if not all(np.isfinite(Cat_y)):
|
||||
raise ValueError("Catalog-Y contains infinite value")
|
||||
if Cat_structure.T[i][0][3][0] == 'km':
|
||||
Cat_y *= 1000
|
||||
|
||||
if Cat_structure.T[i][0][0][0] == 'Long':
|
||||
Cat_lon = Cat_structure.T[i][0][2]
|
||||
if not all(np.isfinite(Cat_lon)):
|
||||
raise ValueError("Catalog-Long contains infinite value")
|
||||
|
||||
if Cat_structure.T[i][0][0][0] == 'Z':
|
||||
Cat_z = Cat_structure.T[i][0][2]
|
||||
if not all(np.isfinite(Cat_z)):
|
||||
raise ValueError("Catalog-Z contains infinite value")
|
||||
if Cat_structure.T[i][0][3][0] == 'km':
|
||||
Cat_z *= 1000
|
||||
|
||||
if Cat_structure.T[i][0][0][0] == 'Depth':
|
||||
Cat_depth = Cat_structure.T[i][0][2]
|
||||
if not all(np.isfinite(Cat_depth)):
|
||||
raise ValueError("Catalog-Depth contains infinite value")
|
||||
if Cat_structure.T[i][0][3][0] == 'km':
|
||||
Cat_depth *= 1000
|
||||
|
||||
if Cat_structure.T[i][0][0][0] == 'Elevation':
|
||||
Cat_elv = Cat_structure.T[i][0][2]
|
||||
if not all(np.isfinite(Cat_elv)):
|
||||
raise ValueError("Catalog-Elevation contains infinite value")
|
||||
if Cat_structure.T[i][0][3][0] == 'km':
|
||||
Cat_elv *= 1000
|
||||
|
||||
if Cat_structure.T[i][0][0][0] == 'Time':
|
||||
Cat_t = Cat_structure.T[i][0][2]
|
||||
if not all(np.isfinite(Cat_t)):
|
||||
raise ValueError("Catalog-Time contains infinite value")
|
||||
|
||||
if Cat_structure.T[i][0][0][0] == mag_name:
|
||||
Cat_m = Cat_structure.T[i][0][2]
|
||||
# if not all(np.isfinite(Cat_m)):
|
||||
if np.argwhere(all(np.isfinite(Cat_m))):
|
||||
raise ValueError("Catalog-Magnitude contains infinite value")
|
||||
|
||||
if any(Cat_x):
|
||||
Cat_id = np.linspace(0,Cat_x.shape[0],Cat_x.shape[0]).reshape((Cat_x.shape[0],1))
|
||||
arg = (Cat_id, Cat_x, Cat_y, Cat_z, Cat_t, Cat_m)
|
||||
Cat = np.concatenate(arg, axis=1)
|
||||
elif any(Cat_lat):
|
||||
if any(Cat_elv):
|
||||
Cat_x, Cat_y, Cat_z = latlon_to_enu(Cat_lat, Cat_lon, Cat_elv)
|
||||
elif any(Cat_depth):
|
||||
Cat_x, Cat_y, Cat_z = latlon_to_enu(Cat_lat, Cat_lon, Cat_depth)
|
||||
else:
|
||||
raise ValueError("Catalog Depth or Elevation is not available")
|
||||
Cat_id = np.linspace(0,Cat_x.shape[0],Cat_x.shape[0]).reshape((Cat_x.shape[0],1))
|
||||
arg = (Cat_id, Cat_x, Cat_y, Cat_z, Cat_t, Cat_m)
|
||||
Cat = np.concatenate(arg, axis=1)
|
||||
else:
|
||||
raise ValueError("Catalog data are not available")
|
||||
|
||||
mat = scipy.io.loadmat(Input_injection_rate)
|
||||
Inj_structure = mat['d']
|
||||
if 'Date' in Inj_structure.dtype.names:
|
||||
inj_date = Inj_structure['Date'][0,0]
|
||||
inj_rate = Inj_structure['Injection_rate'][0,0]
|
||||
Hyd = np.concatenate((inj_date,inj_rate), axis=1)
|
||||
else:
|
||||
raise ValueError("Injection data are not available")
|
||||
|
||||
if Cat[0,4]>np.max(Hyd[:,0]) or Hyd[0,0]>np.max(Cat[:,4]):
|
||||
raise ValueError('Catalog and injection data do not have time coverage!')
|
||||
|
||||
if Hyd[0,0] < Cat[0,4]:
|
||||
same_time_idx = Find_idx4Time(Hyd[:,0], Cat[0,4])
|
||||
Hyd = Hyd[same_time_idx:,:]
|
||||
Hyd[:,0] = (Hyd[:,0] - Cat[0,4])*24*3600
|
||||
Cat[:,4] = (Cat[:,4] - Cat[0,4])*24*3600
|
||||
logger.info('Start of the computations is based on the time of catalog data.')
|
||||
|
||||
# Model dictionary
|
||||
Feat_dic = {
|
||||
'indx' :[0 ,1 ,2 ,3 ,4 ,5 ],
|
||||
'Full_names':['All_M_max' ,'McGarr' ,'Hallo' ,'Li' ,'van-der-Elst','Shapiro' ],
|
||||
'Short_name':['max_all' , 'max_mcg', 'max_hlo', 'max_li', 'max_vde' , 'max_shp'],
|
||||
'f_num' :[5 ,4 ,4 ,1 ,6 ,4 ],
|
||||
'Param' :[{'Mc': 0.8, 'b_method': ['b'], 'cl': [0.37], 'Inpar': ['dv','d_num'], 'Mu':0.6, 'G': 35*10**(9), 'ssd': 3*10**6, 'C': 0.95, 'ev_limit': 20, 'num_bootstraps': 100}]
|
||||
}
|
||||
|
||||
Feat_dic['Param'][0]['Inpar'] = Inpar
|
||||
Feat_dic['Param'][0]['ev_limit'] = ev_limit
|
||||
num_bootstraps = 100 # Number of bootstraping for standard error computation
|
||||
Feat_dic['Param'][0]['num_bootstraps'] = num_bootstraps
|
||||
|
||||
if f_indx in [0,1,2,4]:
|
||||
if Mc < np.min(Cat[:,-1]) or Mc > np.max(Cat[:,-1]):
|
||||
raise ValueError("Completeness magnitude (Mc) is out of magnitude range")
|
||||
Feat_dic['Param'][0]['Mc'] = Mc
|
||||
|
||||
if f_indx in [0,1,2]:
|
||||
if Mu < 0.2 or Mu > 0.8:
|
||||
raise ValueError("Friction coefficient (Mu) must be between [0.2, 0.8]")
|
||||
Feat_dic['Param'][0]['Mu'] = Mu
|
||||
|
||||
if f_indx in [0,1,2,3]:
|
||||
if G < 1*10**(9) or G > 100*10**(9):
|
||||
raise ValueError("Shear modulus of reservoir rock (G) must be between [1, 100] GPa")
|
||||
Feat_dic['Param'][0]['G'] = G
|
||||
|
||||
if f_indx in [0,5]:
|
||||
if ssd < 0.1*10**(6) or ssd > 100*10**(6):
|
||||
raise ValueError("Static stress drop (ssd) must be between [0.1, 100] MPa")
|
||||
Feat_dic['Param'][0]['ssd'] = ssd
|
||||
|
||||
if f_indx in [0,5]:
|
||||
if C < 0.5 or C > 5:
|
||||
raise ValueError("Geometrical constant (C) of Shaprio's model must be between [0.5, 5]")
|
||||
Feat_dic['Param'][0]['C'] = C
|
||||
|
||||
if f_indx in [0,1,2,4]:
|
||||
if not b_method:
|
||||
raise ValueError("Please chose an option for b-value")
|
||||
|
||||
if f_indx in [0,4]:
|
||||
for cl_i in cl:
|
||||
if cl_i < 0 or cl_i > 1:
|
||||
raise ValueError("Confidence level (cl) of van der Elst model must be between [0, 1]")
|
||||
Feat_dic['Param'][0]['cl'] = cl
|
||||
|
||||
# Setting up based on the config and model dic --------------
|
||||
ModelClass = M_max_models()
|
||||
|
||||
Model_name = Feat_dic['Full_names'][f_indx]
|
||||
ModelClass.f_name = Feat_dic['Short_name'][f_indx]
|
||||
f_num = Feat_dic['f_num'][f_indx]
|
||||
|
||||
if Feat_dic['Param'][0]['Mc']:
|
||||
ModelClass.Mc = Mc
|
||||
else:
|
||||
Mc = np.min(Cat[:,-1])
|
||||
ModelClass.Mc = Mc
|
||||
|
||||
time_win = time_win_in_hours*3600 # in sec
|
||||
ModelClass.time_win = time_win
|
||||
|
||||
if f_indx == 0:
|
||||
# Only first b_methods is used
|
||||
Feat_dic['Param'][0]['b_method'] = b_method[0]
|
||||
ModelClass.b_method = Feat_dic['Param'][0]['b_method']
|
||||
logger.info(f"All models are based on b_method: { b_method[0]}")
|
||||
Feat_dic['Param'][0]['cl'] = [cl[0]]
|
||||
ModelClass.cl = Feat_dic['Param'][0]['cl']
|
||||
logger.info(f"All models are based on cl: { cl[0]}")
|
||||
ModelClass.Mu = Feat_dic['Param'][0]['Mu']
|
||||
ModelClass.G = Feat_dic['Param'][0]['G']
|
||||
ModelClass.ssd = Feat_dic['Param'][0]['ssd']
|
||||
ModelClass.C = Feat_dic['Param'][0]['C']
|
||||
ModelClass.num_bootstraps = Feat_dic['Param'][0]['num_bootstraps']
|
||||
|
||||
if f_indx == 1 or f_indx == 2:
|
||||
ModelClass.b_method = Feat_dic['Param'][0]['b_method']
|
||||
ModelClass.Mu = Feat_dic['Param'][0]['Mu']
|
||||
ModelClass.G = Feat_dic['Param'][0]['G']
|
||||
ModelClass.num_bootstraps = Feat_dic['Param'][0]['num_bootstraps']
|
||||
Feat_dic['Param'][0]['cl'] = [None]
|
||||
|
||||
if f_indx == 3:
|
||||
Feat_dic['Param'][0]['b_method'] = [None]
|
||||
ModelClass.G = Feat_dic['Param'][0]['G']
|
||||
Feat_dic['Param'][0]['cl'] = [None]
|
||||
|
||||
if f_indx == 4:
|
||||
ModelClass.b_method = Feat_dic['Param'][0]['b_method']
|
||||
ModelClass.num_bootstraps = Feat_dic['Param'][0]['num_bootstraps']
|
||||
ModelClass.G = Feat_dic['Param'][0]['G']
|
||||
ModelClass.cl = Feat_dic['Param'][0]['cl']
|
||||
|
||||
if f_indx == 5:
|
||||
ModelClass.ssd = Feat_dic['Param'][0]['ssd']
|
||||
ModelClass.C = Feat_dic['Param'][0]['C']
|
||||
Feat_dic['Param'][0]['b_method'] = [None]
|
||||
Feat_dic['Param'][0]['cl'] = [None]
|
||||
|
||||
# Output dictionary --------------------------------
|
||||
Output_dict = {
|
||||
'Type' :['idx', 'Time[day]'],
|
||||
'label' :[None, None],
|
||||
'b_method' :[None, None],
|
||||
'cl' :[None, None],
|
||||
}
|
||||
|
||||
c_out = 2
|
||||
if any(Feat_dic['Param'][0]['b_method']) and any(Feat_dic['Param'][0]['cl']):
|
||||
for i in range(len(Feat_dic['Param'][0]['b_method'])):
|
||||
for j in range(len(Feat_dic['Param'][0]['cl'])):
|
||||
if f_indx == 0: # f_index == 0
|
||||
for i in Feat_dic['Full_names'][1:]:
|
||||
Output_dict['Type'].append('Maximum magnitude')
|
||||
Output_dict['label'].append(i)
|
||||
Output_dict['b_method'].append(None)
|
||||
Output_dict['cl'].append(None)
|
||||
c_out += 1
|
||||
elif j == 0: # f_index == 4
|
||||
Output_dict['Type'].append('b_value')
|
||||
Output_dict['label'].append('b_value')
|
||||
Output_dict['b_method'].append(Feat_dic['Param'][0]['b_method'][i])
|
||||
Output_dict['cl'].append(None)
|
||||
|
||||
Output_dict['Type'].append('Standard Error')
|
||||
Output_dict['label'].append('b_std_err')
|
||||
Output_dict['b_method'].append(Feat_dic['Param'][0]['b_method'][i])
|
||||
Output_dict['cl'].append(None)
|
||||
|
||||
Output_dict['Type'].append('Seismogenic Index')
|
||||
Output_dict['label'].append('SI')
|
||||
Output_dict['b_method'].append(Feat_dic['Param'][0]['b_method'][i])
|
||||
Output_dict['cl'].append(None)
|
||||
|
||||
Output_dict['Type'].append('Standard Error')
|
||||
Output_dict['label'].append('si_std_err')
|
||||
Output_dict['b_method'].append(Feat_dic['Param'][0]['b_method'][i])
|
||||
Output_dict['cl'].append(None)
|
||||
|
||||
Output_dict['Type'].append('Maximum magnitude')
|
||||
Output_dict['label'].append(Model_name)
|
||||
Output_dict['b_method'].append(Feat_dic['Param'][0]['b_method'][i])
|
||||
Output_dict['cl'].append(Feat_dic['Param'][0]['cl'][j])
|
||||
|
||||
Output_dict['Type'].append('Standard Error')
|
||||
Output_dict['label'].append('M_std_err')
|
||||
Output_dict['b_method'].append(Feat_dic['Param'][0]['b_method'][i])
|
||||
Output_dict['cl'].append(None)
|
||||
c_out += 6
|
||||
|
||||
else: # f_index == 4
|
||||
Output_dict['Type'].append('Maximum magnitude')
|
||||
Output_dict['label'].append(Model_name)
|
||||
Output_dict['b_method'].append(Feat_dic['Param'][0]['b_method'][i])
|
||||
Output_dict['cl'].append(Feat_dic['Param'][0]['cl'][j])
|
||||
|
||||
Output_dict['Type'].append('Standard Error')
|
||||
Output_dict['label'].append('M_std_err')
|
||||
Output_dict['b_method'].append(Feat_dic['Param'][0]['b_method'][i])
|
||||
Output_dict['cl'].append(None)
|
||||
c_out += 2
|
||||
|
||||
elif any(Feat_dic['Param'][0]['b_method']): # f_index == 1, 2
|
||||
for i in range(len(Feat_dic['Param'][0]['b_method'])):
|
||||
Output_dict['Type'].append('b_value')
|
||||
Output_dict['label'].append('b_value')
|
||||
Output_dict['b_method'].append(Feat_dic['Param'][0]['b_method'][i])
|
||||
Output_dict['cl'].append(None)
|
||||
|
||||
Output_dict['Type'].append('Standard Error')
|
||||
Output_dict['label'].append('b_std_err')
|
||||
Output_dict['b_method'].append(Feat_dic['Param'][0]['b_method'][i])
|
||||
Output_dict['cl'].append(None)
|
||||
|
||||
Output_dict['Type'].append('Maximum magnitude')
|
||||
Output_dict['label'].append(Model_name)
|
||||
Output_dict['b_method'].append(Feat_dic['Param'][0]['b_method'][i])
|
||||
Output_dict['cl'].append(None)
|
||||
|
||||
Output_dict['Type'].append('Standard Error')
|
||||
Output_dict['label'].append('M_std_err')
|
||||
Output_dict['b_method'].append(Feat_dic['Param'][0]['b_method'][i])
|
||||
Output_dict['cl'].append(None)
|
||||
c_out += 4
|
||||
elif f_indx == 5: # f_index == 5
|
||||
# for i in ['L(max)','L(int)','L(min)', 'L(avg)']:
|
||||
# Output_dict['Type'].append('Length[m]')
|
||||
# Output_dict['label'].append(i)
|
||||
# Output_dict['b_method'].append(None)
|
||||
# Output_dict['cl'].append(None)
|
||||
# Output_dict['Type'].append('Maximum magnitude')
|
||||
# Output_dict['label'].append(Model_name)
|
||||
# Output_dict['b_method'].append(None)
|
||||
# Output_dict['cl'].append(None)
|
||||
# c_out += 5
|
||||
|
||||
for i in ['Shapiro (Lmax)','Shapiro (Lint)','Shapiro (Lmin)', 'Shapiro (Lavg)']:
|
||||
Output_dict['Type'].append('Maximum magnitude')
|
||||
Output_dict['label'].append(i)
|
||||
Output_dict['b_method'].append(None)
|
||||
Output_dict['cl'].append(None)
|
||||
c_out += 4
|
||||
|
||||
else: # f_index == 3
|
||||
Output_dict['Type'].append('Maximum magnitude')
|
||||
Output_dict['label'].append(Model_name)
|
||||
Output_dict['b_method'].append(None)
|
||||
Output_dict['cl'].append(None)
|
||||
c_out += 1
|
||||
|
||||
# Add True maximum magnitude to the outputs
|
||||
Output_dict['Type'].append('Maximum magnitude')
|
||||
Output_dict['label'].append('True Max-Mag')
|
||||
Output_dict['b_method'].append(None)
|
||||
Output_dict['cl'].append(None)
|
||||
c_out += 1
|
||||
|
||||
# if any(Feat_dic['Param'][0]['Inpar']): # Input parameters
|
||||
if Inpar:
|
||||
for i in Feat_dic['Param'][0]['Inpar']:
|
||||
if i == 'd_num':
|
||||
Output_dict['Type'].append('Number of events')
|
||||
Output_dict['label'].append('Ev_Num')
|
||||
elif i == 'dv':
|
||||
Output_dict['Type'].append('Volume[m3]')
|
||||
Output_dict['label'].append('Vol')
|
||||
elif i == 'Mo':
|
||||
Output_dict['Type'].append('Seismic moment')
|
||||
Output_dict['label'].append('Mo')
|
||||
elif i == 'SER':
|
||||
Output_dict['Type'].append('Seismic efficiency ratio')
|
||||
Output_dict['label'].append('SER')
|
||||
|
||||
Output_dict['b_method'].append(None)
|
||||
Output_dict['cl'].append(None)
|
||||
c_out += 1
|
||||
|
||||
# Functions ------------------------------
|
||||
# Computing in extending time or time window
|
||||
def Feature_in_Time(In_arr):
|
||||
SER_l = 0
|
||||
SER_c = 0
|
||||
i_row = 0
|
||||
for i in np.arange(1,Times):
|
||||
# Defining time window and data
|
||||
if time_win_type == 0:
|
||||
ModelClass.time_win = i*time_step
|
||||
candidate_events = CandidateEventsTS(Cat, i*time_step, None, i*time_step)
|
||||
else:
|
||||
candidate_events = CandidateEventsTS(Cat, i*time_step, None, time_win)
|
||||
data = candidate_events.filter_data()
|
||||
|
||||
# USER: Check if cumulative dv is correctly computed !!!
|
||||
end_time_indx = Find_idx4Time(Hyd[:,0], i*time_step)
|
||||
# ModelClass.dv = np.sum(Hyd[:end_time_indx,1])
|
||||
ModelClass.dv = np.trapz(Hyd[:end_time_indx,1], Hyd[:end_time_indx,0])/60
|
||||
|
||||
if len(data) > Feat_dic['Param'][0]['ev_limit'] and ModelClass.dv > 0:
|
||||
ModelClass.Mo = np.sum(10**(1.5*data[:end_time_indx,5]+9.1))
|
||||
if f_indx != 5: # Parameters have not been assinged for f_index == 5
|
||||
SER_c = ModelClass.Mo/(2.0*ModelClass.G*ModelClass.dv)
|
||||
SER_l = np.max((SER_c, SER_l))
|
||||
ModelClass.SER = SER_l
|
||||
ModelClass.data = data
|
||||
|
||||
In_arr[i_row,0] = i # index
|
||||
In_arr[i_row,1] = i*time_step # Currecnt time
|
||||
c = 2
|
||||
if any(Feat_dic['Param'][0]['b_method']) and any(Feat_dic['Param'][0]['cl']):
|
||||
for ii in range(len(Feat_dic['Param'][0]['b_method'])):
|
||||
ModelClass.b_method = Feat_dic['Param'][0]['b_method'][ii]
|
||||
for jj in range(len(Feat_dic['Param'][0]['cl'])): # f_index == 4
|
||||
ModelClass.cl = Feat_dic['Param'][0]['cl'][jj]
|
||||
Out = ModelClass.ComputeModel()
|
||||
if jj == 0:
|
||||
In_arr[i_row,c:c+f_num] = Out
|
||||
c += f_num
|
||||
else:
|
||||
In_arr[i_row,c:c+2] = Out[-2:]
|
||||
c += 2
|
||||
elif any(Feat_dic['Param'][0]['b_method']): # f_index == 1, 2
|
||||
for ii in range(len(Feat_dic['Param'][0]['b_method'])):
|
||||
ModelClass.b_method = Feat_dic['Param'][0]['b_method'][ii]
|
||||
In_arr[i_row,c:c+f_num] = ModelClass.ComputeModel()
|
||||
c += f_num
|
||||
else: # f_index = 0, 3, 5
|
||||
In_arr[i_row,c:c+f_num] = ModelClass.ComputeModel()
|
||||
c += f_num
|
||||
# Compute true maximum magnitude in the data
|
||||
In_arr[i_row,c] = np.max(data[:end_time_indx,5])
|
||||
c += 1
|
||||
|
||||
if Inpar:
|
||||
for ii in range(len(Feat_dic['Param'][0]['Inpar'])): # Add input parameters
|
||||
if Feat_dic['Param'][0]['Inpar'][ii] == 'd_num':
|
||||
In_arr[i_row,c+ii] = data.shape[0]
|
||||
elif Feat_dic['Param'][0]['Inpar'][ii] == 'dv':
|
||||
In_arr[i_row,c+ii] = ModelClass.dv
|
||||
elif Feat_dic['Param'][0]['Inpar'][ii] == 'Mo':
|
||||
In_arr[i_row,c+ii] = ModelClass.Mo
|
||||
elif Feat_dic['Param'][0]['Inpar'][ii] == 'SER':
|
||||
if ModelClass.SER:
|
||||
In_arr[i_row,c+ii] = ModelClass.SER
|
||||
i_row += 1
|
||||
|
||||
return In_arr[:i_row,:]
|
||||
|
||||
# Run functions based on the configurations -------------------
|
||||
# Computing model
|
||||
if time_step_in_hour > time_win_in_hours:
|
||||
raise ValueError('Time steps should be <= time window.')
|
||||
|
||||
if (time_win_in_hours+time_step_in_hour)*3600 > np.max(Cat[:,4]):
|
||||
raise ValueError('Time window and time steps are like that no more than three computations is possible. Use smaller value for either time window or time step.')
|
||||
|
||||
time_step = time_step_in_hour*3600
|
||||
|
||||
if End_time:
|
||||
if End_time*24*3600 > np.max(Cat[:,4])+24*3600:
|
||||
raise ValueError(f'End_time is longer than the maximum time of catalog, which is {np.ceil(np.max(Cat[:,4])/24/3600)} day!')
|
||||
elif time_step > 0:
|
||||
Times = int(np.floor((End_time*24*3600 - Cat[0,4]) / time_step))
|
||||
else:
|
||||
Times = 2
|
||||
time_step = time_win
|
||||
elif time_step > 0:
|
||||
Times = int(np.floor((np.max(Cat[:,4]) - Cat[0,4]) / time_step))
|
||||
else:
|
||||
Times = 2
|
||||
time_step = time_win
|
||||
Model_Param_array = np.zeros((Times,c_out))
|
||||
logger.info("Computing input parameter(s) and the model(s)")
|
||||
Model_Param_array = Feature_in_Time(Model_Param_array)
|
||||
|
||||
# Plotting
|
||||
if Plot_flag > 0:
|
||||
if Model_Param_array.any():
|
||||
logger.info("Plotting results")
|
||||
|
||||
import Mmax_plot # Import locally to ensure Mmax_plot is required only when Plot_flag > 0
|
||||
Mmax_plot.Plot_feature(Model_Param_array, Output_dict)
|
||||
else:
|
||||
logger.info("Model_Param_array is empty or not enough values to plot. Check 'csv' file.")
|
||||
|
||||
# Saving
|
||||
logger.info("Saving results")
|
||||
|
||||
# Save models and parameters in
|
||||
def OneLineHeader(loc):
|
||||
l = Output_dict['Type'][loc]
|
||||
if Output_dict['b_method'][loc]:
|
||||
if Output_dict['label'][loc] != 'b_value' and Output_dict['label'][loc] != 'b_std_err' and Output_dict['label'][loc] != 'M_std_err':
|
||||
l += '_'+Output_dict['label'][loc]
|
||||
else:
|
||||
l = Output_dict['label'][loc]
|
||||
if Output_dict['cl'][loc]:
|
||||
l += '(b_method: '+Output_dict['b_method'][loc]+', q='+str(Output_dict['cl'][loc])+')'
|
||||
else:
|
||||
l += '(b_method: '+Output_dict['b_method'][loc]+')'
|
||||
elif Output_dict['label'][loc]:
|
||||
l += '('+ Output_dict['label'][loc] +')'
|
||||
|
||||
return l
|
||||
|
||||
db_df = pd.DataFrame(data = Model_Param_array,
|
||||
columns = [OneLineHeader(i) for i in range(len(Output_dict['Type']))])
|
||||
db_df = db_df.round(4)
|
||||
# db_df.to_excel(cwd+'/Results/'+Full_feat_name+'.xlsx')
|
||||
db_df.to_csv('DATA_Mmax_param.csv', sep=';', index=False)
|
||||
# np.savez_compressed(cwd+'/Results/'+Full_feat_name+'.npz', Model_Param_array = Model_Param_array) # change the name!
|
||||
|
||||
|
||||
if __name__=='__main__':
|
||||
# Input_catalog = 'Data/Cooper_Basin_Catalog_HAB_1_2003_Reprocessed.mat'
|
||||
# Input_injection_rate = 'Data/Cooper_Basin_HAB_1_2003_Injection_Rate.mat'
|
||||
# Model_index = 4
|
||||
# b_value_type = 'TGR'
|
||||
main(Input_catalog, Input_injection_rate, time_win_in_hours, time_step_in_hour, time_win_type,
|
||||
End_time, ev_limit, Inpar, time_inj, time_shut_in, time_big_ev, Model_index,
|
||||
Mc, Mu, G, ssd, C, b_value_type, cl, mag_name)
|
206
src/Mmax_plot.py
206
src/Mmax_plot.py
@ -1,206 +0,0 @@
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
|
||||
|
||||
def Plot_feature(Model_Param_array,
|
||||
Output_dict,
|
||||
End_time=None,
|
||||
time_inj=None,
|
||||
time_shut_in=None,
|
||||
time_big_ev=None,
|
||||
Model_name="",
|
||||
logger=None):
|
||||
"""
|
||||
Plotting function extracted from Mmax.py for plotting models and parameters.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
Model_Param_array : np.ndarray
|
||||
Computed matrix of model parameters as rows in time.
|
||||
Output_dict : dict
|
||||
Dictionary describing each column in Model_Param_array.
|
||||
End_time : float, optional
|
||||
The last time to show in the X-axis (days), if desired.
|
||||
time_inj : float, optional
|
||||
Time of injection start (days), if you want a vertical line.
|
||||
time_shut_in : float, optional
|
||||
Time of shut-in (days), if you want a vertical line.
|
||||
time_big_ev : float, optional
|
||||
Time of large event (days), if you want a vertical line.
|
||||
Model_name : str, optional
|
||||
Model name used for the plot title.
|
||||
logger : logging.Logger, optional
|
||||
Logger for printing info messages. If None, no logging happens.
|
||||
"""
|
||||
myVars = locals()
|
||||
|
||||
# Function for findin min-max of all similar parameters
|
||||
def Extermom4All(Model_Param_array, itr_loc):
|
||||
Mat1D = np.reshape(Model_Param_array[:,itr_loc], -1)
|
||||
NotNone = np.isfinite(Mat1D)
|
||||
if np.min(Mat1D[NotNone])>0:
|
||||
return [np.min(Mat1D[NotNone])*0.95, np.max(Mat1D[NotNone])*1.05]
|
||||
elif np.min(Mat1D[NotNone])<0 and np.max(Mat1D[NotNone])>0:
|
||||
return [np.min(Mat1D[NotNone])*1.05, np.max(Mat1D[NotNone])*1.05]
|
||||
elif np.max(Mat1D[NotNone])<0:
|
||||
return [np.min(Mat1D[NotNone])*1.05, np.max(Mat1D[NotNone])*0.95]
|
||||
|
||||
# Function for setting relevant lagends in the plot
|
||||
def Legend_label(loc):
|
||||
l = Output_dict_c['label'][loc]
|
||||
if Output_dict_c['b_method'][loc]:
|
||||
if Output_dict_c['cl'][loc]:
|
||||
l+='('+Output_dict_c['b_method'][loc]+', cl='+str(Output_dict_c['cl'][loc])+')'
|
||||
else:
|
||||
l+='('+Output_dict_c['b_method'][loc]+')'
|
||||
|
||||
return l
|
||||
|
||||
c_NotNone = [] # Removing all parameters with None or constant value
|
||||
for i in range(Model_Param_array.shape[1]):
|
||||
NotNone = np.isfinite(Model_Param_array[:,i])
|
||||
Eq_value = np.mean(Model_Param_array[:,i])
|
||||
if any(NotNone) and Eq_value != Model_Param_array[0,i]:
|
||||
c_NotNone.append(i)
|
||||
else:
|
||||
logger.info(f"No-PLOT: All values of {Output_dict['Type'][i]} are {Model_Param_array[0,i]}!")
|
||||
|
||||
if len(c_NotNone) > 1:
|
||||
Model_Param_array = Model_Param_array[:,c_NotNone]
|
||||
# New output dictionary based on valid parameters for plotting
|
||||
Output_dict_c = {'Type':[], 'label':[], 'b_method':[], 'cl':[]}
|
||||
for i in range(len(c_NotNone)):
|
||||
Output_dict_c['Type'].append(Output_dict['Type'][c_NotNone[i]])
|
||||
Output_dict_c['label'].append(Output_dict['label'][c_NotNone[i]])
|
||||
Output_dict_c['b_method'].append(Output_dict['b_method'][c_NotNone[i]])
|
||||
Output_dict_c['cl'].append(Output_dict['cl'][c_NotNone[i]])
|
||||
|
||||
coloring=['blue','g','r','c','m','y',
|
||||
'brown', 'darkolivegreen', 'teal', 'steelblue', 'slateblue',
|
||||
'purple', 'darksalmon', '#c5b0d5', '#c49c94',
|
||||
'#e377c2', '#f7b6d2', '#7f7f7f', '#c7c7c7', '#bcbd22', '#dbdb8d',
|
||||
'#17becf', '#9edae5',
|
||||
'brown', 'darkolivegreen', 'teal', 'steelblue', 'slateblue',]
|
||||
# All parameters to be plotted
|
||||
All_vars = Output_dict_c['Type'][2:]
|
||||
Uniqe_var = list(dict.fromkeys([s for s in All_vars if 'Standard Error' not in s])) #list(set(All_vars))
|
||||
|
||||
# defining handels and labels to make final legend
|
||||
All_handels = ['p0']
|
||||
for i in range(1,len(All_vars)):
|
||||
All_handels.append('p'+str(i))
|
||||
handels = []
|
||||
labels = []
|
||||
|
||||
# itr_loc: location of paramteres with similar type
|
||||
itr_loc = np.where(np.array(All_vars) == Uniqe_var[0])[0]+2
|
||||
fig, myVars[Output_dict_c['Type'][0]] = plt.subplots(1,1,figsize=(8+int(len(All_vars)/3),6))
|
||||
fig.subplots_adjust(right=1-len(Uniqe_var)*0.09)
|
||||
if Output_dict_c['label'][itr_loc[0]] == 'True Max-Mag': # plot with dash-line
|
||||
myVars[All_handels[itr_loc[0]-2]], = myVars[Output_dict_c['Type'][0]].plot(Model_Param_array[:,1]/24/3600, Model_Param_array[:,itr_loc[0]], c= 'k', ls='--', lw = 2)
|
||||
else:
|
||||
myVars[All_handels[itr_loc[0]-2]], = myVars[Output_dict_c['Type'][0]].plot(Model_Param_array[:,1]/24/3600, Model_Param_array[:,itr_loc[0]], c= coloring[itr_loc[0]])
|
||||
handels.append(All_handels[itr_loc[0]-2])
|
||||
labels.append(Legend_label(itr_loc[0]))
|
||||
myVars[Output_dict_c['Type'][0]].set_ylabel(Output_dict_c['Type'][itr_loc[0]])
|
||||
myVars[Output_dict_c['Type'][0]].set_ylim(Extermom4All(Model_Param_array, itr_loc)[0], Extermom4All(Model_Param_array, itr_loc)[1])
|
||||
myVars[Output_dict_c['Type'][0]].set_xlabel('Day (From start of the recording)')
|
||||
if End_time:
|
||||
myVars[Output_dict_c['Type'][0]].set_xlim(0,End_time)
|
||||
|
||||
# Plotting statndard error (if exists)
|
||||
if itr_loc[0]+1 < len(Output_dict_c['Type']) and Output_dict_c['Type'][itr_loc[0]+1] == 'Standard Error':
|
||||
myVars[Output_dict_c['Type'][0]].fill_between(Model_Param_array[:,1]/24/3600,
|
||||
Model_Param_array[:,itr_loc[0]] - Model_Param_array[:,itr_loc[0]+1],
|
||||
Model_Param_array[:,itr_loc[0]] + Model_Param_array[:,itr_loc[0]+1], color= coloring[itr_loc[0]], alpha=0.1)
|
||||
# Plotting similar parameters on one axis
|
||||
for j in range(1,len(itr_loc)):
|
||||
if Output_dict_c['label'][itr_loc[j]] == 'True Max-Mag': # plot with dash-line
|
||||
myVars[All_handels[itr_loc[j]-2]], = myVars[Output_dict_c['Type'][0]].plot(Model_Param_array[:,1]/24/3600, Model_Param_array[:,itr_loc[j]], c= 'k', ls='--', lw = 2)
|
||||
else:
|
||||
myVars[All_handels[itr_loc[j]-2]], = myVars[Output_dict_c['Type'][0]].plot(Model_Param_array[:,1]/24/3600, Model_Param_array[:,itr_loc[j]], c= coloring[itr_loc[j]])
|
||||
handels.append(All_handels[itr_loc[j]-2])
|
||||
labels.append(Legend_label(itr_loc[j]))
|
||||
|
||||
# Plotting statndard error (if exists)
|
||||
if itr_loc[0]+1 < len(Output_dict_c['Type']) and Output_dict_c['Type'][itr_loc[j]+1] == 'Standard Error':
|
||||
myVars[Output_dict_c['Type'][0]].fill_between(Model_Param_array[:,1]/24/3600,
|
||||
Model_Param_array[:,itr_loc[j]] - Model_Param_array[:,itr_loc[j]+1],
|
||||
Model_Param_array[:,itr_loc[j]] + Model_Param_array[:,itr_loc[j]+1], color= coloring[itr_loc[j]], alpha=0.1)
|
||||
first_itr = 0
|
||||
# Check if there is any more parameter to be plotted in second axes
|
||||
# The procedure is similar to last plots.
|
||||
if len(Uniqe_var) > 1:
|
||||
for i in range(1,len(Uniqe_var)):
|
||||
itr_loc = np.where(np.array(All_vars) == Uniqe_var[i])[0]+2
|
||||
myVars[Uniqe_var[i]] = myVars[Output_dict_c['Type'][0]].twinx()
|
||||
# if it is third or more axis, make a distance between them
|
||||
if first_itr == 0:
|
||||
first_itr += 1
|
||||
set_right = 1
|
||||
else:
|
||||
set_right = 1 + first_itr*0.2
|
||||
first_itr += 1
|
||||
myVars[Uniqe_var[i]].spines.right.set_position(("axes", set_right))
|
||||
if Output_dict_c['label'][itr_loc[0]] == 'True Max-Mag': # plot with dash-line
|
||||
myVars[All_handels[itr_loc[0]-2]], = myVars[Uniqe_var[i]].plot(Model_Param_array[:,1]/24/3600, Model_Param_array[:,itr_loc[0]], c= 'k', ls='--', lw = 2)
|
||||
else:
|
||||
myVars[All_handels[itr_loc[0]-2]], = myVars[Uniqe_var[i]].plot(Model_Param_array[:,1]/24/3600, Model_Param_array[:,itr_loc[0]], c= coloring[itr_loc[0]])
|
||||
handels.append(All_handels[itr_loc[0]-2])
|
||||
labels.append(Legend_label(itr_loc[0]))
|
||||
myVars[Uniqe_var[i]].set_ylabel(Output_dict_c['Type'][itr_loc[0]])
|
||||
myVars[Uniqe_var[i]].yaxis.label.set_color(coloring[itr_loc[0]])
|
||||
myVars[Uniqe_var[i]].spines["right"].set_edgecolor(coloring[itr_loc[0]])
|
||||
myVars[Uniqe_var[i]].tick_params(axis='y', colors= coloring[itr_loc[0]])
|
||||
myVars[Uniqe_var[i]].set_ylim(Extermom4All(Model_Param_array, itr_loc)[0], Extermom4All(Model_Param_array, itr_loc)[1])
|
||||
if itr_loc[0]+1 < len(Output_dict_c['Type']) and Output_dict_c['Type'][itr_loc[0]+1] == 'Standard Error':
|
||||
myVars[Uniqe_var[i]].fill_between(Model_Param_array[:,1]/24/3600,
|
||||
Model_Param_array[:,itr_loc[0]] - Model_Param_array[:,itr_loc[0]+1],
|
||||
Model_Param_array[:,itr_loc[0]] + Model_Param_array[:,itr_loc[0]+1], color= coloring[itr_loc[0]], alpha=0.1)
|
||||
|
||||
for j in range(1,len(itr_loc)):
|
||||
if Output_dict_c['label'][itr_loc[j]] == 'True Max-Mag': # plot with dash-line
|
||||
myVars[All_handels[itr_loc[j]-2]], = myVars[Uniqe_var[i]].plot(Model_Param_array[:,1]/24/3600, Model_Param_array[:,itr_loc[j]], c= 'k', ls = '--', lw = 2)
|
||||
else:
|
||||
myVars[All_handels[itr_loc[j]-2]], = myVars[Uniqe_var[i]].plot(Model_Param_array[:,1]/24/3600, Model_Param_array[:,itr_loc[j]], c= coloring[itr_loc[j]])
|
||||
handels.append(All_handels[itr_loc[j]-2])
|
||||
labels.append(Legend_label(itr_loc[j]))
|
||||
if itr_loc[j]+1 < len(Output_dict_c['Type']) and Output_dict_c['Type'][itr_loc[j]+1] == 'Standard Error':
|
||||
myVars[Uniqe_var[i]].fill_between(Model_Param_array[:,1]/24/3600,
|
||||
Model_Param_array[:,itr_loc[j]] - Model_Param_array[:,itr_loc[j]+1],
|
||||
Model_Param_array[:,itr_loc[j]] + Model_Param_array[:,itr_loc[j]+1], color= coloring[itr_loc[j]], alpha=0.1)
|
||||
|
||||
# If there are timing, plot them as vertical lines
|
||||
if time_inj:
|
||||
myVars['l1'], = plt.plot([time_inj,time_inj], [Extermom4All(Model_Param_array, itr_loc)[0],Extermom4All(Model_Param_array, itr_loc)[1]], ls='--', c='k')
|
||||
handels.append('l1')
|
||||
labels.append('Start-inj')
|
||||
if time_shut_in:
|
||||
myVars['l2'], = plt.plot([time_shut_in,time_shut_in], [Extermom4All(Model_Param_array, itr_loc)[0],Extermom4All(Model_Param_array, itr_loc)[1]], ls='-.', c='k')
|
||||
handels.append('l2')
|
||||
labels.append('Shut-in')
|
||||
if time_big_ev:
|
||||
myVars['l3'], = plt.plot([time_big_ev,time_big_ev], [Extermom4All(Model_Param_array, itr_loc)[0],Extermom4All(Model_Param_array, itr_loc)[1]], ls='dotted', c='k')
|
||||
handels.append('l3')
|
||||
labels.append('Large-Ev')
|
||||
|
||||
box = myVars[Output_dict_c['Type'][0]].get_position()
|
||||
if len(handels) < 6:
|
||||
myVars[Output_dict_c['Type'][0]].set_position([box.x0, box.y0 + box.height * 0.1,
|
||||
box.width, box.height * 0.9])
|
||||
plt.legend([myVars[ii] for ii in handels], labels, loc='upper center',
|
||||
bbox_to_anchor=(0.5+0.06*first_itr, -0.15), fancybox=True, shadow=True, ncol=len(handels))
|
||||
elif len(handels) < 13:
|
||||
myVars[Output_dict_c['Type'][0]].set_position([box.x0, box.y0 + box.height * 0.04*int(len(handels)/2),
|
||||
box.width, box.height * (1 - 0.04*int(len(handels)/2))])
|
||||
plt.legend([myVars[ii] for ii in handels], labels, loc='upper center',
|
||||
bbox_to_anchor=(0.5+0.1*first_itr, -0.04*int(len(handels)/2)), fancybox=True, shadow=True, ncol=int(len(handels)/2)+1, handleheight=2)
|
||||
else:
|
||||
myVars[Output_dict_c['Type'][0]].set_position([box.x0, box.y0 + box.height * 0.04*int(len(handels)/2),
|
||||
box.width, box.height * (1 - 0.04*int(len(handels)/2))])
|
||||
plt.legend([myVars[ii] for ii in handels], labels, loc='upper center',
|
||||
bbox_to_anchor=(0.6+0.1*first_itr, -0.04*int(len(handels)/2)), fancybox=True, shadow=True, ncol=int(len(handels)/2)+1, handleheight=2)
|
||||
plt.title(Model_name)
|
||||
# plt.savefig(cwd+'/Results/'+Model_name+'.png', dpi=300)
|
||||
plt.savefig('PLOT_Mmax_param.png', dpi=300)
|
||||
# plt.show()
|
582
src/SpectralAnalysis.py
Normal file
582
src/SpectralAnalysis.py
Normal file
@ -0,0 +1,582 @@
|
||||
import copy
|
||||
import csv
|
||||
from typing import List, Optional
|
||||
from json_writer import JsonWriter
|
||||
|
||||
from scipy import integrate
|
||||
from scipy.stats import zscore
|
||||
import numpy as np
|
||||
|
||||
from obspy import Stream, UTCDateTime
|
||||
from obspy.core.event import Event, Pick
|
||||
from obspy.geodetics import gps2dist_azimuth
|
||||
|
||||
from tau_p_raytracing import TauPRayTracer
|
||||
from sp_jk import sp_jk
|
||||
from opt_algorithms import OptNelderMead
|
||||
from SpectralParameters import SpectralParams, EventSpectralParams
|
||||
from amplitude_spectra import calculate_amp_spectra
|
||||
from spectral_definitions import (K_MADARIAGA_P, K_MADARIAGA_S, K_BRUNE, G_P, G_S, spectrum2moment, calc_stress_drop,
|
||||
calc_source_size, mm)
|
||||
|
||||
class SpectralAnalysis:
|
||||
"""
|
||||
Application for spectral analysis for P- or S-waves. It uses JK integrals and spectral fitting with simplex
|
||||
optimization algorithm.
|
||||
|
||||
JK integrals method returns seismic moment, moment magnitude and corner frequency.
|
||||
Spectral fitting uses these results as input. It returns seismic moment, moment magnitude and corner frequency
|
||||
and additionally Q parameter (i.e. quality=1/dumping). In fitting procedure theoretical spectrum
|
||||
(Brune or Boatwright corrected for Q) is matched to calculated amplitude spectrum of seismic signal.
|
||||
|
||||
These methods are used for each station separately and finally mean values are calculated. Outliers (estimated with
|
||||
z-sqore method) are not used for mean value calculations.
|
||||
|
||||
Application enables:
|
||||
- 1D velocity model for travel time calculations. It uses tau_p raytracer from ObsPy
|
||||
however for spectral parameters estimation it uses constant parameters i.e. constant S wave velocity and
|
||||
constant gp, gs and density.
|
||||
- constant velocities for travel time calculations in case of missing 1D velocity model.
|
||||
|
||||
Features of the algorithm:
|
||||
1. Amplitude spectra are calculated as geometric mean of all traces (e.g. three channels) of seismic station.
|
||||
2. Application requires P wave pick for P-waves analysis and P or S- wave pick for S wave analysis
|
||||
(it calculates theoretical S wave pick in case it is not available).
|
||||
3. Applications calculates signal-to-noise spectral ratio and removes either station (based on mean ratio)
|
||||
or particular frequencies (based on S/N ratio for this frequency).
|
||||
"""
|
||||
|
||||
def __init__(self, stream: Stream, event: Event, inventory, config, logger):
|
||||
self.stream = stream
|
||||
self.event = event
|
||||
self.inventory = inventory
|
||||
self.config = config
|
||||
self.logger = logger
|
||||
self.raytracer = self._initialize_raytracer()
|
||||
self.stations = self._get_unique_stations()
|
||||
self.solutions_jk_P = []
|
||||
self.solutions_sp_fit_P = []
|
||||
self.solutions_jk_S = []
|
||||
self.solutions_sp_fit_S = []
|
||||
# filenames
|
||||
self.P_WAVE_SP_FITTING_RESULTS_JSON = config.get("P_WAVE_SP_FITTING_RESULTS_JSON")
|
||||
self.S_WAVE_SP_FITTING_RESULTS_JSON = config.get("S_WAVE_SP_FITTING_RESULTS_JSON")
|
||||
self.P_WAVE_JK_RESULTS = config.get("P_WAVE_JK_RESULTS")
|
||||
self.S_WAVE_JK_RESULTS = config.get("S_WAVE_JK_RESULTS")
|
||||
self.P_WAVE_SP_FITTING_RESULTS = config.get("P_WAVE_SP_FITTING_RESULTS")
|
||||
self.S_WAVE_SP_FITTING_RESULTS = config.get("S_WAVE_SP_FITTING_RESULTS")
|
||||
self.EVENT_RESULTS = config.get("EVENT_RESULTS")
|
||||
|
||||
def _initialize_raytracer(self) -> Optional[TauPRayTracer]:
|
||||
if self.config.get("raytrace"):
|
||||
return TauPRayTracer(self.config.get("velocity_mat_file"))
|
||||
return None
|
||||
|
||||
def run(self):
|
||||
|
||||
for station in self.stations:
|
||||
self.logger.info(80 * "#")
|
||||
self.logger.info(f"Running spectral analysis for station: {station}")
|
||||
|
||||
# Selecting station data
|
||||
station_stream = self.stream.select(station=station)
|
||||
if len(station_stream) > 3:
|
||||
self.logger.warning(f"{station} has more than 3 waveform channels loaded. Picks at each station must be on data from the same sensor. Skipping station {station}...")
|
||||
continue
|
||||
try:
|
||||
station_inv = self.inventory.select(station=station, time=station_stream[0].stats.starttime)[0][0]
|
||||
except IndexError:
|
||||
self.logger.warning(f"{station} not in inventory")
|
||||
continue
|
||||
# Stream preprocessing
|
||||
station_stream = self._preprocess_stream(station_stream)
|
||||
|
||||
if station_stream:
|
||||
hor_distance, ver_distance = self._calculate_distance(station_inv)
|
||||
p_travel_time, s_travel_time = self._calculate_travel_times(horizontal_distance=hor_distance,
|
||||
vertical_distance=ver_distance,
|
||||
station_inv=station_inv)
|
||||
pick_p = self._find_pick(station, self.config.get("p_phase_hint"))
|
||||
pick_s = self._find_pick(station, self.config.get("s_phase_hint"))
|
||||
|
||||
if pick_p:
|
||||
delta_ps = s_travel_time - p_travel_time
|
||||
if self.config.get("P_wave_analysis"):
|
||||
self._perform_p_wave_analysis(station_stream=station_stream, pick_p=pick_p, delta_ps=delta_ps,
|
||||
p_travel_time=p_travel_time, distance=hor_distance)
|
||||
self.logger.info(80 * "-")
|
||||
|
||||
if self.config.get("S_wave_analysis"):
|
||||
self._perform_s_wave_analysis(station_stream=station_stream, pick_s=pick_s, pick_p=pick_p,
|
||||
delta_ps=delta_ps, s_travel_time=s_travel_time,
|
||||
distance=hor_distance)
|
||||
self.logger.info(80 * "-")
|
||||
|
||||
self._save_results_to_json()
|
||||
self._save_results_to_csv(filename=self.EVENT_RESULTS)
|
||||
self._save_results_to_station_csvs()
|
||||
|
||||
def _save_results_to_json(self):
|
||||
# saving solutions to JSON file
|
||||
solutions_data = [
|
||||
(self.solutions_sp_fit_P, self.P_WAVE_SP_FITTING_RESULTS_JSON),
|
||||
(self.solutions_sp_fit_S, self.S_WAVE_SP_FITTING_RESULTS_JSON)
|
||||
]
|
||||
|
||||
for solutions, filename in solutions_data:
|
||||
if len(solutions)>0: #create a file only if there are results to write
|
||||
JsonWriter(solutions=solutions, filename=filename, logger=self.logger).save()
|
||||
else:
|
||||
self.logger.info(f"No output; nothing to write to {filename}")
|
||||
|
||||
|
||||
def _save_results_to_station_csvs(self):
|
||||
# Zdefiniowanie danych dla poszczególnych plików
|
||||
solutions_data = [
|
||||
(self.solutions_jk_P, self.P_WAVE_JK_RESULTS),
|
||||
(self.solutions_jk_S, self.S_WAVE_JK_RESULTS),
|
||||
(self.solutions_sp_fit_P, self.P_WAVE_SP_FITTING_RESULTS),
|
||||
(self.solutions_sp_fit_S, self.S_WAVE_SP_FITTING_RESULTS)
|
||||
]
|
||||
|
||||
# Dla każdego zestawu wyników zapisujemy osobny plik CSV
|
||||
for solutions, filename in solutions_data:
|
||||
# Otwieranie pliku CSV do zapisu
|
||||
if len(solutions)>0: #create a file only if there are results to write
|
||||
with open(filename, mode='w', newline='') as csv_file:
|
||||
writer = csv.writer(csv_file)
|
||||
|
||||
# Zapis nagłówków
|
||||
headers = ["station_name", "mo", "fo", "q", "mw", "source_size", "stress_drop"]
|
||||
writer.writerow(headers)
|
||||
|
||||
# Zapis danych dla każdej stacji
|
||||
for solution in solutions:
|
||||
station_name = solution[0] # Zakładam, że nazwa stacji jest w solution[0]
|
||||
parameters = solution[1] # Zakładam, że parametry są w solution[1]
|
||||
|
||||
# Tworzymy wiersz z wartościami parametrów
|
||||
row = [
|
||||
station_name,
|
||||
parameters.mo,
|
||||
parameters.fo,
|
||||
parameters.q,
|
||||
parameters.mw,
|
||||
parameters.source_size,
|
||||
parameters.stress_drop
|
||||
]
|
||||
|
||||
# Zapisujemy wiersz do pliku CSV
|
||||
writer.writerow(row)
|
||||
else:
|
||||
self.logger.info(f"No output; nothing to write to {filename}")
|
||||
|
||||
|
||||
def _save_results_to_csv(self, filename):
|
||||
# Nagłówki kolumn
|
||||
headers = ["Method", "M0", "E M0", "F0", "E F0", "Q", "E Q", "Mw", "r", "E r", "Stress drop", "E stress drop"]
|
||||
|
||||
# Zbieranie danych z czterech źródeł
|
||||
solutions_jk_P = self._return_event_spec_params(solutions=self.solutions_jk_P)
|
||||
solutions_jk_S = self._return_event_spec_params(solutions=self.solutions_jk_S)
|
||||
solutions_sp_fit_P = self._return_event_spec_params(solutions=self.solutions_sp_fit_P)
|
||||
solutions_sp_fit_S = self._return_event_spec_params(solutions=self.solutions_sp_fit_S)
|
||||
|
||||
# Checking for None values
|
||||
if solutions_jk_P:
|
||||
data_jk_P = [
|
||||
"P-waves, JK integrals", solutions_jk_P.mo, solutions_jk_P.mo_e, solutions_jk_P.fo, solutions_jk_P.fo_e,
|
||||
None, None, solutions_jk_P.mw, solutions_jk_P.source_size,
|
||||
solutions_jk_P.source_size_e, solutions_jk_P.stress_drop, solutions_jk_P.stress_drop_e
|
||||
]
|
||||
else:
|
||||
data_jk_P = [
|
||||
"P-waves, JK integrals", None, None, None, None,
|
||||
None, None, None, None,
|
||||
None, None, None
|
||||
]
|
||||
|
||||
if solutions_jk_S:
|
||||
data_jk_S = [
|
||||
"S-waves, JK integrals", solutions_jk_S.mo, solutions_jk_S.mo_e, solutions_jk_S.fo, solutions_jk_S.fo_e,
|
||||
None, None, solutions_jk_S.mw, solutions_jk_S.source_size,
|
||||
solutions_jk_S.source_size_e, solutions_jk_S.stress_drop, solutions_jk_S.stress_drop_e
|
||||
]
|
||||
else:
|
||||
data_jk_S = [
|
||||
"S-waves, JK integrals", None, None, None, None,
|
||||
None, None, None, None,
|
||||
None, None, None
|
||||
]
|
||||
|
||||
if solutions_sp_fit_P:
|
||||
data_sp_fit_P = [
|
||||
"P-waves, spectrum fitting", solutions_sp_fit_P.mo, solutions_sp_fit_P.mo_e, solutions_sp_fit_P.fo, solutions_sp_fit_P.fo_e,
|
||||
solutions_sp_fit_P.q, solutions_sp_fit_P.q_e, solutions_sp_fit_P.mw, solutions_sp_fit_P.source_size,
|
||||
solutions_sp_fit_P.source_size_e, solutions_sp_fit_P.stress_drop, solutions_sp_fit_P.stress_drop_e
|
||||
]
|
||||
else:
|
||||
data_sp_fit_P = [
|
||||
"P-waves, spectrum fitting", None, None, None, None,
|
||||
None, None, None, None,
|
||||
None, None, None
|
||||
]
|
||||
|
||||
if solutions_sp_fit_S:
|
||||
data_sp_fit_S = [
|
||||
"S-waves, spectrum fitting", solutions_sp_fit_S.mo, solutions_sp_fit_S.mo_e, solutions_sp_fit_S.fo, solutions_sp_fit_S.fo_e,
|
||||
solutions_sp_fit_S.q, solutions_sp_fit_S.q_e, solutions_sp_fit_S.mw, solutions_sp_fit_S.source_size,
|
||||
solutions_sp_fit_S.source_size_e, solutions_sp_fit_S.stress_drop, solutions_sp_fit_S.stress_drop_e
|
||||
]
|
||||
else:
|
||||
data_sp_fit_S = [
|
||||
"S-waves, spectrum fitting", None, None, None, None,
|
||||
None, None, None, None,
|
||||
None, None, None
|
||||
]
|
||||
|
||||
data = [data_jk_P, data_jk_S,data_sp_fit_P, data_sp_fit_S]
|
||||
|
||||
# Zapis do pliku CSV
|
||||
with open(filename, mode='w', newline='') as file:
|
||||
writer = csv.writer(file)
|
||||
|
||||
# Zapis nagłówków
|
||||
writer.writerow(headers)
|
||||
|
||||
# Zapis danych
|
||||
writer.writerows(data)
|
||||
|
||||
|
||||
def _write_event_parameters_to_file(self):
|
||||
# Define the content to be written to the file
|
||||
content = (
|
||||
f"{20 * '#'} RESULTS {20 * '#'}\n"
|
||||
f"{80 * '-'}\n"
|
||||
"Event parameters P_jk:\n"
|
||||
f"{self._return_event_spec_params(solutions=self.solutions_jk_P)}\n"
|
||||
"Event parameters P_sp_fit:\n"
|
||||
f"{self._return_event_spec_params(solutions=self.solutions_sp_fit_P)}\n"
|
||||
"Event parameters S_jk:\n"
|
||||
f"{self._return_event_spec_params(solutions=self.solutions_jk_S)}\n"
|
||||
"Event parameters S_sp_fit:\n"
|
||||
f"{self._return_event_spec_params(solutions=self.solutions_sp_fit_S)}\n"
|
||||
f"{80 * '-'}\n"
|
||||
)
|
||||
|
||||
# Write the content to the file
|
||||
with open(self.EVENT_RESULTS, 'w') as file:
|
||||
file.write(content)
|
||||
|
||||
def _get_unique_stations(self) -> List[str]:
|
||||
return sorted(set([tr.stats.station for tr in self.stream]))
|
||||
|
||||
def _preprocess_stream(self, stream: Stream) -> Stream:
|
||||
stream.detrend("linear")
|
||||
try:
|
||||
stream.remove_response(inventory=self.inventory, output="DISP")
|
||||
except Exception as e:
|
||||
self.logger.warning(f"{e} No instrument correction - applied integration to obtain displacement signal")
|
||||
stream.integrate(method="cumtrapz")
|
||||
|
||||
return stream.filter(
|
||||
type="bandpass",
|
||||
freqmin=self.config.get("freq_min"),
|
||||
freqmax=self.config.get("freq_max"),
|
||||
corners=2,
|
||||
zerophase=True
|
||||
)
|
||||
|
||||
def _calculate_distance(self, station_inv) -> list[float, float]:
|
||||
|
||||
try:
|
||||
horizontal_distance = gps2dist_azimuth(
|
||||
self.config.get("latitude"), self.config.get("longitude"), station_inv.latitude,
|
||||
station_inv.longitude
|
||||
)[0]
|
||||
if self.config.get("allow_station_elev"):
|
||||
receiver_depth_in_m = station_inv.elevation
|
||||
else:
|
||||
receiver_depth_in_m = 0
|
||||
vertical_distance = receiver_depth_in_m + self.config.get("depth")
|
||||
return horizontal_distance, vertical_distance
|
||||
|
||||
except AttributeError as err:
|
||||
(self.logger.error
|
||||
("No preferred origin in quakeML file. Cannot calculate distance between station and origin"))
|
||||
raise AttributeError
|
||||
|
||||
def _calculate_travel_times(self, horizontal_distance: float, vertical_distance, station_inv) -> tuple:
|
||||
if not self.raytracer:
|
||||
vp = self.config.get("vp")
|
||||
vs = self.config.get("vs")
|
||||
distance = (horizontal_distance**2+vertical_distance**2)**0.5
|
||||
p_travel_time = distance / vp
|
||||
s_travel_time = distance / vs
|
||||
else:
|
||||
if self.config.get("allow_station_elev"):
|
||||
receiver_depth_in_km = station_inv.elevation/1000
|
||||
else:
|
||||
receiver_depth_in_km = 0
|
||||
try:
|
||||
p_travel_time = self.raytracer.calculate_arrival(horizontal_distance / 1000,
|
||||
self.config.get("depth") / 1000,
|
||||
receiver_depth_in_km, phase="p").time
|
||||
s_travel_time = self.raytracer.calculate_arrival(horizontal_distance / 1000,
|
||||
self.config.get("depth") / 1000,
|
||||
receiver_depth_in_km, phase="s").time
|
||||
except IndexError:
|
||||
raise Exception("Problem with velocity file. ")
|
||||
return p_travel_time, s_travel_time
|
||||
|
||||
def _find_pick(self, station: str, phase_hint:list) -> Optional[Pick]:
|
||||
for p in self.event.picks:
|
||||
if p.waveform_id['station_code'] == station and p.phase_hint in phase_hint:
|
||||
return p
|
||||
return None
|
||||
|
||||
def _perform_p_wave_analysis(self, station_stream: Stream, pick_p: Pick, delta_ps: float, distance: float,
|
||||
p_travel_time: float):
|
||||
self.logger.info("P wave spectral analysis")
|
||||
self.logger.info(station_stream)
|
||||
|
||||
if delta_ps < self.config.get("window_len"):
|
||||
self.logger.warning("P wave window may overlap S waves")
|
||||
return
|
||||
|
||||
signal_window = self._trim_seismogram(station_stream, pick_p.time,
|
||||
pre_padding=self.config.get("taper_len"),
|
||||
post_padding=self.config.get("window_len") -
|
||||
self.config.get("taper_len"))
|
||||
signal_window = self._window_preprocessing(signal_window)
|
||||
noise_window = self._trim_seismogram(station_stream, pick_p.time,
|
||||
pre_padding=2 * self.config.get("taper_len") +
|
||||
self.config.get("window_len"),
|
||||
post_padding=-2 * self.config.get("taper_len"))
|
||||
noise_window = self._window_preprocessing(noise_window)
|
||||
if len(signal_window) > 0 and len(noise_window) > 0 and pick_p:
|
||||
self._spectral_fitting(signal_window, noise_window, pick_p, distance, p_travel_time)
|
||||
else:
|
||||
self.logger.warning("Not enough data for P wave analysis")
|
||||
|
||||
def _perform_s_wave_analysis(self, station_stream: Stream, pick_p: Pick, pick_s: Pick, delta_ps, distance: float,
|
||||
s_travel_time: float):
|
||||
self.logger.info("S wave spectral analysis")
|
||||
self.logger.info(station_stream)
|
||||
|
||||
if pick_p:
|
||||
noise_window = self._trim_seismogram(station_stream, pick_p.time,
|
||||
pre_padding=2 * self.config.get("taper_len") +
|
||||
self.config.get("window_len"),
|
||||
post_padding=-2 * self.config.get("taper_len"))
|
||||
else:
|
||||
noise_window = self._trim_seismogram(station_stream, station_stream[0].stats.starttime,
|
||||
pre_padding=-2 * self.config.get("taper_len"),
|
||||
post_padding=self.config.get("window_len") +
|
||||
2 * self.config.get("taper_len"))
|
||||
if not pick_s and pick_p:
|
||||
pick_s = copy.copy(pick_p)
|
||||
pick_s.time = pick_s.time + delta_ps
|
||||
pick_s.phase_hint = "S"
|
||||
|
||||
if pick_s:
|
||||
signal_window = self._trim_seismogram(station_stream, pick_s.time,
|
||||
pre_padding=self.config.get("taper_len"),
|
||||
post_padding=self.config.get("window_len")
|
||||
- self.config.get("taper_len"))
|
||||
signal_window = self._window_preprocessing(signal_window)
|
||||
if len(signal_window) > 0 and len(noise_window) > 0:
|
||||
self._spectral_fitting(signal_window, noise_window, pick_s, distance, s_travel_time)
|
||||
|
||||
@staticmethod
|
||||
def _trim_seismogram(station_stream: Stream, pick_time: UTCDateTime, pre_padding=0.5, post_padding=2.6):
|
||||
start_time = pick_time - pre_padding
|
||||
end_time = pick_time + post_padding
|
||||
return station_stream.slice(start_time, end_time)
|
||||
|
||||
def _window_preprocessing(self, signal_window: Stream) -> Stream:
|
||||
return signal_window.taper(type=self.config.get("taper_type"), max_percentage=0.5,
|
||||
max_length=self.config.get("taper_len"))
|
||||
|
||||
@staticmethod
|
||||
def signal2noise(signal_amp_spectra, noise_amp_spectra):
|
||||
# Calculate signal-to-noise ratio
|
||||
noise_integral = integrate.trapezoid(noise_amp_spectra[1], x=noise_amp_spectra[0])
|
||||
signal_integral = integrate.trapezoid(signal_amp_spectra[1], x=signal_amp_spectra[0])
|
||||
signal2noise_ratio = signal_integral / noise_integral
|
||||
return signal2noise_ratio
|
||||
|
||||
def _spectral_fitting(self, signal_window: Stream, noise_window: Stream, pick: Pick, distance: float,
|
||||
travel_time: float):
|
||||
|
||||
# choosing appropriate K value which is related to the source model and type of seismic waves
|
||||
source_model = self.config.get("sp_source_model")
|
||||
if source_model == "Brune":
|
||||
k = K_BRUNE
|
||||
elif source_model == "Madariaga":
|
||||
if pick.phase_hint in self.config.get("p_phase_hint"):
|
||||
k = K_MADARIAGA_P
|
||||
elif pick.phase_hint in self.config.get("s_phase_hint"):
|
||||
k = K_MADARIAGA_S
|
||||
else:
|
||||
self.logger.warning(f"{pick.phase_hint} is a wrong value - pick.phase_hint should be P or S")
|
||||
raise Exception(f"{pick.phase_hint} is a wrong value - pick.phase_hint should be P or S")
|
||||
else:
|
||||
self.logger.warning(f"{source_model} is a wrong value - sp_source_model should be Brune or Madariaga")
|
||||
raise Exception(f"{source_model} is a wrong value - sp_source_model should be Brune or Madariaga")
|
||||
|
||||
# S wave velocity value
|
||||
vs = self.config.get("vs")
|
||||
|
||||
# Calculation of amplitude spectra for signal and noise windows
|
||||
xf, yf = calculate_amp_spectra(station_stream=signal_window)
|
||||
xfn, yfn = calculate_amp_spectra(station_stream=noise_window)
|
||||
|
||||
# Calculation of signal-to-noise ratio
|
||||
signal2noise_ratio = self.signal2noise([xf, yf], [xfn, yfn])
|
||||
self.logger.info(f"S/N: {signal2noise_ratio}")
|
||||
|
||||
# Stopping the analysis when the ratio is too low
|
||||
if signal2noise_ratio < self.config["min_energy_ratio"]:
|
||||
self.logger.warning("Signal to noise ratio is too low")
|
||||
return
|
||||
|
||||
# Setting the weights.
|
||||
weights = np.ones(len(xf))
|
||||
# If the noise on particular frequencies exceed the threshold value, the weights are equal to 0.
|
||||
sn = yf / yfn
|
||||
weights[sn < self.config.get("min_sn_ratio")] = 0
|
||||
|
||||
# Setup initial model from J/K integrals. Initial mo is in displacement units.
|
||||
spectral_level, fo = sp_jk(xf, yf)
|
||||
spectral_params_sp_jk = SpectralParams(mo=spectral_level, fo=fo, q=400, stress_drop=0, source_size=0)
|
||||
|
||||
# Spectral fitting with Simplex. Initial mo is in displacement units.
|
||||
opt_sim = OptNelderMead(spectral_params_sp_jk, freq_bins=xf, amplitude_spectrum=yf, weights=weights,
|
||||
travel_time=travel_time, config=self.config, logger=self.logger)
|
||||
error_sp_fit, solution_sp_fit = opt_sim.run()
|
||||
|
||||
# Recalculation of amplitude spectrum level to seismic moment
|
||||
# for spectral fitting method
|
||||
solution_sp_fit.mo = self._spectrum_to_moment(pick_phase=pick.phase_hint, config=self.config,
|
||||
spectral_level=solution_sp_fit.mo, distance=distance)
|
||||
solution_sp_fit.mw = mm(solution_sp_fit.mo)
|
||||
#Calculation of source size and stress drop for spectral fitting method
|
||||
solution_sp_fit.source_size = calc_source_size(vs, solution_sp_fit.fo, k)
|
||||
solution_sp_fit.stress_drop = calc_stress_drop(seismic_moment=solution_sp_fit.mo, source_radius=solution_sp_fit.source_size)
|
||||
# for J-K integrals method
|
||||
mo = self._spectrum_to_moment(pick_phase=pick.phase_hint, config=self.config,
|
||||
spectral_level=spectral_level, distance=distance)
|
||||
|
||||
source_radius = calc_source_size(vs, fo, k)
|
||||
stress_drop_value = calc_stress_drop(seismic_moment=mo, source_radius=source_radius)
|
||||
|
||||
spectral_params_sp_jk = SpectralParams(mo=mo, fo=fo, q=400, stress_drop=stress_drop_value, source_size=source_radius)
|
||||
|
||||
self.logger.info(spectral_params_sp_jk)
|
||||
self.logger.info(solution_sp_fit)
|
||||
|
||||
# Appending solutions to the lists
|
||||
if pick.phase_hint in self.config["p_phase_hint"]:
|
||||
self.solutions_jk_P.append([signal_window[0].stats.station,
|
||||
spectral_params_sp_jk,
|
||||
None,
|
||||
None,
|
||||
None])
|
||||
self.solutions_sp_fit_P.append([signal_window[0].stats.station,
|
||||
solution_sp_fit,
|
||||
opt_sim.f_norm.freq,
|
||||
opt_sim.f_norm.th_amp_sp_damp,
|
||||
opt_sim.f_norm.amp_spectrum])
|
||||
elif pick.phase_hint in self.config["s_phase_hint"]:
|
||||
self.solutions_jk_S.append([signal_window[0].stats.station,
|
||||
spectral_params_sp_jk,
|
||||
None,
|
||||
None,
|
||||
None])
|
||||
self.solutions_sp_fit_S.append([signal_window[0].stats.station,
|
||||
solution_sp_fit,
|
||||
opt_sim.f_norm.freq,
|
||||
opt_sim.f_norm.th_amp_sp_damp,
|
||||
opt_sim.f_norm.amp_spectrum])
|
||||
else:
|
||||
self.logger.warning(f"Solutions not saved. Phase hint {self.config['p_phase_hint']} nor "
|
||||
f"{self.config['s_phase_hint']} does not coincide "
|
||||
f"with phase hint {pick.phase_hint} from the catalog")
|
||||
|
||||
@staticmethod
|
||||
def _spectrum_to_moment(pick_phase, config, spectral_level, distance):
|
||||
# Calculation of spectral amplitude in [Nm * s]
|
||||
if pick_phase == "P":
|
||||
v = config.get("vp")
|
||||
g = G_P
|
||||
else:
|
||||
v = config.get("vs")
|
||||
g = G_S
|
||||
return spectrum2moment(spectral_level=spectral_level, density=config.get("density"), velocity=v,
|
||||
distance=distance, g=g)
|
||||
|
||||
def _return_event_spec_params(self, solutions):
|
||||
"""
|
||||
Function calculates mean parameters for seismic event based on stations' results and removes outliers
|
||||
:param solutions:
|
||||
:return:
|
||||
"""
|
||||
|
||||
if not solutions:
|
||||
return None
|
||||
|
||||
def outliers_detection(M0, F0, Q, STRESS_DROP, SOURCE_SIZE, z_threshold):
|
||||
"""Function calculates z_scores and removes outliers which has absolute z_score above z_threshold"""
|
||||
|
||||
# Calculate z-scores
|
||||
z_scores_M0 = zscore(np.log(M0))
|
||||
z_scores_F0 = zscore(F0)
|
||||
z_scores_Q = zscore(Q)
|
||||
|
||||
# Identify outliers
|
||||
outliers = (np.abs(z_scores_M0) > z_threshold) | (np.abs(z_scores_F0) > z_threshold) | (
|
||||
np.abs(z_scores_Q) > z_threshold)
|
||||
|
||||
# Filter out outliers
|
||||
M0_filtered = M0[~outliers]
|
||||
F0_filtered = F0[~outliers]
|
||||
Q_filtered = Q[~outliers]
|
||||
STRESS_DROP_filtered = STRESS_DROP[~outliers]
|
||||
SOURCE_SIZE_filtered = SOURCE_SIZE[~outliers]
|
||||
|
||||
return M0_filtered, F0_filtered, Q_filtered, STRESS_DROP_filtered, SOURCE_SIZE_filtered
|
||||
|
||||
|
||||
M0 = np.array([solution[1].mo for solution in solutions])
|
||||
F0 = np.array([solution[1].fo for solution in solutions])
|
||||
Q = np.array([solution[1].q for solution in solutions])
|
||||
STRESS_DROP = np.array([solution[1].stress_drop for solution in solutions])
|
||||
SOURCE_SIZE = np.array([solution[1].source_size for solution in solutions])
|
||||
|
||||
M0, F0, Q, STRESS_DROP, SOURCE_SIZE = outliers_detection(M0=M0, F0=F0, Q=Q, SOURCE_SIZE=SOURCE_SIZE, STRESS_DROP=STRESS_DROP,
|
||||
z_threshold=self.config.get("z_threshold"))
|
||||
|
||||
# Calculate mean values of parameters
|
||||
mo, mo_e = self.mef(M0)
|
||||
fo, fo_e = self.mef(F0)
|
||||
q, q_e = self.mef(Q)
|
||||
stress_drop, stress_drop_e = self.mef(STRESS_DROP)
|
||||
source_size, source_size_e = self.mef(SOURCE_SIZE)
|
||||
|
||||
|
||||
return EventSpectralParams(mo=mo, fo=fo, q=q, mo_e=mo_e, fo_e=fo_e, q_e=q_e, source_size=source_size, source_size_e=source_size_e,
|
||||
stress_drop=stress_drop, stress_drop_e=stress_drop_e)
|
||||
|
||||
@staticmethod
|
||||
def mef(x):
|
||||
"""
|
||||
Function for calculating average values and standard deviations of source parameters which are log-normally distributed.
|
||||
Formulas based on article: https://doi.org/10.1016/j.pepi.2003.08.006
|
||||
"""
|
||||
x_mean = 10 ** np.mean(np.log10(x))
|
||||
if len(x) == 1:
|
||||
return x_mean, -999
|
||||
x_std = ((1 / (len(x) - 1)) * np.sum((np.log10(x) - np.log10(x_mean)) ** 2)) ** 0.5
|
||||
x_e = 10 ** x_std
|
||||
return x_mean, x_e
|
162
src/SpectralAnalysisApp.py
Normal file
162
src/SpectralAnalysisApp.py
Normal file
@ -0,0 +1,162 @@
|
||||
from obspy import read, read_events, read_inventory
|
||||
|
||||
from SpectralAnalysis import SpectralAnalysis
|
||||
from base_logger import getDefaultLogger
|
||||
|
||||
|
||||
def count_matching_stations(stream, inventory):
|
||||
"""
|
||||
Count how many stations from the given stream are present in the inventory.
|
||||
|
||||
Parameters:
|
||||
- stream: ObsPy Stream object containing seismic data.
|
||||
- inventory: ObsPy Inventory object containing network and station metadata.
|
||||
|
||||
Returns:
|
||||
- count: Number of stations from the stream found in the inventory.
|
||||
"""
|
||||
# Extract unique station codes from the stream
|
||||
stream_stations = set([trace.stats.station for trace in stream])
|
||||
|
||||
# Extract unique station codes from the inventory
|
||||
inventory_stations = set([station.code for network in inventory for station in network.stations])
|
||||
|
||||
# Count how many stations from the stream are in the inventory
|
||||
count = len(stream_stations.intersection(inventory_stations))
|
||||
|
||||
return count, len(stream_stations)
|
||||
|
||||
def filter_stream_by_picks(st, qml):
|
||||
"""
|
||||
Select from stream only traces that have an associated pick.
|
||||
|
||||
Parameters:
|
||||
- st: ObsPy Stream object containing seismic data.
|
||||
- qml: ObsPy Catalog object containing phase picks.
|
||||
|
||||
Returns:
|
||||
- st2: ObsPy Stream object containing seismic data.
|
||||
"""
|
||||
st2 = read().clear() #create blank stream object
|
||||
|
||||
for pick in qml.picks:
|
||||
net = pick.waveform_id.network_code
|
||||
sta = pick.waveform_id.station_code
|
||||
loc = pick.waveform_id.location_code
|
||||
cha = pick.waveform_id.channel_code[:2] + "*" #wildcard to obtain all 3 components
|
||||
NSLC = net + '.' + sta + '.' + loc + '.' + cha
|
||||
st2 = st2 + st.select(id=NSLC) #add trace to new stream
|
||||
|
||||
st2.merge() #remove duplicate traces
|
||||
return st2
|
||||
|
||||
|
||||
def main(waveforms, network_inventory, picks_qml, event_latitude, event_longitude, event_depth, vp, vs, density, taper_type, taper_len,
|
||||
window_len, freq_min, freq_max, min_sn_ratio=1, min_energy_ratio=1, p_wave_analysis=True, s_wave_analysis=True,
|
||||
raytracing=True, allow_station_elevations=False,
|
||||
source_model="Madariaga", sp_fit_model="FBoatwright", norm="L2", z_threshold=6,
|
||||
q_min=1, q_max=400, velocity_model=None):
|
||||
"""
|
||||
Main function for application: SPECTRALPARAMETERS
|
||||
Arguments:
|
||||
waveforms: path to input file of type 'seismogram'
|
||||
Velocity model: path to input file of type 'velocity_model'
|
||||
network_inventory: path to input file of type 'inventory'
|
||||
event_qml: path to input file of type 'quakeml_seismogram_picks'
|
||||
raytracing: parameter of type 'BOOLEAN'
|
||||
save plots: parameter of type 'BOOLEAN'
|
||||
Returns:
|
||||
File(s) named 'Katalog sejsmiczny' of type 'quakeml_seismogram_picks' and format 'XML' from working directory
|
||||
:param event_qml:
|
||||
"""
|
||||
|
||||
logger = getDefaultLogger(__name__)
|
||||
|
||||
config = {
|
||||
# filenames
|
||||
"P_WAVE_SP_FITTING_RESULTS_JSON": "P_wave_analysis_sp_fit_solutions.json",
|
||||
"S_WAVE_SP_FITTING_RESULTS_JSON": "S_wave_analysis_sp_fit_solutions.json",
|
||||
"P_WAVE_JK_RESULTS": "P_wave_analysis_JK_solutions.csv",
|
||||
"S_WAVE_JK_RESULTS": "S_wave_analysis_JK_solutions.csv",
|
||||
"P_WAVE_SP_FITTING_RESULTS": "P_wave_analysis_sp_fit_solutions.csv",
|
||||
"S_WAVE_SP_FITTING_RESULTS": "S_wave_analysis_sp_fit_solutions.csv",
|
||||
"EVENT_RESULTS": "results.csv",
|
||||
"velocity_mat_file": velocity_model,
|
||||
# app options
|
||||
"P_wave_analysis": p_wave_analysis,
|
||||
"S_wave_analysis": s_wave_analysis,
|
||||
"raytrace": raytracing,
|
||||
"allow_station_elev": allow_station_elevations,
|
||||
|
||||
#event location
|
||||
"longitude": event_longitude,
|
||||
"latitude": event_latitude,
|
||||
"depth": event_depth, # in meters
|
||||
|
||||
# phase hints
|
||||
"p_phase_hint": ["P", "Pg"],
|
||||
"s_phase_hint": ["S", "Sg"],
|
||||
|
||||
# source parameters
|
||||
"vp": vp,
|
||||
"vs": vs,
|
||||
"density": density,
|
||||
|
||||
# window parameters
|
||||
"taper_len": taper_len,
|
||||
"window_len": window_len,
|
||||
"taper_type": taper_type,
|
||||
# filter parameters
|
||||
"freq_min": freq_min,
|
||||
"freq_max": freq_max,
|
||||
# frequency signal-to-noise ratio
|
||||
"min_sn_ratio": min_sn_ratio,
|
||||
# if station signal-to-noise ratio
|
||||
"min_energy_ratio": min_energy_ratio,
|
||||
|
||||
# L1 / L2
|
||||
"norm": norm,
|
||||
# Spectrum fitting model: FBrune / FBoatwright
|
||||
"sp_fit_model": sp_fit_model,
|
||||
# Source model: Madariaga / Brune
|
||||
"sp_source_model": source_model,
|
||||
|
||||
# outliers detection
|
||||
"z_threshold": z_threshold,
|
||||
|
||||
# q - damping limits
|
||||
"q_min": q_min,
|
||||
"q_max": q_max,
|
||||
|
||||
}
|
||||
|
||||
# reading files
|
||||
stream = read(waveforms)
|
||||
inv = read_inventory(network_inventory)
|
||||
|
||||
qml = read_events(picks_qml).events[0]
|
||||
|
||||
if not stream:
|
||||
msg = "MSEED file is empty"
|
||||
logger.error(msg)
|
||||
raise Exception(msg)
|
||||
if not inv or len(inv) == 0:
|
||||
msg = "Inventory file is empty"
|
||||
logger.error(msg)
|
||||
raise Exception(msg)
|
||||
else:
|
||||
stream = filter_stream_by_picks(stream, qml)
|
||||
if len(stream) == 0:
|
||||
msg = "No waveform data was found corresponding to the provided picks"
|
||||
logger.error(msg)
|
||||
raise Exception(msg)
|
||||
else:
|
||||
count, total = count_matching_stations(stream, inv)
|
||||
logger.info(f"{count} out of {total} stations in stream are in the inventory")
|
||||
if count == 0:
|
||||
msg = "No stations from MSEED in the Network Inventory"
|
||||
logger.error(msg)
|
||||
raise Exception(msg)
|
||||
else:
|
||||
sa = SpectralAnalysis(stream=stream, event=qml, inventory=inv, config=config, logger=logger)
|
||||
sa.run()
|
64
src/SpectralParameters.py
Normal file
64
src/SpectralParameters.py
Normal file
@ -0,0 +1,64 @@
|
||||
from spectral_definitions import mm
|
||||
|
||||
|
||||
class SpectralParams:
|
||||
def __init__(self, mo, fo, q, stress_drop=0, source_size=0):
|
||||
self.mo = mo
|
||||
self.fo = fo
|
||||
self.q = q
|
||||
self.mw = mm(mo)
|
||||
self.stress_drop = stress_drop
|
||||
self.source_size = source_size
|
||||
|
||||
def __str__(self):
|
||||
return (f"SpectralAnalysis parameters: M0={self.mo:.2e}, F0={self.fo:.2f}, "
|
||||
f"Q={self.q:.2f}, Mw={self.mw:.2f}, "
|
||||
f"stress drop = {self.stress_drop:.2e}, source size = {self.source_size:.0f}")
|
||||
|
||||
|
||||
|
||||
class EventSpectralParams(SpectralParams):
|
||||
def __init__(self, mo, fo, q, stress_drop, source_size, mo_e, fo_e, q_e, source_size_e, stress_drop_e):
|
||||
super().__init__(mo, fo, q, stress_drop, source_size)
|
||||
self.mo_e = mo_e
|
||||
self.fo_e = fo_e
|
||||
self.q_e = q_e
|
||||
self.mw = mm(mo)
|
||||
self.source_size_e = source_size_e
|
||||
self.stress_drop_e = stress_drop_e
|
||||
self.mo_1, self.mo_2 = self.calculate_uncertainties(self.mo, self.mo_e)
|
||||
self.fo_1, self.fo_2 = self.calculate_uncertainties(self.fo, self.fo_e)
|
||||
self.q_1, self.q_2 = self.calculate_uncertainties(self.q, self.q_e)
|
||||
self.mw_1, self.mw_2 = self.calculate_uncertainties_mw(self.mo, self.mo_e)
|
||||
self.source_size_1, self.source_size_2 = self.calculate_uncertainties(self.source_size, self.source_size_e)
|
||||
self.stress_drop_1, self.stress_drop_2 = self.calculate_uncertainties(self.stress_drop, self.stress_drop_e)
|
||||
|
||||
|
||||
def __str__(self):
|
||||
return f"SpectralAnalysis parameters: " \
|
||||
f"Seismic moment: {self.mo:.2e} <{self.mo_1:.2e}, {self.mo_2:.2e}> " \
|
||||
f"Corner frequency: {self.fo:.2f} <{self.fo_1:.2f}, {self.fo_2:.2f}> " \
|
||||
f"Q factor: {self.q:.2f} <{self.q_1:.2f}, {self.q_2:.2f}> " \
|
||||
f"Mw: {self.mw:.2f} <{self.mw_1:.2f}, {self.mw_2:.2f}> " \
|
||||
f"Stress drop: {self.stress_drop:.0f} <{self.stress_drop_1:.0f}, {self.stress_drop_2:.0f}> " \
|
||||
f"Source size: {self.source_size:.0f} <{self.source_size_1:.0f}, {self.source_size_2:.0f}> "
|
||||
|
||||
@staticmethod
|
||||
def calculate_uncertainties(x, x_e):
|
||||
if x_e == -999:
|
||||
unc1 = 0
|
||||
unc2 = 0
|
||||
else:
|
||||
unc1 = x / x_e
|
||||
unc2 = x * x_e
|
||||
return unc1, unc2
|
||||
|
||||
@staticmethod
|
||||
def calculate_uncertainties_mw(mo, mo_e):
|
||||
if mo_e == -999:
|
||||
unc1 = 0
|
||||
unc2 = 0
|
||||
else:
|
||||
unc1 = mm(mo / mo_e)
|
||||
unc2 = mm(mo * mo_e)
|
||||
return unc1, unc2
|
31
src/amplitude_spectra.py
Normal file
31
src/amplitude_spectra.py
Normal file
@ -0,0 +1,31 @@
|
||||
from obspy import Stream
|
||||
from scipy.fft import rfft, rfftfreq
|
||||
from scipy.interpolate import interp1d
|
||||
import numpy as np
|
||||
|
||||
|
||||
def calculate_amp_spectra(station_stream: Stream):
|
||||
"""
|
||||
Function returns frequencies and corresponding mean amplitude spectra (for all available traces in stream).
|
||||
All spectra are interpolated
|
||||
:param station_stream:
|
||||
:return:
|
||||
"""
|
||||
|
||||
# Fourier's transformation of signal for each trace (channel) in the stream
|
||||
freq_bins = None
|
||||
psd = 0
|
||||
for tr in station_stream:
|
||||
fft_signal = rfft(tr.data)
|
||||
freq_bins = rfftfreq(len(tr.data), d=tr.stats.delta)
|
||||
amp_spectrum = abs(tr.stats.delta * fft_signal) # Multiplication by sampling step
|
||||
amp_spectrum = amp_spectrum * np.sqrt(2) # Multiplication by square root to calibrate energy
|
||||
psd += amp_spectrum ** 2 # for calculation of root-mean-square
|
||||
# Calculation of root-mean-square for all traces in the stream
|
||||
mean_amp_spectra = psd ** 0.5
|
||||
|
||||
# Interpolation
|
||||
fi = np.logspace(np.log10(freq_bins[1]), np.log10(freq_bins[-1]), len(freq_bins))
|
||||
interpolation_function = interp1d(freq_bins, mean_amp_spectra, kind='linear', fill_value='extrapolate')
|
||||
|
||||
return fi, interpolation_function(fi)
|
34
src/f_models.py
Normal file
34
src/f_models.py
Normal file
@ -0,0 +1,34 @@
|
||||
from SpectralParameters import SpectralParams
|
||||
|
||||
|
||||
class FModel:
|
||||
def __init__(self, freq_bins, spectral_parameters: SpectralParams):
|
||||
self.freq = freq_bins
|
||||
self.sp_par = spectral_parameters
|
||||
|
||||
def fmodel(self):
|
||||
"""Function return given model"""
|
||||
return
|
||||
|
||||
|
||||
class FBrune(FModel):
|
||||
"""
|
||||
Generate Brune's model source spectrum.
|
||||
"""
|
||||
def __init__(self, freq_bins, spectral_parameters: SpectralParams):
|
||||
super().__init__(freq_bins, spectral_parameters)
|
||||
|
||||
def fmodel(self):
|
||||
return self.sp_par.mo / (1 + (self.freq / self.sp_par.fo) ** 2)
|
||||
|
||||
|
||||
class FBoatwright(FModel):
|
||||
"""
|
||||
Generate Boatwright's model source spectrum.
|
||||
"""
|
||||
|
||||
def __init__(self, freq_bins, spectral_parameters: SpectralParams):
|
||||
super().__init__(freq_bins, spectral_parameters)
|
||||
|
||||
def fmodel(self):
|
||||
return self.sp_par.mo / (1 + (self.freq / self.sp_par.fo) ** 4) ** 0.5
|
62
src/f_norms.py
Normal file
62
src/f_norms.py
Normal file
@ -0,0 +1,62 @@
|
||||
import numpy as np
|
||||
|
||||
from f_models import FModel, FBrune, FBoatwright
|
||||
from SpectralParameters import SpectralParams
|
||||
from spectral_definitions import damping
|
||||
|
||||
|
||||
class FNormResults:
|
||||
def __init__(self, misfit, freq_bins, amplitude_spectrum, amp_theor_spec):
|
||||
self.misfit = misfit
|
||||
self.freq = freq_bins
|
||||
self.amplitude_spectrum = amplitude_spectrum
|
||||
self.amplitude_theoretical_spectrum = amp_theor_spec
|
||||
|
||||
def __str__(self):
|
||||
return f"Misfit: {self.misfit:.2f}"
|
||||
|
||||
|
||||
class FNorm:
|
||||
def __init__(self, norm, spectral_params: SpectralParams, freq_bins, amplitude_spectrum, weights, travel_time,
|
||||
source_model: FModel, logger):
|
||||
self.norm = norm
|
||||
self.spectral_par = spectral_params
|
||||
self.freq = freq_bins
|
||||
self.amp_spectrum = amplitude_spectrum
|
||||
self.th_amp_sp_damp = None
|
||||
self.weights = weights
|
||||
self.travel_time = travel_time
|
||||
self.f_model = source_model
|
||||
self.logger = logger
|
||||
|
||||
def calculate(self):
|
||||
|
||||
self.f_model.sp_par = self.spectral_par
|
||||
self.f_model.freq = self.freq
|
||||
|
||||
# theoretical spectrum model (Brune or Boatwright)
|
||||
amp_th = self.f_model.fmodel()
|
||||
# calculation of quality (damping) values for all frequencies)
|
||||
damping_val = damping(q_factor=self.spectral_par.q, frequencies=self.freq, travel_time=self.travel_time)
|
||||
|
||||
if self.norm == "L1":
|
||||
misfit = self.f_norm_l1(damping_amp=damping_val, amp_th=amp_th)
|
||||
elif self.norm == "L2":
|
||||
misfit = self.f_norm_l2(damping_amp=damping_val, amp_th=amp_th)
|
||||
else:
|
||||
self.logger.error(f"{self.norm} is a wrong norm. It should be L1 or L2")
|
||||
return None
|
||||
|
||||
# Correcting theoretical model (Brune or Boatwright) for damping (Q factor)
|
||||
self.th_amp_sp_damp = amp_th / damping_val
|
||||
|
||||
return FNormResults(misfit=misfit, freq_bins=self.freq, amplitude_spectrum=self.amp_spectrum,
|
||||
amp_theor_spec=self.th_amp_sp_damp)
|
||||
|
||||
def f_norm_l1(self, damping_amp, amp_th):
|
||||
amp_residuals = self.weights * np.abs(np.log10(self.amp_spectrum * damping_amp) - np.log10(amp_th))
|
||||
return np.sum(amp_residuals) / np.size(amp_residuals)
|
||||
|
||||
def f_norm_l2(self, damping_amp, amp_th):
|
||||
amp_residuals = self.weights * (np.log10(self.amp_spectrum * damping_amp) - np.log10(amp_th)) ** 2
|
||||
return np.sqrt(np.sum(amp_residuals) / amp_residuals.size)
|
49
src/json_writer.py
Normal file
49
src/json_writer.py
Normal file
@ -0,0 +1,49 @@
|
||||
import json
|
||||
|
||||
|
||||
class JsonWriter:
|
||||
def __init__(self, solutions, filename, logger):
|
||||
self.solutions = solutions
|
||||
self.filename = filename
|
||||
self.data = self.prepare_file(solutions)
|
||||
self.logger = logger
|
||||
|
||||
def save(self):
|
||||
with open(self.filename, 'w') as f:
|
||||
json.dump(self.data, f)
|
||||
|
||||
def prepare_file(self, solutions):
|
||||
# Initialize an empty dictionary to hold the data
|
||||
stations_dict = {}
|
||||
|
||||
# Iterate over the solutions list
|
||||
for solution in solutions:
|
||||
station_name = solution[0]
|
||||
parameters = {"mo": solution[1].mo, "fo": solution[1].fo, "q": solution[1].q, "source_size": solution[1].source_size, "stress_drop": solution[1].stress_drop}
|
||||
freq = solution[2]
|
||||
amp_th_sp_q = solution[3]
|
||||
amp_spectrum = solution[4]
|
||||
|
||||
# Round the parameters to two decimal places
|
||||
parameters = {key: round(value, 2) for key, value in parameters.items()}
|
||||
|
||||
# Check if the station already exists in the dictionary
|
||||
if station_name not in stations_dict:
|
||||
stations_dict[station_name] = {
|
||||
"parameters": list(),
|
||||
"frequency": list(),
|
||||
"fitted_amplitude_spectrum": list(),
|
||||
"amplitude_spectrum": list()
|
||||
}
|
||||
|
||||
try:
|
||||
# Append the data to the respective lists
|
||||
|
||||
stations_dict[station_name]["parameters"]=parameters
|
||||
if freq is not None and amp_spectrum is not None and amp_th_sp_q is not None:
|
||||
stations_dict[station_name]["frequency"].extend(freq)
|
||||
stations_dict[station_name]["fitted_amplitude_spectrum"].extend(amp_th_sp_q)
|
||||
stations_dict[station_name]["amplitude_spectrum"].extend(amp_spectrum)
|
||||
except AttributeError as ae:
|
||||
self.logger.error(ae)
|
||||
return stations_dict
|
@ -1,49 +0,0 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
# -----------------
|
||||
# Copyright © 2024 ACK Cyfronet AGH, Poland.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
# This work was partially funded by DT-GEO Project.
|
||||
# -----------------
|
||||
|
||||
import sys
|
||||
import argparse
|
||||
from Mmax import main as Mmax
|
||||
|
||||
def main(argv):
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("Input_catalog", help="Input catalog: path to input file of type 'catalog'")
|
||||
parser.add_argument("Input_injection_rate", help="Input injection rate: path to input file of type 'injection_rate'")
|
||||
parser.add_argument("--time_win_in_hours", help="Time window length (in hours- backward from the current time).", type=int, default=6)
|
||||
parser.add_argument("--time_step_in_hour", help="Time interval for computation (in hours).", type=int, default=3)
|
||||
parser.add_argument("--time_win_type", help="Time window type for computation.", type=int, default=0)
|
||||
parser.add_argument("--End_time", help="End time of the computations (in day).", type=int, default=None)
|
||||
parser.add_argument("--ev_limit", help="Minimum events number required for model computation.", type=int, default=20)
|
||||
parser.add_argument("--Model_index", help="Model index: parameter of type 'INTEGER'", type=int)
|
||||
parser.add_argument("--Mc", help="Completeness magnitude.", type=float, default=0.8)
|
||||
parser.add_argument("--Mu", help="Friction coefficient.", type=float, default=0.6, required=False)
|
||||
parser.add_argument("--G", help="Shear modulus of reservoir (in Pa).", type=float, default=35000000000)
|
||||
parser.add_argument("--ssd", help="Static stress drop (in Pa).", type=float, default=3000000)
|
||||
parser.add_argument("--C", help="Geometrical constant.", type=float, default=0.95)
|
||||
parser.add_argument("--b_value_type", help="b-value type: parameter of type 'TEXT'", action='append')
|
||||
parser.add_argument("--cl", help="Confidence level in van der Elst model.", type=float, action='append')
|
||||
parser.add_argument("--mag_name", help="Magnitude column name", type=str)
|
||||
|
||||
args = parser.parse_args()
|
||||
Mmax(**vars(args))
|
||||
return
|
||||
|
||||
if __name__ == '__main__':
|
||||
main(sys.argv)
|
75
src/opt_algorithms.py
Normal file
75
src/opt_algorithms.py
Normal file
@ -0,0 +1,75 @@
|
||||
import scipy.optimize
|
||||
import numpy as np
|
||||
|
||||
from SpectralParameters import SpectralParams
|
||||
import f_models
|
||||
from f_norms import FNorm
|
||||
|
||||
class OptAlgorithm:
|
||||
"""Base class for optimization algorithms.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, initial_model: SpectralParams, freq_bins, amplitude_spectrum, weights, travel_time, config,
|
||||
logger):
|
||||
self.initial_model = initial_model
|
||||
self.config = config
|
||||
self.travel_time = travel_time
|
||||
|
||||
self.f_model = getattr(f_models, config.get("sp_fit_model"))(freq_bins=freq_bins,
|
||||
spectral_parameters=initial_model)
|
||||
self.f_norm = FNorm(norm=self.config.get("norm"), spectral_params=initial_model, freq_bins=freq_bins,
|
||||
amplitude_spectrum=amplitude_spectrum, weights=weights, travel_time=travel_time,
|
||||
source_model=self.f_model, logger=logger)
|
||||
self.solution = None
|
||||
self.error = None
|
||||
self.name = self.__class__.__name__
|
||||
|
||||
|
||||
def run(self):
|
||||
"""Run the optimization algorithm and return SpectralParams results
|
||||
|
||||
:return:
|
||||
"""
|
||||
return self.error, self.solution
|
||||
|
||||
def __repr__(self):
|
||||
if self.solution:
|
||||
output = f"{self.name} results:\n"
|
||||
output += f" {self.solution.__str__()} \n"
|
||||
output += f" Error: {self.error:.4f}"
|
||||
return output
|
||||
else:
|
||||
return f"{self.name}: no solution"
|
||||
|
||||
|
||||
class OptNelderMead(OptAlgorithm):
|
||||
"""
|
||||
Minimize a function using the downhill simplex algorithm from scipy.optimize.
|
||||
"""
|
||||
|
||||
def __init__(self, initial_model: SpectralParams, freq_bins, amplitude_spectrum, weights, travel_time, config,
|
||||
logger):
|
||||
super().__init__(initial_model, freq_bins, amplitude_spectrum, weights, travel_time, config, logger)
|
||||
self.initial_q = (self.config.get("q_min")+self.config.get("q_max"))/2
|
||||
|
||||
def run(self):
|
||||
def prepare_fun(x):
|
||||
self.f_norm.spectral_par = SpectralParams(mo=x[0], fo=x[1], q=x[2], )
|
||||
return self.f_norm.calculate().misfit
|
||||
|
||||
# Initial model parameters
|
||||
x0 = [self.initial_model.mo, self.initial_model.fo, self.initial_q]
|
||||
# Optimization bounds
|
||||
bounds = [(None, None), (1 / self.config.get("window_len"), self.config.get("freq_max")),
|
||||
(self.config.get("q_min"), self.config.get("q_max"))]
|
||||
|
||||
|
||||
# Perform optimization
|
||||
xopt = scipy.optimize.minimize(method='Nelder-Mead', fun=prepare_fun, x0=np.array(x0), bounds=bounds)
|
||||
|
||||
# Store the results
|
||||
self.solution = SpectralParams(mo=xopt.x[0], fo=xopt.x[1], q=xopt.x[2])
|
||||
self.error = xopt.fun
|
||||
|
||||
return self.error, self.solution
|
24
src/sp_jk.py
Normal file
24
src/sp_jk.py
Normal file
@ -0,0 +1,24 @@
|
||||
import numpy as np
|
||||
|
||||
|
||||
def sp_jk(freq_bins, amp_spectra):
|
||||
# Calculate source parameters using J and K Snoke's integrals
|
||||
# with correction for the limited frequency band. The routine
|
||||
# ignores quality factor in calculations (ideally, the spectrum
|
||||
# should be corrected for attenuation before).
|
||||
|
||||
# For each waveform, calculate the J and K integrals and source parameters.
|
||||
|
||||
Av = amp_spectra * 2 * np.pi * freq_bins
|
||||
|
||||
jf = (2 * np.trapz(Av ** 2, x=freq_bins) + 2 / 3 * (amp_spectra[0] * 2 * np.pi * freq_bins[0]) ** 2 *
|
||||
freq_bins[0] + 2 * (amp_spectra[-1] * 2 * np.pi * freq_bins[-1]) ** 2 * freq_bins[-1])
|
||||
|
||||
kf = (2 * np.trapz(amp_spectra ** 2, x=freq_bins) + 2 * amp_spectra[0] ** 2 * freq_bins[0] +
|
||||
2 / 3 * amp_spectra[-1] ** 2 * freq_bins[-1])
|
||||
|
||||
# Calculation of spectral level and corner frequency
|
||||
mo = 2 * (kf ** 3 / jf) ** 0.25 # spectral level from Snoke's integrals
|
||||
fo = np.sqrt(jf / kf) / (2 * np.pi) # corner frequency
|
||||
|
||||
return mo, fo
|
42
src/spectral_definitions.py
Normal file
42
src/spectral_definitions.py
Normal file
@ -0,0 +1,42 @@
|
||||
import numpy as np
|
||||
|
||||
# constants depending on source models
|
||||
K_BRUNE = 0.37
|
||||
K_MADARIAGA_P = 0.32
|
||||
K_MADARIAGA_S = 0.21
|
||||
# averages of radiation coefficients
|
||||
G_P = 0.52
|
||||
G_S = 0.63
|
||||
|
||||
|
||||
def spectrum2moment(spectral_level, density, velocity, distance, g):
|
||||
return spectral_level * 4.0 * np.pi * density * velocity ** 3 * distance / g
|
||||
|
||||
|
||||
def damping(q_factor, frequencies, travel_time):
|
||||
"""Exponential damping"""
|
||||
return np.exp(np.pi * frequencies * travel_time / q_factor)
|
||||
|
||||
|
||||
def mm(mo):
|
||||
"""Calculate moment magnitude from the spectral level (Mo)
|
||||
:return moment magnitude (float):
|
||||
"""
|
||||
return (np.log10(mo) - 9.1) / 1.5
|
||||
|
||||
|
||||
def m0(mw):
|
||||
"""Calculate the spectral level (Mo) from the moment magnitude (Mw)
|
||||
:return spectral level (float):
|
||||
"""
|
||||
return 10 ** (mw * 1.5 + 9.1)
|
||||
|
||||
|
||||
def calc_source_size(s_vel, corner_freq, k):
|
||||
"""Calculate source radius"""
|
||||
return k * s_vel / corner_freq
|
||||
|
||||
|
||||
def calc_stress_drop(seismic_moment, source_radius):
|
||||
"""Calculate stress drop"""
|
||||
return 7 / 16 * seismic_moment / source_radius ** 3
|
90
src/spectralparameters_wrapper.py
Normal file
90
src/spectralparameters_wrapper.py
Normal file
@ -0,0 +1,90 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
# -----------------
|
||||
# Copyright © 2024 ACK Cyfronet AGH, Poland.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
# This work was partially funded by DT-GEO Project.
|
||||
# -----------------
|
||||
|
||||
import sys
|
||||
import argparse
|
||||
from SpectralAnalysisApp import main as SpectralAnalysisApp
|
||||
|
||||
|
||||
def main(argv):
|
||||
def str2bool(v):
|
||||
if v.lower() in ("True", "TRUE", "yes", "true", "t", "y", "1"):
|
||||
return True
|
||||
elif v.lower() in ("False", "FALSE", "no", "false", "f", "n", "0"):
|
||||
return False
|
||||
else:
|
||||
raise argparse.ArgumentTypeError("Boolean value expected.")
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("waveforms", help="Path to input file of type miniseed")
|
||||
parser.add_argument("network_inventory", help="Path to input file of type inventory")
|
||||
parser.add_argument("picks_qml", help="Path to input file of type phase_association_detections")
|
||||
parser.add_argument("--velocity_model", help="Path to input file of type velocity_model", required=False)
|
||||
parser.add_argument("--event_latitude", help="", type=float, default=4000, required=True)
|
||||
parser.add_argument("--event_longitude", help="", type=float, default=4000, required=True)
|
||||
parser.add_argument("--event_depth", help="", type=float, default=4000, required=True)
|
||||
parser.add_argument("--vp", help="P wave velocity in the source",
|
||||
type=float, default=4000, required=True)
|
||||
parser.add_argument("--vs", help="S wave velocity in the source",
|
||||
type=float, default=2500, required=True)
|
||||
parser.add_argument("--density", help="Rock density in source",
|
||||
type=float, default=2700, required=True)
|
||||
parser.add_argument("--taper_type", help="Type of taper",
|
||||
type=str, default='hann', required=True)
|
||||
parser.add_argument("--taper_len", help="Maximum length of the taper",
|
||||
type=float, default=0.1, required=True)
|
||||
parser.add_argument("--window_len", help="Length of the time window used for spectrum calculation",
|
||||
type=float, default=1, required=True)
|
||||
parser.add_argument("--freq_min", help="Minimum frequency for bandpass filtering",
|
||||
type=float, default=0.1, required=True)
|
||||
parser.add_argument("--freq_max", help="Maximum frequency for bandpass filtering",
|
||||
type=float, default=40, required=True)
|
||||
parser.add_argument("--min_sn_ratio", help="Minimum signal-to-noise ratio for each frequency - for lower S/N values, a given frequency is not taken into account for spectral fitting",
|
||||
type=float, default=1, required=True)
|
||||
parser.add_argument("--min_energy_ratio", help="Minimum spectral signal-to-noise ratio for the entire time window– for lower S/N values analysis is not performed",
|
||||
type=float, default=1, required=True)
|
||||
parser.add_argument("--p_wave_analysis", help="P wave analysis",
|
||||
type=str2bool, default=True, required=True)
|
||||
parser.add_argument("--s_wave_analysis", help="S wave analysis",
|
||||
type=str2bool, default=True, required=True)
|
||||
parser.add_argument("--raytracing", help="1D model. If False constant velocity values from the source are used for travel time calculations",
|
||||
type=str2bool, default=True, required=True)
|
||||
parser.add_argument("--allow_station_elevations", help="Use station elevations (otherwise set them to zero)",
|
||||
type=str2bool, default=False, required=True)
|
||||
parser.add_argument("--source_model", help="Source model. List: Madariaga or Brune",
|
||||
type=str, default="Madariaga", required=True)
|
||||
parser.add_argument("--sp_fit_model", help="Spectral fitting model. List: FBrune or FBoatwright",
|
||||
type=str, default="FBoatwright", required=True)
|
||||
parser.add_argument("--norm", help="Norm for spectral fitting calculations. List: L1 or L2",
|
||||
type=str, default="L2", required=True)
|
||||
parser.add_argument("--z_threshold", help="Z threshold for outliers removal (number of standard deviations)",
|
||||
type=int, default=3, required=True)
|
||||
parser.add_argument("--q_min", help="Lower bound of Q for spectral fitting",
|
||||
type=int, default=1, required=True)
|
||||
parser.add_argument("--q_max", help="Upper bound of Q for spectral fitting",
|
||||
type=int, default=400, required=True)
|
||||
|
||||
args = parser.parse_args()
|
||||
SpectralAnalysisApp(**vars(args))
|
||||
return
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main(sys.argv)
|
89
src/tau_p_raytracing.py
Normal file
89
src/tau_p_raytracing.py
Normal file
@ -0,0 +1,89 @@
|
||||
import os
|
||||
import logging
|
||||
|
||||
import pandas as pd
|
||||
import scipy.io
|
||||
|
||||
from obspy.geodetics import kilometer2degrees
|
||||
from obspy.taup import TauPyModel
|
||||
from obspy.taup.taup_create import build_taup_model
|
||||
from obspy.taup.tau import TauModel
|
||||
|
||||
from base_logger import getDefaultLogger
|
||||
|
||||
|
||||
class CustomTauPyModel(TauPyModel):
|
||||
"""
|
||||
Custom TauPyModel for filepath modification.
|
||||
"""
|
||||
def __init__(self, filepath, model="iasp91", verbose=False, planet_flattening=0.0):
|
||||
super().__init__(model, verbose, planet_flattening)
|
||||
self.verbose = verbose
|
||||
self.planet_flattening = planet_flattening
|
||||
self.model = self.read_model(filepath)
|
||||
|
||||
@staticmethod
|
||||
def read_model(path):
|
||||
return TauModel.deserialize(path, cache=None)
|
||||
|
||||
|
||||
class TauPRayTracer:
|
||||
""" Class for raytracing seismic waves using TauP """
|
||||
def __init__(self, velocity_mat_file):
|
||||
self.logger = getDefaultLogger('converter')
|
||||
self.path = "."
|
||||
self.velocity_model = self._setup_velocity_model(velocity_mat_file)
|
||||
|
||||
def _setup_velocity_model(self, velocity_mat_file_name):
|
||||
velocity_npz_file_path = f"{velocity_mat_file_name[:-3]}npz"
|
||||
velocity_npz_file_name = velocity_npz_file_path.split('/')[-1]
|
||||
nd_file = self._mat2nd(velocity_mat_file_name)
|
||||
build_taup_model(nd_file, output_folder=f"{self.path}")
|
||||
os.remove(nd_file)
|
||||
try:
|
||||
return CustomTauPyModel(filepath=f"{self.path}/{velocity_npz_file_name}")
|
||||
except FileNotFoundError as er:
|
||||
self.logger.warning(er)
|
||||
|
||||
@staticmethod
|
||||
def _mat2nd(velocity_mat_file):
|
||||
# Load the .mat file
|
||||
mat_contents = scipy.io.loadmat(velocity_mat_file)
|
||||
data = mat_contents["d"][0][0]
|
||||
|
||||
# Create DataFrame from the lists
|
||||
data_dict = {
|
||||
'depth': data[0].T[0],
|
||||
'vp': data[1].T[0],
|
||||
'vs': data[2].T[0],
|
||||
'ro': data[3].T[0],
|
||||
'qp': data[4].T[0],
|
||||
'qs': data[5].T[0]
|
||||
}
|
||||
df = pd.DataFrame(data_dict)
|
||||
|
||||
# Adding two new rows to model file - required by TauP
|
||||
# Get the last row of the DataFrame
|
||||
last_row = df.iloc[-1].copy()
|
||||
# Append the last row to the DataFrame
|
||||
|
||||
df = pd.concat([df, pd.DataFrame(last_row).T], ignore_index=True)
|
||||
last_row['depth'] = 6178.1
|
||||
# Append the modified last row to the DataFrame
|
||||
df = pd.concat([df, pd.DataFrame(last_row).T], ignore_index=True)
|
||||
|
||||
# Specify the name of the text file to save
|
||||
nd_filename = f'{velocity_mat_file[:-3]}nd'
|
||||
# Save the DataFrame to a text file
|
||||
df.to_csv(nd_filename, sep='\t', index=False, header=False)
|
||||
|
||||
return nd_filename
|
||||
|
||||
def calculate_arrival(self, distance_in_km, source_depth_in_km, receiver_depth_in_km, phase: str):
|
||||
phase_list = [phase, phase.swapcase()]
|
||||
return self.velocity_model.get_travel_times(source_depth_in_km=source_depth_in_km,
|
||||
distance_in_degree=kilometer2degrees(distance_in_km),
|
||||
receiver_depth_in_km=receiver_depth_in_km,
|
||||
phase_list=phase_list
|
||||
)[0]
|
||||
|
@ -1,43 +0,0 @@
|
||||
import numpy as np
|
||||
|
||||
class CandidateEventsTS:
|
||||
def __init__(self, data, current_time, Mc, time_win, space_win=None):
|
||||
assert time_win > 0, f"Time windows is {time_win}, which should be a positive number"
|
||||
|
||||
self.data = data
|
||||
self.current_time = current_time
|
||||
self.Mc = Mc
|
||||
self.time_win = time_win
|
||||
self.space_win = space_win
|
||||
|
||||
def filter_by_time(self):
|
||||
indx = np.where((self.data[:, 4] > (self.current_time - self.time_win)) & (self.data[:, 4] <= self.current_time))[0]
|
||||
if len(indx) > 0:
|
||||
self.data = self.data[indx, :]
|
||||
else:
|
||||
self.data = []
|
||||
|
||||
def filter_by_magnitude(self):
|
||||
if self.Mc:
|
||||
indx = np.where(self.data[:, 5] > self.Mc)[0]
|
||||
if len(indx) > 0:
|
||||
self.data = self.data[indx, :]
|
||||
else:
|
||||
self.data = []
|
||||
|
||||
def filter_by_space(self):
|
||||
dist = np.sqrt(np.sum((self.data[:, 1:4] - self.data[-1, 1:4]) ** 2, axis=1))
|
||||
indx = np.where(dist < self.space_win)[0]
|
||||
if len(indx) > 0:
|
||||
self.data = self.data[indx, :]
|
||||
else:
|
||||
self.data = []
|
||||
|
||||
def filter_data(self):
|
||||
self.filter_by_time()
|
||||
if len(self.data) > 0:
|
||||
self.filter_by_magnitude()
|
||||
if len(self.data) > 0 and self.space_win:
|
||||
self.filter_by_space()
|
||||
|
||||
return self.data
|
@ -1,14 +0,0 @@
|
||||
import numpy as np
|
||||
def Find_idx4Time(In_mat, t):
|
||||
# In_mat: time array
|
||||
# t = target time
|
||||
In_mat = np.array(In_mat)
|
||||
t = np.array(t)
|
||||
if len(np.shape(t)) == 0:
|
||||
return np.where(abs(In_mat - t) <= min(abs(In_mat - t)))[0][0]
|
||||
else:
|
||||
In_mat = In_mat.reshape((len(In_mat), 1))
|
||||
t = t.reshape((1,len(t)))
|
||||
target_time = np.matmul(np.ones((len(In_mat),1)), t)
|
||||
diff_mat = target_time - In_mat
|
||||
return np.where(abs(diff_mat) <= np.min(abs(diff_mat), axis = 0))
|
@ -1,217 +0,0 @@
|
||||
import numpy as np
|
||||
|
||||
class M_max_models:
|
||||
def __init__(self, data = None, f_name = None, time_win = None, space_win = None,
|
||||
Mc = None, b_method = None, num_bootstraps = None,
|
||||
G = None, Mu = None,
|
||||
dv = None, Mo = None, SER = None,
|
||||
cl = None,
|
||||
ssd = None, C = None,
|
||||
):
|
||||
|
||||
self.data = data # Candidate data table: 2darray n x m, for n events and m clonums: x, y, z, t, mag
|
||||
self.f_name = f_name # Feature's name to be calculated, check: def ComputeFeaure(self)
|
||||
self.time_win = time_win # Time window whihc a feature is computed in
|
||||
self.space_win = space_win # Space window ...
|
||||
|
||||
self.Mc = Mc # Magnitude of completeness for computing b-positive
|
||||
self.b_method = b_method # list of b_methods
|
||||
self.num_bootstraps = num_bootstraps # Num of bootstraps for standard error estimation of b-value
|
||||
|
||||
self.G = G # Shear modulus
|
||||
self.Mu = Mu # Friction coefficient
|
||||
self.dv = dv # Injected fluid
|
||||
self.SER = SER
|
||||
|
||||
self.Mo = Mo # Cumulative moment magnitude
|
||||
self.cl = cl # Confidence level
|
||||
|
||||
self.ssd = ssd # Static stress drop (Shapiro et al. 2013)
|
||||
self.C = C # Geometrical constant (Shapiro et al. 2013)
|
||||
|
||||
|
||||
|
||||
|
||||
def b_value(self, b_flag):
|
||||
if b_flag == '1':
|
||||
return 1, None
|
||||
|
||||
# maximum-likelihood estimate (MLE) of b (Deemer & Votaw 1955; Aki 1965; Kagan 2002):
|
||||
elif b_flag == 'b':
|
||||
X = self.data[np.where(self.data[:,-1]>self.Mc)[0],:]
|
||||
if X.shape[0] > 0:
|
||||
b = 1/((np.mean(X[:,-1] - self.Mc))*np.log(10))
|
||||
std_error = b/np.sqrt(X.shape[0])
|
||||
else:
|
||||
raise ValueError("All events in the current time window have a magnitude less than 'completeness magnitude'. Use another value either for 'time window', 'minimum number of events' or 'completeness magnitude'. Also check 'time window type'.")
|
||||
return b, std_error
|
||||
|
||||
# B-positive (van der Elst 2021)
|
||||
elif b_flag == 'bp':
|
||||
|
||||
# Function to perform bootstrap estimation
|
||||
def bootstrap_estimate(data, num_bootstraps):
|
||||
estimates = []
|
||||
for _ in range(num_bootstraps):
|
||||
# Generate bootstrap sample
|
||||
bootstrap_sample = np.random.choice(data, size=len(data), replace=True)
|
||||
# Perform maximum likelihood estimation on bootstrap sample
|
||||
diff_mat = np.diff(bootstrap_sample)
|
||||
diff_mat = diff_mat[np.where(diff_mat>0)[0]]
|
||||
estimate = 1/((np.mean(diff_mat - np.min(diff_mat)))*np.log(10))
|
||||
estimates.append(estimate)
|
||||
return np.array(estimates)
|
||||
|
||||
diff_mat = np.diff(self.data[:,-1])
|
||||
diff_mat = diff_mat[np.where(diff_mat>0)[0]]
|
||||
bp = 1/((np.mean(diff_mat - np.min(diff_mat)))*np.log(10))
|
||||
bootstrap_estimates = bootstrap_estimate(diff_mat, self.num_bootstraps)
|
||||
std_error = np.std(bootstrap_estimates, axis=0)
|
||||
return bp, std_error
|
||||
|
||||
# Tapered Gutenberg_Richter (TGR) distribution (Kagan 2002)
|
||||
elif b_flag == 'TGR':
|
||||
from scipy.optimize import minimize
|
||||
|
||||
# The logarithm of the likelihood function for the TGR distribution (Kagan 2002)
|
||||
def log_likelihood(params, data):
|
||||
beta, Mcm = params
|
||||
n = len(data)
|
||||
Mt = np.min(data)
|
||||
l = n*beta*np.log(Mt)+1/Mcm*(n*Mt-np.sum(data))-beta*np.sum(np.log(data))+np.sum(np.log([(beta/data[i]+1/Mcm) for i in range(len(data))]))
|
||||
return -l
|
||||
X = self.data[np.where(self.data[:,-1]>self.Mc)[0],:]
|
||||
M = 10**(1.5*X[:,-1]+9.1)
|
||||
initial_guess = [0.5, np.max(M)]
|
||||
bounds = [(0.0, None), (np.max(M), None)]
|
||||
|
||||
# Minimize the negative likelihood function for beta and maximum moment
|
||||
result = minimize(log_likelihood, initial_guess, args=(M,), bounds=bounds, method='L-BFGS-B',
|
||||
options={'gtol': 1e-12, 'disp': False})
|
||||
beta_opt, Mcm_opt = result.x
|
||||
eta = 1/Mcm_opt
|
||||
S = M/np.min(M)
|
||||
dldb2 = -np.sum([1/(beta_opt-eta*S[i])**2 for i in range(len(S))])
|
||||
dldbde = -np.sum([S[i]/(beta_opt-eta*S[i])**2 for i in range(len(S))])
|
||||
dlde2 = -np.sum([S[i]**2/(beta_opt-eta*S[i])**2 for i in range(len(S))])
|
||||
std_error_beta = 1/np.sqrt(dldb2*dlde2-dldbde**2)*np.sqrt(-dlde2)
|
||||
return beta_opt*1.5, std_error_beta*1.5
|
||||
|
||||
def McGarr(self):
|
||||
b_value, b_stderr = self.b_value(self.b_method)
|
||||
B = 2/3*b_value
|
||||
if B < 1:
|
||||
sigma_m = ((1-B)/B)*(2*self.Mu)*(5*self.G)/3*self.dv
|
||||
Mmax = (np.log10(sigma_m)-9.1)/1.5
|
||||
if b_stderr:
|
||||
Mmax_stderr = b_stderr/np.abs(np.log(10)*(1.5*b_value-b_value**2))
|
||||
else:
|
||||
Mmax_stderr = None
|
||||
else:
|
||||
Mmax = None
|
||||
Mmax_stderr = None
|
||||
|
||||
return b_value, b_stderr, Mmax, Mmax_stderr
|
||||
|
||||
def Hallo(self):
|
||||
b_value, b_stderr = self.b_value(self.b_method)
|
||||
B = 2/3*b_value
|
||||
if b_value < 1.5:
|
||||
sigma_m = self.SER*((1-B)/B)*(2*self.Mu)*(5*self.G)/3*self.dv
|
||||
Mmax = (np.log10(sigma_m)-9.1)/1.5
|
||||
if b_stderr:
|
||||
Mmax_stderr = self.SER*b_stderr/np.abs(np.log(10)*(1.5*b_value-b_value**2))
|
||||
else:
|
||||
Mmax_stderr = None
|
||||
else:
|
||||
Mmax = None
|
||||
Mmax_stderr = None
|
||||
|
||||
return b_value, b_stderr, Mmax, Mmax_stderr
|
||||
|
||||
def Li(self):
|
||||
sigma_m = self.SER*2*self.G*self.dv - self.Mo
|
||||
Mmax = (np.log10(sigma_m)-9.1)/1.5
|
||||
if Mmax < 0:
|
||||
return None
|
||||
else:
|
||||
return Mmax
|
||||
|
||||
def van_der_Elst(self):
|
||||
b_value, b_stderr = self.b_value(self.b_method)
|
||||
# Seismogenic_Index
|
||||
X = self.data
|
||||
si = np.log10(X.shape[0]) - np.log10(self.dv) + b_value*self.Mc
|
||||
if b_stderr:
|
||||
si_stderr = self.Mc*b_stderr
|
||||
else:
|
||||
si_stderr = None
|
||||
|
||||
Mmax = (si + np.log10(self.dv))/b_value - np.log10(X.shape[0]*(1-self.cl**(1/X.shape[0])))/b_value
|
||||
if b_stderr:
|
||||
Mmax_stderr = (np.log10(X.shape[0]) + np.log10(X.shape[0]*(1-self.cl**(1/X.shape[0]))))*b_stderr
|
||||
else:
|
||||
Mmax_stderr = None
|
||||
|
||||
return b_value, b_stderr, si, si_stderr, Mmax, Mmax_stderr
|
||||
|
||||
def L_Shapiro(self):
|
||||
from scipy.stats import chi2
|
||||
|
||||
X = self.data[np.isfinite(self.data[:,1]),1:4]
|
||||
# Parameters
|
||||
STD = 2.0 # 2 standard deviations
|
||||
conf = 2 * chi2.cdf(STD, 2) - 1 # covers around 95% of population
|
||||
scalee = chi2.ppf(conf, 2) # inverse chi-squared with dof=#dimensions
|
||||
|
||||
# Center the data
|
||||
Mu = np.mean(X, axis=0)
|
||||
X0 = X - Mu
|
||||
|
||||
# Covariance matrix
|
||||
Cov = np.cov(X0, rowvar=False) * scalee
|
||||
|
||||
# Eigen decomposition
|
||||
D, V = np.linalg.eigh(Cov)
|
||||
order = np.argsort(D)[::-1]
|
||||
D = D[order]
|
||||
V = V[:, order]
|
||||
|
||||
# Compute radii
|
||||
VV = V * np.sqrt(D)
|
||||
R1 = np.sqrt(VV[0, 0]**2 + VV[1, 0]**2 + VV[2, 0]**2)
|
||||
R2 = np.sqrt(VV[0, 1]**2 + VV[1, 1]**2 + VV[2, 1]**2)
|
||||
R3 = np.sqrt(VV[0, 2]**2 + VV[1, 2]**2 + VV[2, 2]**2)
|
||||
|
||||
L = (1/3*(1/R1**3+1/R2**3+1/R3**3))**(-1/3)
|
||||
|
||||
return R1, R2, R3, L
|
||||
|
||||
def Shapiro(self):
|
||||
R1, R2, R3, L = self.L_Shapiro()
|
||||
Sh_lmax = np.log10((2*R1)**2)+(np.log10(self.ssd)-np.log10(self.C)-9.1)/1.5
|
||||
Sh_lint = np.log10((2*R2)**2)+(np.log10(self.ssd)-np.log10(self.C)-9.1)/1.5
|
||||
Sh_lmin = np.log10((2*R3)**2)+(np.log10(self.ssd)-np.log10(self.C)-9.1)/1.5
|
||||
Sh_lavg = np.log10((2*L)**2)+(np.log10(self.ssd)-np.log10(self.C)-9.1)/1.5
|
||||
|
||||
return Sh_lmax, Sh_lint, Sh_lmin, Sh_lavg
|
||||
# return R1, R2, R3, L, np.log10(R3**2)+(np.log10(self.ssd)-np.log10(self.C)-9.1)/1.5
|
||||
|
||||
def All_models(self):
|
||||
|
||||
return self.McGarr()[2], self.Hallo()[2], self.Li(), self.van_der_Elst()[-2], self.Shapiro()[-1]
|
||||
|
||||
|
||||
def ComputeModel(self):
|
||||
if self.f_name == 'max_mcg':
|
||||
return self.McGarr()
|
||||
if self.f_name == 'max_hlo':
|
||||
return self.Hallo()
|
||||
if self.f_name == 'max_li':
|
||||
return self.Li()
|
||||
if self.f_name == 'max_vde':
|
||||
return self.van_der_Elst()
|
||||
if self.f_name == 'max_shp':
|
||||
return self.Shapiro()
|
||||
if self.f_name == 'max_all':
|
||||
return self.All_models()
|
Loading…
Reference in New Issue
Block a user