stationary seismic hazard analysis scripts added
This commit is contained in:
		
							
								
								
									
										4
									
								
								.gitignore
									
									
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										4
									
								
								.gitignore
									
									
									
									
										vendored
									
									
										Normal file
									
								
							@@ -0,0 +1,4 @@
 | 
				
			|||||||
 | 
					/*
 | 
				
			||||||
 | 
					/*/
 | 
				
			||||||
 | 
					!.gitignore
 | 
				
			||||||
 | 
					!/src/
 | 
				
			||||||
							
								
								
									
										94
									
								
								src/StationarySeismicHazardAnalysis/ExcProbGRT.m
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										94
									
								
								src/StationarySeismicHazardAnalysis/ExcProbGRT.m
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,94 @@
 | 
				
			|||||||
 | 
					%   [x,z]=ExcProbGRT(opt,xd,xu,dx,y,Mmin,lamb,eps,b,Mmax)
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					%EVALUATES THE EXCEEDANCE PROBABILITY VALUES USING THE UPPER-BOUNDED G-R 
 | 
				
			||||||
 | 
					%   LED MAGNITUDE DISTRIBUTION MODEL.
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% AUTHOR: Stanislaw. Lasocki, Institute of Geophysics Polish Academy of
 | 
				
			||||||
 | 
					% Sciences, Warsaw, Poland
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% DESCRIPTION: The assumption on the upper-bounded Gutenberg-Richter 
 | 
				
			||||||
 | 
					% relation leads to the upper truncated exponential distribution to model 
 | 
				
			||||||
 | 
					% magnitude distribution from and above the catalog completness level 
 | 
				
			||||||
 | 
					% Mmin. The shape parameter of this distribution, consequently the G-R
 | 
				
			||||||
 | 
					% b-value and the end-point of the distriobution Mmax as well as the
 | 
				
			||||||
 | 
					% activity rate of M>=Mmin events are calculated at start-up of the 
 | 
				
			||||||
 | 
					% stationary hazard assessment services in the upper-bounded 
 | 
				
			||||||
 | 
					% Gutenberg-Richter estimation mode.
 | 
				
			||||||
 | 
					% 
 | 
				
			||||||
 | 
					% The exceedance probability of magnitude M' in the time period of 
 | 
				
			||||||
 | 
					% length T' is the probability of an earthquake of magnitude M' or greater 
 | 
				
			||||||
 | 
					% to occur in T'. Depending on the value of the parameter opt the 
 | 
				
			||||||
 | 
					% exceedance probability values are calculated for a fixed time period T'
 | 
				
			||||||
 | 
					% and different magnitude values or for a fixed magnitude M' and different
 | 
				
			||||||
 | 
					% time period length values. In either case the independent variable vector
 | 
				
			||||||
 | 
					% starts from xd, up to xu with step dx. In either case the result is 
 | 
				
			||||||
 | 
					% returned in the vector z.
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					%INPUT:
 | 
				
			||||||
 | 
					%   opt - determines the mode of calculations. opt=0 - fixed time period
 | 
				
			||||||
 | 
					%       length (y), different magnitude values (x), opt=1 - fixed magnitude 
 | 
				
			||||||
 | 
					%       (y), different time period lengths (x)
 | 
				
			||||||
 | 
					%   xd - starting value of the changeable independent variable 
 | 
				
			||||||
 | 
					%   xu - ending value of the changeable independent variable
 | 
				
			||||||
 | 
					%   dx - step change of the changeable independent variable
 | 
				
			||||||
 | 
					%   y - fixed independent variable value: time period length T' if opt=0, 
 | 
				
			||||||
 | 
					%        magnitude M' if opt=1
 | 
				
			||||||
 | 
					%   Mmin - lower bound of the distribution - catalog completeness level
 | 
				
			||||||
 | 
					%   lamb - mean activity rate for events M>=Mmin
 | 
				
			||||||
 | 
					%   eps - length of the round-off interval of magnitudes.
 | 
				
			||||||
 | 
					%   b - Gutenberg-Richter b-value
 | 
				
			||||||
 | 
					%   Mmax - upper limit of magnitude distribution
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					%OUTPUT:
 | 
				
			||||||
 | 
					%   x - vector of changeable independent variable: magnitudes if opt=0, 
 | 
				
			||||||
 | 
					%       time period lengths if opt=1, 
 | 
				
			||||||
 | 
					%       x=(xd:dx:xu)
 | 
				
			||||||
 | 
					%   z - vector of exceedance probability values of the same length as x
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% LICENSE
 | 
				
			||||||
 | 
					%     This file is a part of the IS-EPOS e-PLATFORM.
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					%     This is free software: you can redistribute it and/or modify it under 
 | 
				
			||||||
 | 
					%     the terms of the GNU General Public License as published by the Free 
 | 
				
			||||||
 | 
					%     Software Foundation, either version 3 of the License, or 
 | 
				
			||||||
 | 
					%     (at your option) any later version.
 | 
				
			||||||
 | 
					% 
 | 
				
			||||||
 | 
					%     This program is distributed in the hope that it will be useful,
 | 
				
			||||||
 | 
					%     but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
				
			||||||
 | 
					%     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
				
			||||||
 | 
					%     GNU General Public License for more details, <http://www.gnu.org/licenses/>.
 | 
				
			||||||
 | 
					% 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					function [x,z]=ExcProbGRT(opt,xd,xu,dx,y,Mmin,lamb,eps,b,Mmax)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					beta=b*log(10);
 | 
				
			||||||
 | 
					if opt==0
 | 
				
			||||||
 | 
					    if xd<Mmin; xd=Mmin;end
 | 
				
			||||||
 | 
					    if xu>Mmax; xu=Mmax;end
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					x=(xd:dx:xu)';
 | 
				
			||||||
 | 
					if opt==0
 | 
				
			||||||
 | 
					    z=1-exp(-lamb*y.*(1-Cdfgr(x,beta,Mmin-eps/2,Mmax)));
 | 
				
			||||||
 | 
					else
 | 
				
			||||||
 | 
					    z=1-exp(-lamb*(1-Cdfgr(y,beta,Mmin-eps/2,Mmax)).*x);
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					function [y]=Cdfgr(t,beta,Mmin,Mmax)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					%CDF of the truncated upper-bounded exponential distribution (truncated G-R
 | 
				
			||||||
 | 
					% model
 | 
				
			||||||
 | 
					% Mmin - catalog completeness level
 | 
				
			||||||
 | 
					% Mmax - upper limit of the distribution
 | 
				
			||||||
 | 
					% beta - the distribution parameter
 | 
				
			||||||
 | 
					% t - vector of magnitudes (independent variable)
 | 
				
			||||||
 | 
					% y - CDF vector
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					mian=(1-exp(-beta*(Mmax-Mmin)));
 | 
				
			||||||
 | 
					y=(1-exp(-beta*(t-Mmin)))/mian;
 | 
				
			||||||
 | 
					idx=find(y>1);
 | 
				
			||||||
 | 
					y(idx)=ones(size(idx));
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					
 | 
				
			||||||
							
								
								
									
										74
									
								
								src/StationarySeismicHazardAnalysis/ExcProbGRU.m
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										74
									
								
								src/StationarySeismicHazardAnalysis/ExcProbGRU.m
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,74 @@
 | 
				
			|||||||
 | 
					%   [x,z]=ExcProbGRU(opt,xd,xu,dx,y,Mmin,lamb,eps,b)
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					%EVALUATES THE EXCEEDANCE PROBABILITY VALUES USING THE UNLIMITED G-R 
 | 
				
			||||||
 | 
					%   LED MAGNITUDE DISTRIBUTION MODEL.
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% AUTHOR: Stanislaw. Lasocki, Institute of Geophysics Polish Academy of
 | 
				
			||||||
 | 
					% Sciences, Warsaw, Poland
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% DESCRIPTION: The assumption on the unlimited Gutenberg-Richter relation 
 | 
				
			||||||
 | 
					% leads to the exponential distribution model of magnitude distribution 
 | 
				
			||||||
 | 
					% from and above the catalog completness level Mmin. The shape parameter of 
 | 
				
			||||||
 | 
					% this distribution and consequently the G-R b-value are calculated at 
 | 
				
			||||||
 | 
					% start-up of the stationary hazard assessment services in the
 | 
				
			||||||
 | 
					% unlimited Gutenberg-Richter estimation mode.
 | 
				
			||||||
 | 
					% 
 | 
				
			||||||
 | 
					% The exceedance probability of magnitude M' in the time period of 
 | 
				
			||||||
 | 
					% length T' is the probability of an earthquake of magnitude M' or greater 
 | 
				
			||||||
 | 
					% to occur in T'. Depending on the value of the parameter opt the 
 | 
				
			||||||
 | 
					% exceedance probability values are calculated for a fixed time period T'
 | 
				
			||||||
 | 
					% and different magnitude values or for a fixed magnitude M' and different
 | 
				
			||||||
 | 
					% time period length values. In either case the independent variable vector
 | 
				
			||||||
 | 
					% starts from xd, up to xu with step dx. In either case the result is 
 | 
				
			||||||
 | 
					% returned in the vector z.
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					%INPUT:
 | 
				
			||||||
 | 
					%   opt - determines the mode of calculations. opt=0 - fixed time period
 | 
				
			||||||
 | 
					%       length (y), different magnitude values (x), opt=1 - fixed magnitude 
 | 
				
			||||||
 | 
					%       (y), different time period lengths (x)
 | 
				
			||||||
 | 
					%   xd - starting value of the changeable independent variable 
 | 
				
			||||||
 | 
					%   xu - ending value of the changeable independent variable
 | 
				
			||||||
 | 
					%   dx - step change of the changeable independent variable
 | 
				
			||||||
 | 
					%   y - fixed independent variable value: time period length T' if opt=0, 
 | 
				
			||||||
 | 
					%        magnitude M' if opt=1
 | 
				
			||||||
 | 
					%   Mmin - lower bound of the distribution - catalog completeness level
 | 
				
			||||||
 | 
					%   lamb - mean activity rate for events M>=Mmin
 | 
				
			||||||
 | 
					%   eps - length of the round-off interval of magnitudes.
 | 
				
			||||||
 | 
					%   b - Gutenberg-Richter b-value
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					%OUTPUT
 | 
				
			||||||
 | 
					%   x - vector of changeable independent variable: magnitudes if opt=0, 
 | 
				
			||||||
 | 
					%       time period lengths if opt=1, 
 | 
				
			||||||
 | 
					%       x=(xd:dx:xu)
 | 
				
			||||||
 | 
					%   z - vector of exceedance probability values of the same length as x
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% LICENSE
 | 
				
			||||||
 | 
					%     This file is a part of the IS-EPOS e-PLATFORM.
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					%     This is free software: you can redistribute it and/or modify it under 
 | 
				
			||||||
 | 
					%     the terms of the GNU General Public License as published by the Free 
 | 
				
			||||||
 | 
					%     Software Foundation, either version 3 of the License, or 
 | 
				
			||||||
 | 
					%     (at your option) any later version.
 | 
				
			||||||
 | 
					% 
 | 
				
			||||||
 | 
					%     This program is distributed in the hope that it will be useful,
 | 
				
			||||||
 | 
					%     but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
				
			||||||
 | 
					%     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
				
			||||||
 | 
					%     GNU General Public License for more details, <http://www.gnu.org/licenses/>.
 | 
				
			||||||
 | 
					% 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					function [x,z]=ExcProbGRU(opt,xd,xu,dx,y,Mmin,lamb,eps,b)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					beta=b*log(10);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					if opt==0
 | 
				
			||||||
 | 
					    if xd<Mmin; xd=Mmin;end
 | 
				
			||||||
 | 
					 end
 | 
				
			||||||
 | 
					x=(xd:dx:xu)';
 | 
				
			||||||
 | 
					if opt==0
 | 
				
			||||||
 | 
					    z=1-exp(-lamb*y.*exp(-beta*(x-Mmin+eps/2)));
 | 
				
			||||||
 | 
					else
 | 
				
			||||||
 | 
					    z=1-exp(-lamb*exp(-beta*(y-Mmin+eps/2)).*x);
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					
 | 
				
			||||||
							
								
								
									
										112
									
								
								src/StationarySeismicHazardAnalysis/ExcProbNPT.m
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										112
									
								
								src/StationarySeismicHazardAnalysis/ExcProbNPT.m
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,112 @@
 | 
				
			|||||||
 | 
					%   [x,z]=ExcProbNPT(opt,xd,xu,dx,y,Mmin,lamb,eps,h,xx,ambd,Mmax)
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					%USING THE NONPARAMETRIC ADAPTATIVE KERNEL APPROACH EVALUATES THE  
 | 
				
			||||||
 | 
					%   EXCEEDANCE PROBABILITY VALUES FOR THE UPPER-BOUNDED NONPARAMETRIC 
 | 
				
			||||||
 | 
					%   DISTRIBUTION FOR MAGNITUDE. 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% AUTHOR: Stanislaw. Lasocki, Institute of Geophysics Polish Academy of
 | 
				
			||||||
 | 
					% Sciences, Warsaw, Poland
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% DESCRIPTION: The kernel estimator approach is a model-free alternative 
 | 
				
			||||||
 | 
					% to estimating the magnitude distribution functions. It is assumed that 
 | 
				
			||||||
 | 
					% the magnitude distribution has a hard end point Mmax from the right hand  
 | 
				
			||||||
 | 
					% side.The estimation makes use of the previously estimated parameters 
 | 
				
			||||||
 | 
					% namely the mean activity rate lamb, the length of magnitude round-off 
 | 
				
			||||||
 | 
					% interval, eps, the smoothing factor, h, the background sample, xx, the 
 | 
				
			||||||
 | 
					% scaling factors for the background sample, ambd, and the end-point of 
 | 
				
			||||||
 | 
					% magnitude distribution Mmax. The background sample,xx, comprises the 
 | 
				
			||||||
 | 
					% randomized values of observed magnitude doubled symmetrically with 
 | 
				
			||||||
 | 
					% respect to the value Mmin-eps/2.
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% The exceedance probability of magnitude M' in the time 
 | 
				
			||||||
 | 
					% period of length T' is the probability of an earthquake of magnitude M' 
 | 
				
			||||||
 | 
					% or greater to occur in T'. 
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% Depending on the value of the parameter opt the exceedance probability 
 | 
				
			||||||
 | 
					% values are calculated for a fixed time period T' and different magnitude 
 | 
				
			||||||
 | 
					% values or for a fixed magnitude M' and different time period length 
 | 
				
			||||||
 | 
					% values. In either case the independent variable vector starts from  
 | 
				
			||||||
 | 
					% xd, up to xu with step dx. In either case the result is returned in the
 | 
				
			||||||
 | 
					% vector z.
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% REFERENCES:
 | 
				
			||||||
 | 
					% Silverman B.W. (1986) Density Estimation for Statistics and Data Analysis, 
 | 
				
			||||||
 | 
					%   Chapman and Hall, London 
 | 
				
			||||||
 | 
					% Kijko A., Lasocki S., Graham G. (2001) Pure appl. geophys. 158, 1655-1665
 | 
				
			||||||
 | 
					% Lasocki S., Orlecka-Sikora B. (2008) Tectonophysics 456, 28-37
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% INPUT:
 | 
				
			||||||
 | 
					%   opt - determines the mode of calculations. opt=0 - fixed time period
 | 
				
			||||||
 | 
					%       length (y), different magnitude values (x), opt=1 - fixed magnitude 
 | 
				
			||||||
 | 
					%       (y), different time period lengths (x)
 | 
				
			||||||
 | 
					%   xd - starting value of the changeable independent variable 
 | 
				
			||||||
 | 
					%   xu - ending value of the changeable independent variable
 | 
				
			||||||
 | 
					%   dx - step change of the changeable independent variable
 | 
				
			||||||
 | 
					%   Mmin - lower bound of the distribution - catalog completeness level
 | 
				
			||||||
 | 
					%   lamb - mean activity rate for events M>=Mmin
 | 
				
			||||||
 | 
					%   eps - length of round-off interval of magnitudes.  
 | 
				
			||||||
 | 
					%   h - kernel smoothing factor.
 | 
				
			||||||
 | 
					%   xx - the background sample
 | 
				
			||||||
 | 
					%   ambd - the weigthing factors for the adaptive kernel
 | 
				
			||||||
 | 
					%   Mmax - upper limit of magnitude distribution
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% OUTPUT:
 | 
				
			||||||
 | 
					%   x - vector of changeable independent variable x=(xd:dx:xu)
 | 
				
			||||||
 | 
					%   z - vector of exceedance probability values
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% LICENSE
 | 
				
			||||||
 | 
					%     This file is a part of the IS-EPOS e-PLATFORM.
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					%     This is free software: you can redistribute it and/or modify it under 
 | 
				
			||||||
 | 
					%     the terms of the GNU General Public License as published by the Free 
 | 
				
			||||||
 | 
					%     Software Foundation, either version 3 of the License, or 
 | 
				
			||||||
 | 
					%     (at your option) any later version.
 | 
				
			||||||
 | 
					% 
 | 
				
			||||||
 | 
					%     This program is distributed in the hope that it will be useful,
 | 
				
			||||||
 | 
					%     but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
				
			||||||
 | 
					%     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
				
			||||||
 | 
					%     GNU General Public License for more details, <http://www.gnu.org/licenses/>.
 | 
				
			||||||
 | 
					% 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					function [x,z]=...
 | 
				
			||||||
 | 
					    ExcProbNPT(opt,xd,xu,dx,y,Mmin,lamb,eps,h,xx,ambd,Mmax)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					if opt==0
 | 
				
			||||||
 | 
					    if xd<Mmin; xd=Mmin;end
 | 
				
			||||||
 | 
					    if xu>Mmax; xu=Mmax;end
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					x=(xd:dx:xu)';
 | 
				
			||||||
 | 
					n=length(x);
 | 
				
			||||||
 | 
					mian=2*(Dystr_npr(Mmax,xx,ambd,h)-Dystr_npr(Mmin-eps/2,xx,ambd,h));
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					if opt==0
 | 
				
			||||||
 | 
					    for i=1:n
 | 
				
			||||||
 | 
					        CDF_NPT=2*(Dystr_npr(x(i),xx,ambd,h)...
 | 
				
			||||||
 | 
					            -Dystr_npr(Mmin-eps/2,xx,ambd,h))./mian;
 | 
				
			||||||
 | 
					        z(i)=1-exp(-lamb*y.*(1-CDF_NPT));
 | 
				
			||||||
 | 
					    end
 | 
				
			||||||
 | 
					else
 | 
				
			||||||
 | 
					    CDF_NPT=2*(Dystr_npr(y,xx,ambd,h)...
 | 
				
			||||||
 | 
					        -Dystr_npr(Mmin-eps/2,xx,ambd,h))./mian;
 | 
				
			||||||
 | 
					    z=1-exp(-lamb*(1-CDF_NPT).*x);
 | 
				
			||||||
 | 
					        if y>Mmax;z=zeros(size(x));end 
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					function [Fgau]=Dystr_npr(y,x,ambd,h)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					%Nonparametric adaptive cumulative distribution for a variable from the
 | 
				
			||||||
 | 
					%interval (-inf,inf)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					% x - the sample data 
 | 
				
			||||||
 | 
					% ambd - the local scaling factors for the adaptive estimation 
 | 
				
			||||||
 | 
					% h - the optimal smoothing factor 
 | 
				
			||||||
 | 
					% y - the value of random variable X for which the density is calculated
 | 
				
			||||||
 | 
					% gau - the density value f(y)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					n=length(x);
 | 
				
			||||||
 | 
					Fgau=sum(normcdf(((y-x)./ambd')./h))/n;
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					
 | 
				
			||||||
							
								
								
									
										101
									
								
								src/StationarySeismicHazardAnalysis/ExcProbNPU.m
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										101
									
								
								src/StationarySeismicHazardAnalysis/ExcProbNPU.m
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,101 @@
 | 
				
			|||||||
 | 
					%   [x,z]=ExcProbNPU(opt,xd,xu,dx,y,Mmin,lamb,eps,h,xx,ambd)
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					%USING THE NONPARAMETRIC ADAPTATIVE KERNEL APPROACH EVALUATES THE  
 | 
				
			||||||
 | 
					%   EXCEEDANCE PROBABILITY VALUES FOR THE UNBOUNDED NONPARAMETRIC 
 | 
				
			||||||
 | 
					%   DISTRIBUTION FOR MAGNITUDE. 
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% AUTHOR: Stanislaw. Lasocki, Institute of Geophysics Polish Academy of
 | 
				
			||||||
 | 
					% Sciences, Warsaw, Poland
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% DESCRIPTION: The kernel estimator approach is a model-free alternative 
 | 
				
			||||||
 | 
					% to estimating the magnitude distribution functions. It is assumed that 
 | 
				
			||||||
 | 
					% the magnitude distribution is unlimited from the right hand side. 
 | 
				
			||||||
 | 
					% The estimation makes use of the previously estimated parameters of kernel 
 | 
				
			||||||
 | 
					% estimation, namely the smoothing factor, the background sample and the 
 | 
				
			||||||
 | 
					% scaling factors for the background sample. The background sample 
 | 
				
			||||||
 | 
					% - xx comprises the randomized values of observed magnitude doubled 
 | 
				
			||||||
 | 
					% symmetrically with respect to the value Mmin-eps/2.
 | 
				
			||||||
 | 
					% The exceedance probability of magnitude M' in the time period of length 
 | 
				
			||||||
 | 
					% T' is the probability of an earthquake of magnitude M' or greater to 
 | 
				
			||||||
 | 
					% occur in T'. 
 | 
				
			||||||
 | 
					% Depending on the value of the parameter opt the exceedance probability 
 | 
				
			||||||
 | 
					% values are calculated for a fixed time period T' and different magnitude 
 | 
				
			||||||
 | 
					% values or for a fixed magnitude M' and different time period length 
 | 
				
			||||||
 | 
					% values. In either case the independent variable vector starts from  
 | 
				
			||||||
 | 
					% xd, up to xu with step dx. In either case the result is returned in the
 | 
				
			||||||
 | 
					% vector z.
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% REFERENCES:
 | 
				
			||||||
 | 
					%Silverman B.W. (1986) Density Estimation fro Statistics and Data Analysis, 
 | 
				
			||||||
 | 
					%   Chapman and Hall, London 
 | 
				
			||||||
 | 
					%Kijko A., Lasocki S., Graham G. (2001) Pure appl. geophys. 158, 1655-1665
 | 
				
			||||||
 | 
					%Lasocki S., Orlecka-Sikora B. (2008) Tectonophysics 456, 28-37
 | 
				
			||||||
 | 
					%       
 | 
				
			||||||
 | 
					% INPUT:
 | 
				
			||||||
 | 
					%   opt - determines the mode of calculations. opt=0 - fixed time period
 | 
				
			||||||
 | 
					%       length (y), different magnitude values (x), opt=1 - fixed magnitude 
 | 
				
			||||||
 | 
					%       (y), different time period lengths (x)
 | 
				
			||||||
 | 
					%   xd - starting value of the changeable independent variable 
 | 
				
			||||||
 | 
					%   xu - ending value of the changeable independent variable
 | 
				
			||||||
 | 
					%   dx - step change of the changeable independent variable
 | 
				
			||||||
 | 
					%   y - fixed independent variable value: time period length T' if opt=0, 
 | 
				
			||||||
 | 
					%        magnitude M' if opt=1
 | 
				
			||||||
 | 
					%   Mmin - lower bound of the distribution - catalog completeness level
 | 
				
			||||||
 | 
					%   lamb - mean activity rate for events M>=Mmin
 | 
				
			||||||
 | 
					%   eps - length of the round-off interval of magnitudes.
 | 
				
			||||||
 | 
					%   h - kernel smoothing factor.
 | 
				
			||||||
 | 
					%   xx - the background sample
 | 
				
			||||||
 | 
					%   ambd - the weigthing factors for the adaptive kernel
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% OUTPUT:
 | 
				
			||||||
 | 
					%   x - vector of changeable independent variable: magnitudes if opt=0, 
 | 
				
			||||||
 | 
					%       time period lengths if opt=1, 
 | 
				
			||||||
 | 
					%       x=(xd:dx:xu)
 | 
				
			||||||
 | 
					%   z - vector of exceedance probability values of the same length as x
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% LICENSE
 | 
				
			||||||
 | 
					%     This file is a part of the IS-EPOS e-PLATFORM.
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					%     This is free software: you can redistribute it and/or modify it under 
 | 
				
			||||||
 | 
					%     the terms of the GNU General Public License as published by the Free 
 | 
				
			||||||
 | 
					%     Software Foundation, either version 3 of the License, or 
 | 
				
			||||||
 | 
					%     (at your option) any later version.
 | 
				
			||||||
 | 
					% 
 | 
				
			||||||
 | 
					%     This program is distributed in the hope that it will be useful,
 | 
				
			||||||
 | 
					%     but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
				
			||||||
 | 
					%     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
				
			||||||
 | 
					%     GNU General Public License for more details, <http://www.gnu.org/licenses/>.
 | 
				
			||||||
 | 
					% 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					function [x,z]=ExcProbNPU(opt,xd,xu,dx,y,Mmin,lamb,eps,h,xx,ambd)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					x=(xd:dx:xu)';
 | 
				
			||||||
 | 
					n=length(x);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					if opt==0
 | 
				
			||||||
 | 
					    for i=1:n
 | 
				
			||||||
 | 
					        CDF_NPU=2*(Dystr_npr(x(i),xx,ambd,h)-Dystr_npr(Mmin-eps/2,xx,ambd,h));
 | 
				
			||||||
 | 
					        z(i)=1-exp(-lamb*y.*(1-CDF_NPU));
 | 
				
			||||||
 | 
					    end
 | 
				
			||||||
 | 
					else
 | 
				
			||||||
 | 
					    CDF_NPU=2*(Dystr_npr(y,xx,ambd,h)-Dystr_npr(Mmin-eps/2,xx,ambd,h));
 | 
				
			||||||
 | 
					    z=1-exp(-lamb*(1-CDF_NPU).*x);
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					function [Fgau]=Dystr_npr(y,x,ambd,h)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					%Nonparametric adaptive cumulative distribution for a variable from the
 | 
				
			||||||
 | 
					%interval (-inf,inf)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					% x - the sample data 
 | 
				
			||||||
 | 
					% ambd - the local scaling factors for the adaptive estimation 
 | 
				
			||||||
 | 
					% h - the optimal smoothing factor 
 | 
				
			||||||
 | 
					% y - the value of random variable X for which the density is calculated
 | 
				
			||||||
 | 
					% gau - the density value f(y)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					n=length(x);
 | 
				
			||||||
 | 
					Fgau=sum(normcdf(((y-x)./ambd')./h))/n;
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					
 | 
				
			||||||
							
								
								
									
										55
									
								
								src/StationarySeismicHazardAnalysis/Max_credM_GRT.m
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										55
									
								
								src/StationarySeismicHazardAnalysis/Max_credM_GRT.m
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,55 @@
 | 
				
			|||||||
 | 
					%   [T,m]=Max_credM_GRT(Td,Tu,dT,Mmin,lamb,eps,b,Mmax)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					%EVALUATES THE MAXIMUM CREDIBLE MAGNITUDE VALUES USING THE UPPER-BOUNDED 
 | 
				
			||||||
 | 
					%   G-R LED MAGNITUDE DISTRIBUTION MODEL. 
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% AUTHOR: Stanislaw. Lasocki, Institute of Geophysics Polish Academy of
 | 
				
			||||||
 | 
					% Sciences, Warsaw, Poland
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% DESCRIPTION: The assumption on the upper-bounded Gutenberg-Richter 
 | 
				
			||||||
 | 
					% relation leads to the upper truncated exponential distribution to model 
 | 
				
			||||||
 | 
					% magnitude distribution from and above the catalog completness level 
 | 
				
			||||||
 | 
					% Mmin. The shape parameter of this distribution, consequently the G-R
 | 
				
			||||||
 | 
					% b-value and the end-point of the distriobution Mmax as well as the
 | 
				
			||||||
 | 
					% activity rate of M>=Mmin events are calculated at start-up of the 
 | 
				
			||||||
 | 
					% stationary hazard assessment services in the upper-bounded 
 | 
				
			||||||
 | 
					% Gutenberg-Richter estimation mode.
 | 
				
			||||||
 | 
					% 
 | 
				
			||||||
 | 
					% The maximum credible magnitude values are calculated for periods of 
 | 
				
			||||||
 | 
					% length starting from Td up to Tu with step dT.
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% INPUT:
 | 
				
			||||||
 | 
					%   Td - starting period length for maximum credible magnitude calculations
 | 
				
			||||||
 | 
					%   Tu - ending period length for maximum credible magnitude calculations
 | 
				
			||||||
 | 
					%   dT - period length step for maximum credible magnitude calculations
 | 
				
			||||||
 | 
					%   Mmin - lower bound of the distribution - catalog completeness level
 | 
				
			||||||
 | 
					%   lamb - mean activity rate for events M>=Mmin
 | 
				
			||||||
 | 
					%   eps - length of the round-off interval of magnitudes.
 | 
				
			||||||
 | 
					%   b - Gutenberg-Richter b-value
 | 
				
			||||||
 | 
					%   Mmax - upper limit of magnitude distribution
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% OUTPUT:
 | 
				
			||||||
 | 
					%   T - vector of independent variable (period lengths) T=(Td:dT:Tu)
 | 
				
			||||||
 | 
					%   m - vector of maximum credible magnitudes of the same length as T
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% LICENSE
 | 
				
			||||||
 | 
					%     This file is a part of the IS-EPOS e-PLATFORM.
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					%     This is free software: you can redistribute it and/or modify it under 
 | 
				
			||||||
 | 
					%     the terms of the GNU General Public License as published by the Free 
 | 
				
			||||||
 | 
					%     Software Foundation, either version 3 of the License, or 
 | 
				
			||||||
 | 
					%     (at your option) any later version.
 | 
				
			||||||
 | 
					% 
 | 
				
			||||||
 | 
					%     This program is distributed in the hope that it will be useful,
 | 
				
			||||||
 | 
					%     but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
				
			||||||
 | 
					%     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
				
			||||||
 | 
					%     GNU General Public License for more details, <http://www.gnu.org/licenses/>.
 | 
				
			||||||
 | 
					% 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					function [T,m]=Max_credM_GRT(Td,Tu,dT,Mmin,lamb,eps,b,Mmax)
 | 
				
			||||||
 | 
					T=(Td:dT:Tu)';
 | 
				
			||||||
 | 
					beta=b*log(10);
 | 
				
			||||||
 | 
					mian=(1-exp(-beta*(Mmax-Mmin+eps/2)));
 | 
				
			||||||
 | 
					m=Mmin-eps/2-1/beta*log((1-(1-1./(lamb*T))*mian));
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					
 | 
				
			||||||
							
								
								
									
										59
									
								
								src/StationarySeismicHazardAnalysis/Max_credM_GRU.m
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										59
									
								
								src/StationarySeismicHazardAnalysis/Max_credM_GRU.m
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,59 @@
 | 
				
			|||||||
 | 
					%   [T,m]=Max_credM_GRU(Td,Tu,dT,Mmin,lamb,eps,b)
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					%EVALUATES THE MAXIMUM CREDIBLE MAGNITUDE VALUES USING THE UNLIMITED 
 | 
				
			||||||
 | 
					%   G-R LED MAGNITUDE DISTRIBUTION MODEL. 
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% AUTHOR: Stanislaw. Lasocki, Institute of Geophysics Polish Academy of
 | 
				
			||||||
 | 
					% Sciences, Warsaw, Poland
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% DESCRIPTION: The assumption on the unlimited Gutenberg-Richter relation 
 | 
				
			||||||
 | 
					% leads to the exponential distribution model of magnitude distribution 
 | 
				
			||||||
 | 
					% from and above the catalog completness level Mmin. The shape parameter of 
 | 
				
			||||||
 | 
					% this distribution and consequently the G-R b-value are calculated at 
 | 
				
			||||||
 | 
					% start-up of the stationary hazard assessment services in the
 | 
				
			||||||
 | 
					% unlimited Gutenberg-Richter estimation mode.
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% The maximum credible magnitude for the period of length T
 | 
				
			||||||
 | 
					% is the magnitude value whose mean return period is T. 
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% The maximum credible magnitude values are calculated for periods of 
 | 
				
			||||||
 | 
					% length starting from Td up to Tu with step dT.
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					%INPUT:
 | 
				
			||||||
 | 
					%   Td - starting period length for maximum credible magnitude calculations
 | 
				
			||||||
 | 
					%   Tu - ending period length for maximum credible magnitude calculations
 | 
				
			||||||
 | 
					%   dT - period length step for maximum credible magnitude calculations
 | 
				
			||||||
 | 
					%   Mmin - lower bound of the distribution - catalog completeness level
 | 
				
			||||||
 | 
					%   lamb - mean activity rate for events M>=Mmin
 | 
				
			||||||
 | 
					%   eps - length of the round-off interval of magnitudes.
 | 
				
			||||||
 | 
					%   b - Gutenberg-Richter b-value
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					%OUTPUT:
 | 
				
			||||||
 | 
					%   T - vector of independent variable (period lengths) T=(Td:dT:Tu)
 | 
				
			||||||
 | 
					%   m - vector of maximum credible magnitudes of the same length as T
 | 
				
			||||||
 | 
					% 
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% LICENSE
 | 
				
			||||||
 | 
					%     This file is a part of the IS-EPOS e-PLATFORM.
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					%     This is free software: you can redistribute it and/or modify it under 
 | 
				
			||||||
 | 
					%     the terms of the GNU General Public License as published by the Free 
 | 
				
			||||||
 | 
					%     Software Foundation, either version 3 of the License, or 
 | 
				
			||||||
 | 
					%     (at your option) any later version.
 | 
				
			||||||
 | 
					% 
 | 
				
			||||||
 | 
					%     This program is distributed in the hope that it will be useful,
 | 
				
			||||||
 | 
					%     but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
				
			||||||
 | 
					%     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
				
			||||||
 | 
					%     GNU General Public License for more details, <http://www.gnu.org/licenses/>.
 | 
				
			||||||
 | 
					% 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					function [T,m]=Max_credM_GRU(Td,Tu,dT,Mmin,lamb,eps,b)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					T=(Td:dT:Tu)';
 | 
				
			||||||
 | 
					beta=b*log(10);
 | 
				
			||||||
 | 
					m=Mmin-eps/2+1/beta.*log(lamb*T);
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
							
								
								
									
										94
									
								
								src/StationarySeismicHazardAnalysis/Max_credM_NPT.m
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										94
									
								
								src/StationarySeismicHazardAnalysis/Max_credM_NPT.m
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,94 @@
 | 
				
			|||||||
 | 
					%   [T,m]=Max_credM_NPT(Td,Tu,dT,Mmin,lamb,eps,h,xx,ambd,Mmax)    
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					%USING THE NONPARAMETRIC ADAPTATIVE KERNEL APPROACH EVALUATES THE MAXIMUM 
 | 
				
			||||||
 | 
					%   CREDIBLE MAGNITUDE VALUES FOR THE UPPER-BOUNDED NONPARAMETRIC 
 | 
				
			||||||
 | 
					%   DISTRIBUTION FOR MAGNITUDE. 
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% AUTHOR: Stanislaw. Lasocki, Institute of Geophysics Polish Academy of
 | 
				
			||||||
 | 
					% Sciences, Warsaw, Poland
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% DESCRIPTION: The kernel estimator approach is a model-free alternative 
 | 
				
			||||||
 | 
					% to estimating the magnitude distribution functions. It is assumed that 
 | 
				
			||||||
 | 
					% the magnitude distribution has a hard end point Mmax from the right hand  
 | 
				
			||||||
 | 
					% side.The estimation makes use of the previously estimated parameters 
 | 
				
			||||||
 | 
					% namely the mean activity rate lamb, the length of magnitude round-off 
 | 
				
			||||||
 | 
					% interval, eps, the smoothing factor, h, the background sample, xx, the 
 | 
				
			||||||
 | 
					% scaling factors for the background sample, ambd, and the end-point of 
 | 
				
			||||||
 | 
					% magnitude distribution Mmax. The background sample,xx, comprises the 
 | 
				
			||||||
 | 
					% randomized values of observed magnitude doubled symmetrically with 
 | 
				
			||||||
 | 
					% respect to the value Mmin-eps/2.
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% The maximum credible magnitude for the period of length T
 | 
				
			||||||
 | 
					% is the magnitude value whose mean return period is T. 
 | 
				
			||||||
 | 
					% The maximum credible magnitude values are calculated for periods of 
 | 
				
			||||||
 | 
					% length starting from Td up to Tu with step dT.
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% REFERENCES:
 | 
				
			||||||
 | 
					%  Silverman B.W. (1986) Density Estimation for Statistics and Data Analysis, 
 | 
				
			||||||
 | 
					%   Chapman and Hall, London 
 | 
				
			||||||
 | 
					%  Kijko A., Lasocki S., Graham G. (2001) Pure appl. geophys. 158, 1655-1665
 | 
				
			||||||
 | 
					%  Lasocki S., Orlecka-Sikora B. (2008) Tectonophysics 456, 28-37
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% INPUT:
 | 
				
			||||||
 | 
					%   Td - starting period length for maximum credible magnitude calculations
 | 
				
			||||||
 | 
					%   Tu - ending period length for maximum credible magnitude calculations
 | 
				
			||||||
 | 
					%   dT - period length step for maximum credible magnitude calculations
 | 
				
			||||||
 | 
					%   Mmin - lower bound of the distribution - catalog completeness level
 | 
				
			||||||
 | 
					%   lamb - mean activity rate for events M>=Mmin
 | 
				
			||||||
 | 
					%   eps - length of round-off interval of magnitudes.  
 | 
				
			||||||
 | 
					%   h - kernel smoothing factor.
 | 
				
			||||||
 | 
					%   xx - the background sample
 | 
				
			||||||
 | 
					%   ambd - the weigthing factors for the adaptive kernel
 | 
				
			||||||
 | 
					%   Mmax - upper limit of magnitude distribution
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% OUTPUT:
 | 
				
			||||||
 | 
					%   T - vector of independent variable (period lengths) T=(Td:dT:Tu)
 | 
				
			||||||
 | 
					%   m - vector of maximum credible magnitudes of the same length as T
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% LICENSE
 | 
				
			||||||
 | 
					%     This file is a part of the IS-EPOS e-PLATFORM.
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					%     This is free software: you can redistribute it and/or modify it under 
 | 
				
			||||||
 | 
					%     the terms of the GNU General Public License as published by the Free 
 | 
				
			||||||
 | 
					%     Software Foundation, either version 3 of the License, or 
 | 
				
			||||||
 | 
					%     (at your option) any later version.
 | 
				
			||||||
 | 
					% 
 | 
				
			||||||
 | 
					%     This program is distributed in the hope that it will be useful,
 | 
				
			||||||
 | 
					%     but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
				
			||||||
 | 
					%     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
				
			||||||
 | 
					%     GNU General Public License for more details, <http://www.gnu.org/licenses/>.
 | 
				
			||||||
 | 
					% 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					function [T,m]=Max_credM_NPT(Td,Tu,dT,Mmin,lamb,eps,h,xx,ambd,Mmax)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					T=(Td:dT:Tu)';
 | 
				
			||||||
 | 
					n=length(T);
 | 
				
			||||||
 | 
					interval=[Mmin-eps/2 Mmax-0.001];
 | 
				
			||||||
 | 
					for i=1:n
 | 
				
			||||||
 | 
					    m(i)=fzero(@F_maxmagn,interval,[],xx,h,ambd,Mmin-eps/2,Mmax,lamb,T(i));
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					m=m';
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					function [y]=F_maxmagn(t,xx,h,ambd,xmin,Mmax,lamb,D)
 | 
				
			||||||
 | 
					mian=2*(Dystr_npr(Mmax,xx,ambd,h)-Dystr_npr(xmin,xx,ambd,h));
 | 
				
			||||||
 | 
					CDF_NPT=2*(Dystr_npr(t,xx,ambd,h)-Dystr_npr(xmin,xx,ambd,h))/mian;
 | 
				
			||||||
 | 
					y=CDF_NPT-1+1/(lamb*D);
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					function [Fgau]=Dystr_npr(y,x,ambd,h)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					%Nonparametric adaptive cumulative distribution for a variable from the
 | 
				
			||||||
 | 
					%interval (-inf,inf)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					% x - the sample data 
 | 
				
			||||||
 | 
					% ambd - the local scaling factors for the adaptive estimation 
 | 
				
			||||||
 | 
					% h - the optimal smoothing factor 
 | 
				
			||||||
 | 
					% y - the value of random variable X for which the density is calculated
 | 
				
			||||||
 | 
					% gau - the density value f(y)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					n=length(x);
 | 
				
			||||||
 | 
					Fgau=sum(normcdf(((y-x)./ambd')./h))/n;
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					
 | 
				
			||||||
							
								
								
									
										94
									
								
								src/StationarySeismicHazardAnalysis/Max_credM_NPU.m
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										94
									
								
								src/StationarySeismicHazardAnalysis/Max_credM_NPU.m
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,94 @@
 | 
				
			|||||||
 | 
					%   [T,m]=Max_credM_NPU(Td,Tu,dT,Mmin,lamb,eps,h,xx,ambd)
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					%USING THE NONPARAMETRIC ADAPTATIVE KERNEL APPROACH EVALUATES  
 | 
				
			||||||
 | 
					%   THE MAXIMUM CREDIBLE MAGNITUDE VALUES FOR THE UNBOUNDED 
 | 
				
			||||||
 | 
					%   NONPARAMETRIC DISTRIBUTION FOR MAGNITUDE. 
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% AUTHOR: Stanislaw. Lasocki, Institute of Geophysics Polish Academy of
 | 
				
			||||||
 | 
					% Sciences, Warsaw, Poland
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% DESCRIPTION: The kernel estimator approach is a model-free alternative 
 | 
				
			||||||
 | 
					% to estimating the magnitude distribution functions. It is assumed that 
 | 
				
			||||||
 | 
					% the magnitude distribution is unlimited from the right hand side. 
 | 
				
			||||||
 | 
					% The estimation makes use of the previously estimated parameters of kernel 
 | 
				
			||||||
 | 
					% estimation, namely the smoothing factor, the background sample and the 
 | 
				
			||||||
 | 
					% scaling factors for the background sample. The background sample 
 | 
				
			||||||
 | 
					% - xx comprises the randomized values of observed magnitude doubled 
 | 
				
			||||||
 | 
					% symmetrically with respect to the value Mmin-eps/2.
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% The maximum credible magnitude for the period of length T
 | 
				
			||||||
 | 
					% is the magnitude value whose mean return period is T. 
 | 
				
			||||||
 | 
					% The maximum credible magnitude values are calculated for periods of 
 | 
				
			||||||
 | 
					% length starting from Td up to Tu with step dT.
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% REFERENCES:
 | 
				
			||||||
 | 
					%Silverman B.W. (1986) Density Estimation fro Statistics and Data Analysis, 
 | 
				
			||||||
 | 
					%   Chapman and Hall, London 
 | 
				
			||||||
 | 
					%Kijko A., Lasocki S., Graham G. (2001) Pure appl. geophys. 158, 1655-1665
 | 
				
			||||||
 | 
					%Lasocki S., Orlecka-Sikora B. (2008) Tectonophysics 456, 28-37
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					%INPUT:
 | 
				
			||||||
 | 
					%   opt - determines the mode of calculations. opt=0 - fixed time period
 | 
				
			||||||
 | 
					%       length (y), different magnitude values (x), opt=1 - fixed magnitude 
 | 
				
			||||||
 | 
					%       (y), different time period lengths (x)
 | 
				
			||||||
 | 
					%   xd - starting value of the changeable independent variable 
 | 
				
			||||||
 | 
					%   xu - ending value of the changeable independent variable
 | 
				
			||||||
 | 
					%   dx - step change of the changeable independent variable
 | 
				
			||||||
 | 
					%   y - fixed independent variable value: time period length T' if opt=0, 
 | 
				
			||||||
 | 
					%        magnitude M' if opt=1
 | 
				
			||||||
 | 
					%   Mmin - lower bound of the distribution - catalog completeness level
 | 
				
			||||||
 | 
					%   lamb - mean activity rate for events M>=Mmin
 | 
				
			||||||
 | 
					%   eps - length of the round-off interval of magnitudes.
 | 
				
			||||||
 | 
					%   h - kernel smoothing factor.
 | 
				
			||||||
 | 
					%   xx - the background sample
 | 
				
			||||||
 | 
					%   ambd - the weigthing factors for the adaptive kernel
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					%OUTPUT:
 | 
				
			||||||
 | 
					%   T - vector of independent variable (period lengths) T=(Td:dT:Tu)
 | 
				
			||||||
 | 
					%   m - vector of maximum credible magnitudes of the same length as T
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% LICENSE
 | 
				
			||||||
 | 
					%     This file is a part of the IS-EPOS e-PLATFORM.
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					%     This is free software: you can redistribute it and/or modify it under 
 | 
				
			||||||
 | 
					%     the terms of the GNU General Public License as published by the Free 
 | 
				
			||||||
 | 
					%     Software Foundation, either version 3 of the License, or 
 | 
				
			||||||
 | 
					%     (at your option) any later version.
 | 
				
			||||||
 | 
					% 
 | 
				
			||||||
 | 
					%     This program is distributed in the hope that it will be useful,
 | 
				
			||||||
 | 
					%     but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
				
			||||||
 | 
					%     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
				
			||||||
 | 
					%     GNU General Public License for more details, <http://www.gnu.org/licenses/>.
 | 
				
			||||||
 | 
					% 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					function [T,m]=Max_credM_NPU(Td,Tu,dT,Mmin,lamb,eps,h,xx,ambd)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					T=(Td:dT:Tu)';
 | 
				
			||||||
 | 
					n=length(T);
 | 
				
			||||||
 | 
					interval=[Mmin-eps/2 10.0];
 | 
				
			||||||
 | 
					for i=1:n
 | 
				
			||||||
 | 
					     m(i)=fzero(@F_maxmagn_NPU,interval,[],xx,h,ambd,Mmin-eps/2,lamb,T(i));
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					m=m';
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					function [y]=F_maxmagn_NPU(t,xx,h,ambd,xmin,lamb,D)
 | 
				
			||||||
 | 
					CDF_NPU=2*(Dystr_npr(t,xx,ambd,h)-Dystr_npr(xmin,xx,ambd,h));
 | 
				
			||||||
 | 
					y=CDF_NPU-1+1/(lamb*D);
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					function [Fgau]=Dystr_npr(y,x,ambd,h)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					%Nonparametric adaptive cumulative distribution for a variable from the
 | 
				
			||||||
 | 
					%interval (-inf,inf)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					% x - the sample data 
 | 
				
			||||||
 | 
					% ambd - the local scaling factors for the adaptive estimation 
 | 
				
			||||||
 | 
					% h - the optimal smoothing factor 
 | 
				
			||||||
 | 
					% y - the value of random variable X for which the density is calculated
 | 
				
			||||||
 | 
					% gau - the density value f(y)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					n=length(x);
 | 
				
			||||||
 | 
					Fgau=sum(normcdf(((y-x)./ambd')./h))/n;
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					
 | 
				
			||||||
							
								
								
									
										257
									
								
								src/StationarySeismicHazardAnalysis/Nonpar.m
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										257
									
								
								src/StationarySeismicHazardAnalysis/Nonpar.m
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,257 @@
 | 
				
			|||||||
 | 
					%   [lamb_all,lamb,lamb_err,unit,eps,ierr,h,xx,ambd]=Nonpar(t,M,iop,Mmin)
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% BASED ON MAGNITUDE SAMPLE DATA M DETERMINES THE ROUND-OFF INTERVAL LENGTH
 | 
				
			||||||
 | 
					% OF THE MAGNITUDE DATA - eps, THE SMOOTHING FACTOR - h, CONSTRUCTS 
 | 
				
			||||||
 | 
					% THE BACKGROUND SAMPLE - xx AND CALCULATES THE WEIGHTING FACTORS - ambd 
 | 
				
			||||||
 | 
					% FOR A USE OF THE NONPARAMETRIC ADAPTATIVE KERNEL ESTIMATORS OF MAGNITUDE 
 | 
				
			||||||
 | 
					% DISTRIBUTION.
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% AUTHOR: Stanislaw. Lasocki, Institute of Geophysics Polish Academy of
 | 
				
			||||||
 | 
					% Sciences, Warsaw, Poland
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% DESCRIPTION: The kernel estimator approach is a model-free alternative 
 | 
				
			||||||
 | 
					% to estimating the magnitude distribution functions. The smoothing factor 
 | 
				
			||||||
 | 
					% h, is estimated using the least-squares cross-validation for the Gaussian
 | 
				
			||||||
 | 
					% kernel function. The final form of the kernel is the adaptive kernel.
 | 
				
			||||||
 | 
					% In order to avoid repetitions, which cannot appear in a sample when the
 | 
				
			||||||
 | 
					% kernel estimators are used, the magnitude sample data are randomized
 | 
				
			||||||
 | 
					% within the magnitude round-off interval. The round-off interval length -
 | 
				
			||||||
 | 
					% eps is the least non-zero difference between sample data or 0.1 is the
 | 
				
			||||||
 | 
					% least difference if greater than 0.1. The randomization is done
 | 
				
			||||||
 | 
					% assuming exponential distribution of m in [m0-eps/2, m0+eps/2], where m0
 | 
				
			||||||
 | 
					% is the sample data point and eps is the length of roud-off inteval. The 
 | 
				
			||||||
 | 
					% shape parameter of the exponential distribution is estimated from the whole
 | 
				
			||||||
 | 
					% data sample assuming the exponential distribution. The background sample 
 | 
				
			||||||
 | 
					% - xx comprises the randomized values of magnitude doubled symmetrically 
 | 
				
			||||||
 | 
					% with respect to the value Mmin-eps/2: length(xx)=2*length(M). Weigthing 
 | 
				
			||||||
 | 
					% factors row vector for the adaptive kernel is of the same size as xx. 
 | 
				
			||||||
 | 
					% See: the references below for a more comprehensive description.
 | 
				
			||||||
 | 
					% 
 | 
				
			||||||
 | 
					% This is a beta version of the program. Further developments are foreseen.
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% REFERENCES:
 | 
				
			||||||
 | 
					%Silverman B.W. (1986) Density Estimation for Statistics and Data Analysis, 
 | 
				
			||||||
 | 
					%   Chapman and Hall, London 
 | 
				
			||||||
 | 
					%Kijko A., Lasocki S., Graham G. (2001) Pure appl. geophys. 158, 1655-1665
 | 
				
			||||||
 | 
					%Lasocki S., Orlecka-Sikora B. (2008) Tectonophysics 456, 28-37
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% INPUT:
 | 
				
			||||||
 | 
					%   t - vector of earthquake occurrence times
 | 
				
			||||||
 | 
					%   M - vector of earthquake magnitudes (sample data)
 | 
				
			||||||
 | 
					%   iop - determines the used unit of time. iop=0 - 'day', iop=1 - 'month', 
 | 
				
			||||||
 | 
					%       iop=2 - 'year'
 | 
				
			||||||
 | 
					%   Mmin - lower bound of the distribution - catalog completeness level
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% OUTPUT
 | 
				
			||||||
 | 
					%   lamb_all - mean activity rate for all events
 | 
				
			||||||
 | 
					%   lamb - mean activity rate for events >= Mmin
 | 
				
			||||||
 | 
					%   lamb_err - error paramter on the number of events >=Mmin. lamb_err=0
 | 
				
			||||||
 | 
					%       for 50 or more events >=Mmin and the parameter estimation is
 | 
				
			||||||
 | 
					%       continued, lamb_err=1 otherwise, all output paramters except 
 | 
				
			||||||
 | 
					%       lamb_all and lamb are set to zero and the function execution is 
 | 
				
			||||||
 | 
					%       terminated.  
 | 
				
			||||||
 | 
					%   unit - string with name of time unit used ('year' or 'month' or 'day').
 | 
				
			||||||
 | 
					%   eps - length of round-off interval of magnitudes.  
 | 
				
			||||||
 | 
					%   ierr - h-convergence indicator. ierr=0 if the estimation procedure of 
 | 
				
			||||||
 | 
					%   the optimal smoothing factor has converged (the zero of the h functional 
 | 
				
			||||||
 | 
					%   has been found, ierr=1 when multiple zeros of h functional were 
 | 
				
			||||||
 | 
					%   encountered - the largest h is accepted, ierr = 2 when h functional did  
 | 
				
			||||||
 | 
					%   not zeroe - the approximate h value is taken.
 | 
				
			||||||
 | 
					%   h - kernel smoothing factor.
 | 
				
			||||||
 | 
					%   xx - the background sample for the nonparametric estimators of magnitude 
 | 
				
			||||||
 | 
					%   distribution
 | 
				
			||||||
 | 
					%   ambd - the weigthing factors for the adaptive kernel
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% LICENSE
 | 
				
			||||||
 | 
					%     This file is a part of the IS-EPOS e-PLATFORM.
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					%     This is free software: you can redistribute it and/or modify it under 
 | 
				
			||||||
 | 
					%     the terms of the GNU General Public License as published by the Free 
 | 
				
			||||||
 | 
					%     Software Foundation, either version 3 of the License, or 
 | 
				
			||||||
 | 
					%     (at your option) any later version.
 | 
				
			||||||
 | 
					% 
 | 
				
			||||||
 | 
					%     This program is distributed in the hope that it will be useful,
 | 
				
			||||||
 | 
					%     but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
				
			||||||
 | 
					%     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
				
			||||||
 | 
					%     GNU General Public License for more details, <http://www.gnu.org/licenses/>.
 | 
				
			||||||
 | 
					% 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					function [lamb_all,lamb,lamb_err,unit,eps,ierr,h,xx,ambd]=...
 | 
				
			||||||
 | 
					            Nonpar(t,M,iop,Mmin)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					lamb_err=0;
 | 
				
			||||||
 | 
					n=length(M);
 | 
				
			||||||
 | 
					t1=t(1);
 | 
				
			||||||
 | 
					for i=1:n
 | 
				
			||||||
 | 
					    if M(i)>=Mmin; break; end
 | 
				
			||||||
 | 
					    t1=t(i+1);
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					    t2=t(n);
 | 
				
			||||||
 | 
					for i=n:1
 | 
				
			||||||
 | 
					    if M(i)>=Mmin; break; end
 | 
				
			||||||
 | 
					    t2=t(i-1);
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					nn=0;
 | 
				
			||||||
 | 
					for i=1:n
 | 
				
			||||||
 | 
					    if M(i)>=Mmin
 | 
				
			||||||
 | 
					        nn=nn+1;
 | 
				
			||||||
 | 
					    end
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					if iop==0
 | 
				
			||||||
 | 
					    lamb_all=n/round(t(n)-t(1));
 | 
				
			||||||
 | 
					    lamb=nn/round(t2-t1);
 | 
				
			||||||
 | 
					    unit='day';
 | 
				
			||||||
 | 
					elseif iop==1
 | 
				
			||||||
 | 
					lamb_all=30*n/(t(n)-t(1));      
 | 
				
			||||||
 | 
					lamb=30*nn/(t2-t1);             
 | 
				
			||||||
 | 
					    unit='month';
 | 
				
			||||||
 | 
					else
 | 
				
			||||||
 | 
					lamb_all=365*n/(t(n)-t(1));    
 | 
				
			||||||
 | 
					lamb=365*nn/(t2-t1);           
 | 
				
			||||||
 | 
					    unit='year';
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					if nn<50
 | 
				
			||||||
 | 
					    eps=0;ierr=0;h=0;
 | 
				
			||||||
 | 
					    lamb_err=1;
 | 
				
			||||||
 | 
					    return;
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					eps=magn_accur(M);
 | 
				
			||||||
 | 
					n=0;
 | 
				
			||||||
 | 
					for i=1:length(M)
 | 
				
			||||||
 | 
					    if M(i)>=Mmin;
 | 
				
			||||||
 | 
					        n=n+1;
 | 
				
			||||||
 | 
					        x(n)=M(i);
 | 
				
			||||||
 | 
					    end
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					x=sort(x)';
 | 
				
			||||||
 | 
					beta=1/(mean(x)-Mmin+eps/2);
 | 
				
			||||||
 | 
					[xx]=korekta(x,Mmin,eps,beta);
 | 
				
			||||||
 | 
					xx=sort(xx);
 | 
				
			||||||
 | 
					clear x;
 | 
				
			||||||
 | 
					xx = doubling(xx,Mmin-eps/2);
 | 
				
			||||||
 | 
					[h,ierr]=hopt(xx);
 | 
				
			||||||
 | 
					[ambd]=scaling(xx,h);
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					function [m_corr]=korekta(m,Mmin,eps,beta)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					% RANDOMIZATION OF MAGNITUDE WITHIN THE ACCURACY INTERVAL
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% m - input vector of magnitudes 
 | 
				
			||||||
 | 
					% Mmin - catalog completeness level
 | 
				
			||||||
 | 
					% eps - accuracy of magnitude
 | 
				
			||||||
 | 
					% beta - the parameter of the unbounded exponential distribution
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% m_corr - vector of randomized magnitudes
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					F1=1-exp(-beta*(m-Mmin-0.5*eps));
 | 
				
			||||||
 | 
					F2=1-exp(-beta*(m-Mmin+0.5*eps));
 | 
				
			||||||
 | 
					u=rand(size(m));
 | 
				
			||||||
 | 
					w=u.*(F2-F1)+F1;
 | 
				
			||||||
 | 
					m_corr=Mmin-log(1-w)./beta;
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					function x2 = doubling(x,x0)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					% DOUBLES THE SAMPLE
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					% If the sample x(i) is is truncated from the left hand side and belongs 
 | 
				
			||||||
 | 
					% to the interval [x0,inf) or it is truncated from the right hand side and
 | 
				
			||||||
 | 
					% belongs to the interval (-inf,x0]
 | 
				
			||||||
 | 
					%   then the doubled sample is [-x(i)+2x0,x(i)]
 | 
				
			||||||
 | 
					% x - is the column data vector
 | 
				
			||||||
 | 
					% x2 - is the column vector of data doubled and sorted in the ascending
 | 
				
			||||||
 | 
					% order
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					x2=[-x+2*x0
 | 
				
			||||||
 | 
					    x];
 | 
				
			||||||
 | 
					x2=sort(x2);
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					function [h,ierr]=hopt(x)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					%Estimation of the optimal smoothing factor by means of the least squares
 | 
				
			||||||
 | 
					%method
 | 
				
			||||||
 | 
					% x - column data vector
 | 
				
			||||||
 | 
					% The result is an optimal smoothing factor
 | 
				
			||||||
 | 
					% ierr=0 - convergence, ierr=1 - multiple h, ierr=2 - approximate h is used 
 | 
				
			||||||
 | 
					% The function calls the procedure FZERO for the function 'funct'
 | 
				
			||||||
 | 
					% NEW VERSION 2 - without a square matrix. Also equipped with extra zeros
 | 
				
			||||||
 | 
					% search
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					% MODIFIED JUNE 2014
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					ierr=0;
 | 
				
			||||||
 | 
					n=length(x);
 | 
				
			||||||
 | 
					x=sort(x);
 | 
				
			||||||
 | 
					interval=[0.000001 2*std(x)/n^0.2];
 | 
				
			||||||
 | 
					x1=funct(interval(1),x);
 | 
				
			||||||
 | 
					x2=funct(interval(2),x);
 | 
				
			||||||
 | 
					if x1*x2<0
 | 
				
			||||||
 | 
					   [hh(1),fval,exitflag]=fzero(@funct,interval,[],x);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					% Extra zeros search
 | 
				
			||||||
 | 
					    jj=1;
 | 
				
			||||||
 | 
					    for kk=2:7
 | 
				
			||||||
 | 
					        interval(1)=1.1*hh(jj);
 | 
				
			||||||
 | 
					        interval(2)=interval(1)+(kk-1)*hh(jj);
 | 
				
			||||||
 | 
					        x1=funct(interval(1),x);
 | 
				
			||||||
 | 
					        x2=funct(interval(2),x);
 | 
				
			||||||
 | 
					        if x1*x2<0
 | 
				
			||||||
 | 
					            jj=jj+1;
 | 
				
			||||||
 | 
					            [hh(jj),fval,exitflag]=fzero(@funct,interval,[],x);
 | 
				
			||||||
 | 
					        end
 | 
				
			||||||
 | 
					    end
 | 
				
			||||||
 | 
					    if jj>1;ierr=1;end
 | 
				
			||||||
 | 
					    h=max(hh);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					   if exitflag==1;return;end
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					h=0.891836*(mean(x)-x(1))/(n^0.2);
 | 
				
			||||||
 | 
					ierr=2;
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					function [fct]=funct(t,x)
 | 
				
			||||||
 | 
					p2=1.41421356;
 | 
				
			||||||
 | 
					n=length(x);
 | 
				
			||||||
 | 
					yy=zeros(size(x));
 | 
				
			||||||
 | 
					for i=1:n,
 | 
				
			||||||
 | 
					   xij=(x-x(i)).^2/t^2;
 | 
				
			||||||
 | 
					   y=exp(-xij/4).*((xij/2-1)/p2)-2*exp(-xij/2).*(xij-1);
 | 
				
			||||||
 | 
					   yy(i)=sum(y);
 | 
				
			||||||
 | 
					end;
 | 
				
			||||||
 | 
					fct=sum(yy)-2*n;
 | 
				
			||||||
 | 
					clear xij y yy;
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					function [ambd]=scaling(x,h)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					% EVALUATES A VECTOR OF SCALING FACTORS FOR THE NONPARAMETRIC ADAPTATIVE
 | 
				
			||||||
 | 
					% ESTIMATION
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					% x - the n dimensional column vector of data values sorted in the ascending
 | 
				
			||||||
 | 
					% order
 | 
				
			||||||
 | 
					% h - the optimal smoothing factor
 | 
				
			||||||
 | 
					% ambd - the resultant n dimensional row vector of local scaling factors 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					n=length(x);
 | 
				
			||||||
 | 
					c=sqrt(2*pi);
 | 
				
			||||||
 | 
					gau=zeros(1,n);
 | 
				
			||||||
 | 
					for i=1:n,
 | 
				
			||||||
 | 
					   gau(i)=sum(exp(-0.5*((x(i)-x)/h).^2))/c/n/h;
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					g=exp(mean(log(gau)));
 | 
				
			||||||
 | 
					ambd=sqrt(g./gau);
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					function [eps]=magn_accur(M)
 | 
				
			||||||
 | 
					x=sort(M);
 | 
				
			||||||
 | 
					d=x(2:length(x))-x(1:length(x)-1);
 | 
				
			||||||
 | 
					eps=min(d(d>0));
 | 
				
			||||||
 | 
					if eps>0.1; eps=0.1;end
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
							
								
								
									
										371
									
								
								src/StationarySeismicHazardAnalysis/Nonpar_tr.m
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										371
									
								
								src/StationarySeismicHazardAnalysis/Nonpar_tr.m
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,371 @@
 | 
				
			|||||||
 | 
					%   [lamb_all,lamb,lamb_err,unit,eps,ierr,h,xx,ambd,Mmax,err]=
 | 
				
			||||||
 | 
					%           Nonpar(t,M,iop,Mmin)
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% BASED ON MAGNITUDE SAMPLE DATA M DETERMINES THE ROUND-OFF INTERVAL LENGTH
 | 
				
			||||||
 | 
					% OF THE MAGNITUDE DATA - eps, THE SMOOTHING FACTOR - h, CONSTRUCTS 
 | 
				
			||||||
 | 
					% THE BACKGROUND SAMPLE - xx, CALCULATES THE WEIGHTING FACTORS - amb, AND
 | 
				
			||||||
 | 
					% THE END-POINT OF MAGNITUDE DISTRIBUTION Mmax FOR A USE OF THE NONPARAMETRIC 
 | 
				
			||||||
 | 
					% ADAPTATIVE KERNEL ESTIMATORS OF MAGNITUDE DISTRIBUTION UNDER THE 
 | 
				
			||||||
 | 
					% ASSUMPTION OF THE EXISTENCE OF THE UPPER LIMIT OF MAGNITUDE DISTRIBUTION.
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% AUTHOR: Stanislaw. Lasocki, Institute of Geophysics Polish Academy of
 | 
				
			||||||
 | 
					% Sciences, Warsaw, Poland
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% DESCRIPTION: The kernel estimator approach is a model-free alternative 
 | 
				
			||||||
 | 
					% to estimating the magnitude distribution functions. The smoothing factor 
 | 
				
			||||||
 | 
					% h, is estimated using the least-squares cross-validation for the Gaussian
 | 
				
			||||||
 | 
					% kernel function. The final form of the kernel is the adaptive kernel.
 | 
				
			||||||
 | 
					% In order to avoid repetitions, which cannot appear in a sample when the
 | 
				
			||||||
 | 
					% kernel estimators are used, the magnitude sample data are randomized
 | 
				
			||||||
 | 
					% within the magnitude round-off interval. The round-off interval length -
 | 
				
			||||||
 | 
					% eps is the least non-zero difference between sample data or 0.1 is the
 | 
				
			||||||
 | 
					% least difference if greater than 0.1. The randomization is done
 | 
				
			||||||
 | 
					% assuming exponential distribution of m in [m0-eps/2, m0+eps/2], where m0
 | 
				
			||||||
 | 
					% is the sample data point and eps is the length of roud-off inteval. The 
 | 
				
			||||||
 | 
					% shape parameter of the exponential distribution is estimated from the whole
 | 
				
			||||||
 | 
					% data sample assuming the exponential distribution. The background sample 
 | 
				
			||||||
 | 
					% - xx comprises the randomized values of magnitude doubled symmetrically 
 | 
				
			||||||
 | 
					% with respect to the value Mmin-eps/2: length(xx)=2*length(M). Weigthing 
 | 
				
			||||||
 | 
					% factors row vector for the adaptive kernel is of the same size as xx.
 | 
				
			||||||
 | 
					% The mean activity rate, lamb, is the number of events >=Mmin into the
 | 
				
			||||||
 | 
					% length of the period in which they occurred.
 | 
				
			||||||
 | 
					% The upper limit of the distribution Mmax is evaluated using 
 | 
				
			||||||
 | 
					% the Kijko-Sellevol generic formula. If convergence is not reached the
 | 
				
			||||||
 | 
					% Whitlock @ Robson simplified formula is used: 
 | 
				
			||||||
 | 
					% Mmaxest= 2(max obs M) - (second max obs M)).
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% See: the references below for a more comprehensive description.
 | 
				
			||||||
 | 
					% 
 | 
				
			||||||
 | 
					% This is a beta version of the program. Further developments are foreseen.
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% REFERENCES:
 | 
				
			||||||
 | 
					%Silverman B.W. (1986) Density Estimation for Statistics and Data Analysis, 
 | 
				
			||||||
 | 
					%   Chapman and Hall, London 
 | 
				
			||||||
 | 
					%Kijko A., Lasocki S., Graham G. (2001) Pure appl. geophys. 158, 1655-1665
 | 
				
			||||||
 | 
					%Lasocki S., Orlecka-Sikora B. (2008) Tectonophysics 456, 28-37
 | 
				
			||||||
 | 
					%Kijko, A., and M.A. Sellevoll (1989) Bull. Seismol. Soc. Am. 79, 3,645-654 
 | 
				
			||||||
 | 
					%Lasocki, S., Urban, P. (2011) Acta Geophys 59, 659-673, 
 | 
				
			||||||
 | 
					% doi: 10.2478/s11600-010-0049-y
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% INPUT:
 | 
				
			||||||
 | 
					%   t - vector of earthquake occurrence times
 | 
				
			||||||
 | 
					%   M - vector of earthquake magnitudes (sample data)
 | 
				
			||||||
 | 
					%   iop - determines the used unit of time. iop=0 - 'day', iop=1 - 'month', 
 | 
				
			||||||
 | 
					%       iop=2 - 'year'
 | 
				
			||||||
 | 
					%   Mmin - lower bound of the distribution - catalog completeness level
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% OUTPUT
 | 
				
			||||||
 | 
					%   lamb_all - mean activity rate for all events
 | 
				
			||||||
 | 
					%   lamb - mean activity rate for events >= Mmin
 | 
				
			||||||
 | 
					%   lamb_err - error paramter on the number of events >=Mmin. lamb_err=0
 | 
				
			||||||
 | 
					%       for 50 or more events >=Mmin and the parameter estimation is
 | 
				
			||||||
 | 
					%       continued, lamb_err=1 otherwise, all output paramters except 
 | 
				
			||||||
 | 
					%       lamb_all and lamb are set to zero and the function execution is 
 | 
				
			||||||
 | 
					%       terminated.  
 | 
				
			||||||
 | 
					%   unit - string with name of time unit used ('year' or 'month' or 'day').
 | 
				
			||||||
 | 
					%   eps - length of round-off interval of magnitudes.  
 | 
				
			||||||
 | 
					%   ierr - h-convergence indicator. ierr=0 if the estimation procedure of 
 | 
				
			||||||
 | 
					%   the optimal smoothing factor has converged (a zero of the h functional 
 | 
				
			||||||
 | 
					%   has been found), ierr=1 when multiple zeros of h functional were 
 | 
				
			||||||
 | 
					%   encountered - the largest h is accepted, ierr = 2 when h functional did  
 | 
				
			||||||
 | 
					%   not zeroe - the approximate h value is taken.
 | 
				
			||||||
 | 
					%   h - kernel smoothing factor.
 | 
				
			||||||
 | 
					%   xx - the background sample for the nonparametric estimators of magnitude 
 | 
				
			||||||
 | 
					%   distribution
 | 
				
			||||||
 | 
					%   ambd - the weigthing factors for the adaptive kernel
 | 
				
			||||||
 | 
					%   Mmax - upper limit of magnitude distribution
 | 
				
			||||||
 | 
					%   err - error parameter on Mmax estimation, err=0 - convergence, err=1 - 
 | 
				
			||||||
 | 
					%   no converegence of Kijko-Sellevol estimator, Robinson @ Whitlock
 | 
				
			||||||
 | 
					%   method used.
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% LICENSE
 | 
				
			||||||
 | 
					%     This file is a part of the IS-EPOS e-PLATFORM.
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					%     This is free software: you can redistribute it and/or modify it under 
 | 
				
			||||||
 | 
					%     the terms of the GNU General Public License as published by the Free 
 | 
				
			||||||
 | 
					%     Software Foundation, either version 3 of the License, or 
 | 
				
			||||||
 | 
					%     (at your option) any later version.
 | 
				
			||||||
 | 
					% 
 | 
				
			||||||
 | 
					%     This program is distributed in the hope that it will be useful,
 | 
				
			||||||
 | 
					%     but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
				
			||||||
 | 
					%     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
				
			||||||
 | 
					%     GNU General Public License for more details, <http://www.gnu.org/licenses/>.
 | 
				
			||||||
 | 
					% 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					function [lamb_all,lamb,lamb_err,unit,eps,ierr,h,xx,ambd,Mmax,err]=...
 | 
				
			||||||
 | 
					            Nonpar_tr(t,M,iop,Mmin)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					lamb_err=0;
 | 
				
			||||||
 | 
					n=length(M);
 | 
				
			||||||
 | 
					t1=t(1);
 | 
				
			||||||
 | 
					for i=1:n
 | 
				
			||||||
 | 
					    if M(i)>=Mmin; break; end
 | 
				
			||||||
 | 
					    t1=t(i+1);
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					    t2=t(n);
 | 
				
			||||||
 | 
					for i=n:1
 | 
				
			||||||
 | 
					    if M(i)>=Mmin; break; end
 | 
				
			||||||
 | 
					    t2=t(i-1);
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					nn=0;
 | 
				
			||||||
 | 
					for i=1:n
 | 
				
			||||||
 | 
					    if M(i)>=Mmin
 | 
				
			||||||
 | 
					        nn=nn+1;
 | 
				
			||||||
 | 
					    end
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					if iop==0
 | 
				
			||||||
 | 
					    lamb_all=n/round(t(n)-t(1));
 | 
				
			||||||
 | 
					    lamb=nn/round(t2-t1);
 | 
				
			||||||
 | 
					    unit='day';
 | 
				
			||||||
 | 
					elseif iop==1
 | 
				
			||||||
 | 
					lamb_all=30*n/(t(n)-t(1));     
 | 
				
			||||||
 | 
					lamb=30*nn/(t2-t1);              
 | 
				
			||||||
 | 
					    unit='month';
 | 
				
			||||||
 | 
					else
 | 
				
			||||||
 | 
					lamb_all=365*n/(t(n)-t(1));      
 | 
				
			||||||
 | 
					lamb=365*nn/(t2-t1);              
 | 
				
			||||||
 | 
					    unit='year';
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					if nn<50
 | 
				
			||||||
 | 
					    eps=0;ierr=0;h=0;Mmax=0;err=0;
 | 
				
			||||||
 | 
					    lamb_err=1;
 | 
				
			||||||
 | 
					    return;
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					eps=magn_accur(M);
 | 
				
			||||||
 | 
					n=0;
 | 
				
			||||||
 | 
					for i=1:length(M)
 | 
				
			||||||
 | 
					    if M(i)>=Mmin;
 | 
				
			||||||
 | 
					        n=n+1;
 | 
				
			||||||
 | 
					        x(n)=M(i);
 | 
				
			||||||
 | 
					    end
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					x=sort(x)';
 | 
				
			||||||
 | 
					beta=1/(mean(x)-Mmin+eps/2);
 | 
				
			||||||
 | 
					[xx]=korekta(x,Mmin,eps,beta);
 | 
				
			||||||
 | 
					xx=sort(xx);
 | 
				
			||||||
 | 
					clear x;
 | 
				
			||||||
 | 
					xx = doubling(xx,Mmin-eps/2);
 | 
				
			||||||
 | 
					[h,ierr]=hopt(xx);
 | 
				
			||||||
 | 
					[ambd]=scaling(xx,h);
 | 
				
			||||||
 | 
					[Mmax,err]=Mmaxest(xx,h,Mmin-eps/2);
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					function [m_corr]=korekta(m,Mmin,eps,beta)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					% RANDOMIZATION OF MAGNITUDE WITHIN THE ACCURACY INTERVAL
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% m - input vector of magnitudes 
 | 
				
			||||||
 | 
					% Mmin - catalog completeness level
 | 
				
			||||||
 | 
					% eps - accuracy of magnitude
 | 
				
			||||||
 | 
					% beta - the parameter of the unbounded exponential distribution
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% m_corr - vector of randomized magnitudes
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					F1=1-exp(-beta*(m-Mmin-0.5*eps));
 | 
				
			||||||
 | 
					F2=1-exp(-beta*(m-Mmin+0.5*eps));
 | 
				
			||||||
 | 
					u=rand(size(m));
 | 
				
			||||||
 | 
					w=u.*(F2-F1)+F1;
 | 
				
			||||||
 | 
					m_corr=Mmin-log(1-w)./beta;
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					function x2 = doubling(x,x0)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					% DOUBLES THE SAMPLE
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					% If the sample x(i) is is truncated from the left hand side and belongs 
 | 
				
			||||||
 | 
					% to the interval [x0,inf) or it is truncated from the right hand side and
 | 
				
			||||||
 | 
					% belongs to the interval (-inf,x0]
 | 
				
			||||||
 | 
					%   then the doubled sample is [-x(i)+2x0,x(i)]
 | 
				
			||||||
 | 
					% x - is the column data vector
 | 
				
			||||||
 | 
					% x2 - is the column vector of data doubled and sorted in the ascending
 | 
				
			||||||
 | 
					% order
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					x2=[-x+2*x0
 | 
				
			||||||
 | 
					    x];
 | 
				
			||||||
 | 
					x2=sort(x2);
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					function [h,ierr]=hopt(x)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					%Estimation of the optimal smoothing factor by means of the least squares
 | 
				
			||||||
 | 
					%method
 | 
				
			||||||
 | 
					% x - column data vector
 | 
				
			||||||
 | 
					% The result is an optimal smoothing factor
 | 
				
			||||||
 | 
					% ierr=0 - convergence, ierr=1 - multiple h, ierr=2 - approximate h is used 
 | 
				
			||||||
 | 
					% The function calls the procedure FZERO for the function 'funct'
 | 
				
			||||||
 | 
					% NEW VERSION 2 - without a square matrix. Also equipped with extra zeros
 | 
				
			||||||
 | 
					% search
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					% MODIFIED JUNE 2014
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					ierr=0;
 | 
				
			||||||
 | 
					n=length(x);
 | 
				
			||||||
 | 
					x=sort(x);
 | 
				
			||||||
 | 
					interval=[0.000001 2*std(x)/n^0.2];
 | 
				
			||||||
 | 
					x1=funct(interval(1),x);
 | 
				
			||||||
 | 
					x2=funct(interval(2),x);
 | 
				
			||||||
 | 
					if x1*x2<0
 | 
				
			||||||
 | 
					   [hh(1),fval,exitflag]=fzero(@funct,interval,[],x);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					% Extra zeros search
 | 
				
			||||||
 | 
					    jj=1;
 | 
				
			||||||
 | 
					    for kk=2:7
 | 
				
			||||||
 | 
					        interval(1)=1.1*hh(jj);
 | 
				
			||||||
 | 
					        interval(2)=interval(1)+(kk-1)*hh(jj);
 | 
				
			||||||
 | 
					        x1=funct(interval(1),x);
 | 
				
			||||||
 | 
					        x2=funct(interval(2),x);
 | 
				
			||||||
 | 
					        if x1*x2<0
 | 
				
			||||||
 | 
					            jj=jj+1;
 | 
				
			||||||
 | 
					            [hh(jj),fval,exitflag]=fzero(@funct,interval,[],x);
 | 
				
			||||||
 | 
					        end
 | 
				
			||||||
 | 
					    end
 | 
				
			||||||
 | 
					    if jj>1;ierr=1;end
 | 
				
			||||||
 | 
					    h=max(hh);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					   if exitflag==1;return;end
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					h=0.891836*(mean(x)-x(1))/(n^0.2);
 | 
				
			||||||
 | 
					ierr=2;
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					function [fct]=funct(t,x)
 | 
				
			||||||
 | 
					p2=1.41421356;
 | 
				
			||||||
 | 
					n=length(x);
 | 
				
			||||||
 | 
					yy=zeros(size(x));
 | 
				
			||||||
 | 
					for i=1:n,
 | 
				
			||||||
 | 
					   xij=(x-x(i)).^2/t^2;
 | 
				
			||||||
 | 
					   y=exp(-xij/4).*((xij/2-1)/p2)-2*exp(-xij/2).*(xij-1);
 | 
				
			||||||
 | 
					   yy(i)=sum(y);
 | 
				
			||||||
 | 
					end;
 | 
				
			||||||
 | 
					fct=sum(yy)-2*n;
 | 
				
			||||||
 | 
					clear xij y yy;
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					function [ambd]=scaling(x,h)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					% EVALUATES A VECTOR OF SCALING FACTORS FOR THE NONPARAMETRIC ADAPTATIVE
 | 
				
			||||||
 | 
					% ESTIMATION
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					% x - the n dimensional column vector of data values sorted in the ascending
 | 
				
			||||||
 | 
					% order
 | 
				
			||||||
 | 
					% h - the optimal smoothing factor
 | 
				
			||||||
 | 
					% ambd - the resultant n dimensional row vector of local scaling factors 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					n=length(x);
 | 
				
			||||||
 | 
					c=sqrt(2*pi);
 | 
				
			||||||
 | 
					gau=zeros(1,n);
 | 
				
			||||||
 | 
					for i=1:n,
 | 
				
			||||||
 | 
					   gau(i)=sum(exp(-0.5*((x(i)-x)/h).^2))/c/n/h;
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					g=exp(mean(log(gau)));
 | 
				
			||||||
 | 
					ambd=sqrt(g./gau);
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					function [eps]=magn_accur(M)
 | 
				
			||||||
 | 
					x=sort(M);
 | 
				
			||||||
 | 
					d=x(2:length(x))-x(1:length(x)-1);
 | 
				
			||||||
 | 
					eps=min(d(d>0));
 | 
				
			||||||
 | 
					if eps>0.1; eps=0.1;end
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					function [Mmax,ierr]=Mmaxest(x,h,Mmin)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					% ESTIMATION OF UPPER BOUND USING NONPARAMETRIC DISTRIBUTION FUNCTIONS
 | 
				
			||||||
 | 
					% x - row vector of magnitudes (basic sample). 
 | 
				
			||||||
 | 
					% h - optimal smoothing factor
 | 
				
			||||||
 | 
					% Mmax - upper bound
 | 
				
			||||||
 | 
					% ierr=0 if basic procedure converges, ierr=1 when Robsen & Whitlock Mmas
 | 
				
			||||||
 | 
					% estimation
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					% Uses function 'dystryb'
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					n=length(x);
 | 
				
			||||||
 | 
					ierr=1;
 | 
				
			||||||
 | 
					x=sort(x);
 | 
				
			||||||
 | 
					Mmax1=x(n);
 | 
				
			||||||
 | 
					for i=1:50,
 | 
				
			||||||
 | 
					d=normcdf((Mmin-x)./h);
 | 
				
			||||||
 | 
					mian=sum(normcdf((Mmax1-x)./h)-d);
 | 
				
			||||||
 | 
					Mmax=x(n)+moja_calka(@dystryb,x(1),Mmax1,0.00001,h,mian,x,d);
 | 
				
			||||||
 | 
					if abs(Mmax-Mmax1)<0.01 
 | 
				
			||||||
 | 
					   ierr=0;break;
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					Mmax1=Mmax;
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					if (ierr==1 || Mmax>9)
 | 
				
			||||||
 | 
					    Mmax=2*x(n)-x(n-1);
 | 
				
			||||||
 | 
					    ierr=1;
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					function [y]=dystryb(z,h,mian,x,d)
 | 
				
			||||||
 | 
					n=length(x);
 | 
				
			||||||
 | 
					m=length(z);
 | 
				
			||||||
 | 
					for i=1:m, 
 | 
				
			||||||
 | 
					t=(z(i)-x)./h;
 | 
				
			||||||
 | 
					t=normcdf(t);
 | 
				
			||||||
 | 
					yy=sum(t-d);
 | 
				
			||||||
 | 
					y(i)=(yy/mian)^n;
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					function [calka,ier]=moja_calka(funfc,a,b,eps,varargin)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					% Integration by means of 16th poit Gauss method. Adopted from CERNLIBRARY
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					% funfc - string with the name of function to be integrated
 | 
				
			||||||
 | 
					% a,b - integration limits
 | 
				
			||||||
 | 
					% eps - accurracy
 | 
				
			||||||
 | 
					% varargin - other parameters of function to be integrated
 | 
				
			||||||
 | 
					% calka - integral
 | 
				
			||||||
 | 
					% ier=0 - convergence, ier=1 - no conbergence
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					persistent W X CONST
 | 
				
			||||||
 | 
					W=[0.101228536290376 0.222381034453374 0.313706645877887 ...
 | 
				
			||||||
 | 
					0.362683783378362 0.027152459411754 0.062253523938648 ...
 | 
				
			||||||
 | 
					0.095158511682493 0.124628971255534 0.149595988816577 ...
 | 
				
			||||||
 | 
					0.169156519395003 0.182603415044924 0.189450610455069];
 | 
				
			||||||
 | 
					X=[0.960289856497536 0.796666477413627 0.525532409916329 ...
 | 
				
			||||||
 | 
					0.183434642495650 0.989400934991650 0.944575023073233 ...
 | 
				
			||||||
 | 
					0.865631202387832 0.755404408355003 0.617876244402644 ...
 | 
				
			||||||
 | 
					0.458016777657227 0.281603550779259 0.095012509837637];
 | 
				
			||||||
 | 
					CONST=1E-12;
 | 
				
			||||||
 | 
					delta=CONST*abs(a-b);
 | 
				
			||||||
 | 
					calka=0.;
 | 
				
			||||||
 | 
					aa=a;
 | 
				
			||||||
 | 
					y=b-aa;
 | 
				
			||||||
 | 
					ier=0;
 | 
				
			||||||
 | 
					while abs(y)>delta,
 | 
				
			||||||
 | 
					   bb=aa+y;
 | 
				
			||||||
 | 
					   c1=0.5*(aa+bb);
 | 
				
			||||||
 | 
					   c2=c1-aa;
 | 
				
			||||||
 | 
					   s8=0.;
 | 
				
			||||||
 | 
					   s16=0.;
 | 
				
			||||||
 | 
					   for i=1:4,
 | 
				
			||||||
 | 
					      u=X(i)*c2;
 | 
				
			||||||
 | 
					      s8=s8+W(i)*(feval(funfc,c1+u,varargin{:})+feval(funfc,c1-u,varargin{:}));
 | 
				
			||||||
 | 
					   end
 | 
				
			||||||
 | 
					   for i=5:12,
 | 
				
			||||||
 | 
					      u=X(i)*c2;
 | 
				
			||||||
 | 
					      s16=s16+W(i)*(feval(funfc,c1+u,varargin{:})+feval(funfc,c1-u,varargin{:}));
 | 
				
			||||||
 | 
					   end
 | 
				
			||||||
 | 
					   s8=s8*c2;
 | 
				
			||||||
 | 
					   s16=s16*c2;
 | 
				
			||||||
 | 
					   if abs(s16-s8)>eps*(1+abs(s16))
 | 
				
			||||||
 | 
					      y=0.5*y;
 | 
				
			||||||
 | 
					      calka=0.;
 | 
				
			||||||
 | 
					      ier=1;
 | 
				
			||||||
 | 
					   else
 | 
				
			||||||
 | 
					      calka=calka+s16;
 | 
				
			||||||
 | 
					      aa=bb;
 | 
				
			||||||
 | 
					      y=b-aa;
 | 
				
			||||||
 | 
					      ier=0;
 | 
				
			||||||
 | 
					   end
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					
 | 
				
			||||||
							
								
								
									
										79
									
								
								src/StationarySeismicHazardAnalysis/Ret_periodGRT.m
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										79
									
								
								src/StationarySeismicHazardAnalysis/Ret_periodGRT.m
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,79 @@
 | 
				
			|||||||
 | 
					%   [m,T]=Ret_periodGRT(Md,Mu,dM,Mmin,lamb,eps,b,Mmax)
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% EVALUATES THE MEAN RETURN PERIOD VALUES USING THE UPPER-BOUNDED G-R LED 
 | 
				
			||||||
 | 
					%   MAGNITUDE DISTRIBUTION MODEL.
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% AUTHOR: Stanislaw. Lasocki, Institute of Geophysics Polish Academy of
 | 
				
			||||||
 | 
					% Sciences, Warsaw, Poland
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% DESCRIPTION: The assumption on the upper-bounded Gutenberg-Richter 
 | 
				
			||||||
 | 
					% relation leads to the upper truncated exponential distribution to model 
 | 
				
			||||||
 | 
					% magnitude distribution from and above the catalog completness level 
 | 
				
			||||||
 | 
					% Mmin. The shape parameter of this distribution, consequently the G-R
 | 
				
			||||||
 | 
					% b-value and the end-point of the distriobution Mmax as well as the
 | 
				
			||||||
 | 
					% activity rate of M>=Mmin events are calculated at start-up of the 
 | 
				
			||||||
 | 
					% stationary hazard assessment services in the upper-bounded 
 | 
				
			||||||
 | 
					% Gutenberg-Richter estimation mode.
 | 
				
			||||||
 | 
					% 
 | 
				
			||||||
 | 
					% The mean return period of magnitude M is the average elapsed time between
 | 
				
			||||||
 | 
					% the consecutive earthquakes of magnitude M.   
 | 
				
			||||||
 | 
					% The mean return periods are calculated for magnitude starting from Md up
 | 
				
			||||||
 | 
					% to Mu with step dM.
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% INPUT:
 | 
				
			||||||
 | 
					%   t - vector of earthquake occurrence times
 | 
				
			||||||
 | 
					%   M - vector of earthquake magnitudes
 | 
				
			||||||
 | 
					%   Md - starting magnitude for return period calculations
 | 
				
			||||||
 | 
					%   Mu - ending magnitude for return period calculations
 | 
				
			||||||
 | 
					%   dM - magnitude step for return period calculations 
 | 
				
			||||||
 | 
					%   Mmin - lower bound of the distribution - catalog completeness level
 | 
				
			||||||
 | 
					%   lamb - mean activity rate for events M>=Mmin
 | 
				
			||||||
 | 
					%   eps - length of the round-off interval of magnitudes.
 | 
				
			||||||
 | 
					%   b - Gutenberg-Richter b-value
 | 
				
			||||||
 | 
					%   Mmax - upper limit of magnitude distribution
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					% OUTPUT:
 | 
				
			||||||
 | 
					%   m - vector of independent variable (magnitude) m=(Md:dM:Mu)
 | 
				
			||||||
 | 
					%   T - vector od mean return periods of the same length as m
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% LICENSE
 | 
				
			||||||
 | 
					%     This file is a part of the IS-EPOS e-PLATFORM.
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					%     This is free software: you can redistribute it and/or modify it under 
 | 
				
			||||||
 | 
					%     the terms of the GNU General Public License as published by the Free 
 | 
				
			||||||
 | 
					%     Software Foundation, either version 3 of the License, or 
 | 
				
			||||||
 | 
					%     (at your option) any later version.
 | 
				
			||||||
 | 
					% 
 | 
				
			||||||
 | 
					%     This program is distributed in the hope that it will be useful,
 | 
				
			||||||
 | 
					%     but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
				
			||||||
 | 
					%     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
				
			||||||
 | 
					%     GNU General Public License for more details, <http://www.gnu.org/licenses/>.
 | 
				
			||||||
 | 
					% 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					function [m,T]=Ret_periodGRT(Md,Mu,dM,Mmin,lamb,eps,b,Mmax)
 | 
				
			||||||
 | 
					if Md<Mmin; Md=Mmin;end
 | 
				
			||||||
 | 
					if Mu>Mmax; Mu=Mmax;end
 | 
				
			||||||
 | 
					m=(Md:dM:Mu)';
 | 
				
			||||||
 | 
					beta=b*log(10);
 | 
				
			||||||
 | 
					T=1/lamb./(1-Cdfgr(m,beta,Mmin-eps/2,Mmax));
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					function [y]=Cdfgr(t,beta,Mmin,Mmax)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					%CDF of the truncated upper-bounded exponential distribution (truncated G-R
 | 
				
			||||||
 | 
					% model
 | 
				
			||||||
 | 
					% Mmin - catalog completeness level
 | 
				
			||||||
 | 
					% Mmax - upper limit of the distribution
 | 
				
			||||||
 | 
					% beta - the distribution parameter
 | 
				
			||||||
 | 
					% t - vector of magnitudes (independent variable)
 | 
				
			||||||
 | 
					% y - CDF vector
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					mian=(1-exp(-beta*(Mmax-Mmin)));
 | 
				
			||||||
 | 
					y=(1-exp(-beta*(t-Mmin)))/mian;
 | 
				
			||||||
 | 
					idx=find(y>1);
 | 
				
			||||||
 | 
					y(idx)=ones(size(idx));
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
							
								
								
									
										55
									
								
								src/StationarySeismicHazardAnalysis/Ret_periodGRU.m
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										55
									
								
								src/StationarySeismicHazardAnalysis/Ret_periodGRU.m
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,55 @@
 | 
				
			|||||||
 | 
					%   [m,T]=Ret_periodGRU(Md,Mu,dM,Mmin,lamb,eps,b)
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% EVALUATES THE MEAN RETURN PERIOD VALUES USING THE UNLIMITED G-R LED 
 | 
				
			||||||
 | 
					%   MAGNITUDE DISTRIBUTION MODEL.
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% AUTHOR: Stanislaw. Lasocki, Institute of Geophysics Polish Academy of
 | 
				
			||||||
 | 
					% Sciences, Warsaw, Poland
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% DESCRIPTION: The assumption on the unlimited Gutenberg-Richter relation 
 | 
				
			||||||
 | 
					% leads to the exponential distribution model of magnitude distribution 
 | 
				
			||||||
 | 
					% from and above the catalog completness level Mmin. The shape parameter of 
 | 
				
			||||||
 | 
					% this distribution and consequently the G-R b-value are calculated at 
 | 
				
			||||||
 | 
					% start-up of the stationary hazard assessment services in the
 | 
				
			||||||
 | 
					% unlimited Gutenberg-Richter estimation mode.
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% The mean return period of magnitude M is the average elapsed time between
 | 
				
			||||||
 | 
					% the consecutive earthquakes of magnitude M.   
 | 
				
			||||||
 | 
					% The mean return periods are calculated for magnitude starting from Md up
 | 
				
			||||||
 | 
					% to Mu with step dM.
 | 
				
			||||||
 | 
					% 
 | 
				
			||||||
 | 
					%INPUT:
 | 
				
			||||||
 | 
					%   Md - starting magnitude for return period calculations
 | 
				
			||||||
 | 
					%   Mu - ending magnitude for return period calculations
 | 
				
			||||||
 | 
					%   dM - magnitude step for return period calculations 
 | 
				
			||||||
 | 
					%   Mmin - lower bound of the distribution - catalog completeness level
 | 
				
			||||||
 | 
					%   lamb - mean activity rate for events M>=Mmin
 | 
				
			||||||
 | 
					%   eps - length of the round-off interval of magnitudes.
 | 
				
			||||||
 | 
					%   b - Gutenberg-Richter b-value
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					%OUTPUT:
 | 
				
			||||||
 | 
					%   m - vector of independent variable (magnitude) m=(Md:dM:Mu)
 | 
				
			||||||
 | 
					%   T - vector od mean return periods of the same length as m
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% LICENSE
 | 
				
			||||||
 | 
					%     This file is a part of the IS-EPOS e-PLATFORM.
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					%     This is free software: you can redistribute it and/or modify it under 
 | 
				
			||||||
 | 
					%     the terms of the GNU General Public License as published by the Free 
 | 
				
			||||||
 | 
					%     Software Foundation, either version 3 of the License, or 
 | 
				
			||||||
 | 
					%     (at your option) any later version.
 | 
				
			||||||
 | 
					% 
 | 
				
			||||||
 | 
					%     This program is distributed in the hope that it will be useful,
 | 
				
			||||||
 | 
					%     but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
				
			||||||
 | 
					%     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
				
			||||||
 | 
					%     GNU General Public License for more details, <http://www.gnu.org/licenses/>.
 | 
				
			||||||
 | 
					% 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					function [m,T]=Ret_periodGRU(Md,Mu,dM,Mmin,lamb,eps,b)
 | 
				
			||||||
 | 
					if Md<Mmin; Md=Mmin;end
 | 
				
			||||||
 | 
					m=(Md:dM:Mu)';
 | 
				
			||||||
 | 
					beta=b*log(10);
 | 
				
			||||||
 | 
					T=1/lamb./exp(-beta*(m-Mmin+eps/2));
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
							
								
								
									
										90
									
								
								src/StationarySeismicHazardAnalysis/Ret_periodNPT.m
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										90
									
								
								src/StationarySeismicHazardAnalysis/Ret_periodNPT.m
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,90 @@
 | 
				
			|||||||
 | 
					%   [m,T]=Ret_periodNPT(Md,Mu,dM,Mmin,lamb,eps,h,xx,ambd,Mmax)
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					%USING THE NONPARAMETRIC ADAPTATIVE KERNEL APPROACH EVALUATES THE MEAN 
 | 
				
			||||||
 | 
					%   RETURN PERIOD VALUES FOR THE UPPER-BOUNDED NONPARAMETRIC 
 | 
				
			||||||
 | 
					%   DISTRIBUTION FOR MAGNITUDE. 
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% AUTHOR: Stanislaw. Lasocki, Institute of Geophysics Polish Academy of
 | 
				
			||||||
 | 
					% Sciences, Warsaw, Poland
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% DESCRIPTION: The kernel estimator approach is a model-free alternative 
 | 
				
			||||||
 | 
					% to estimating the magnitude distribution functions. It is assumed that 
 | 
				
			||||||
 | 
					% the magnitude distribution has a hard end point Mmax from the right hand  
 | 
				
			||||||
 | 
					% side.The estimation makes use of the previously estimated parameters 
 | 
				
			||||||
 | 
					% namely the mean activity rate lamb, the length of magnitude round-off 
 | 
				
			||||||
 | 
					% interval, eps, the smoothing factor, h, the background sample, xx, the 
 | 
				
			||||||
 | 
					% scaling factors for the background sample, ambd, and the end-point of 
 | 
				
			||||||
 | 
					% magnitude distribution Mmax. The background sample,xx, comprises the 
 | 
				
			||||||
 | 
					% randomized values of observed magnitude doubled symmetrically with 
 | 
				
			||||||
 | 
					% respect to the value Mmin-eps/2.
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% The mean return periods are calculated for magnitude starting from Md up
 | 
				
			||||||
 | 
					% to Mu with step dM.
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% REFERENCES:
 | 
				
			||||||
 | 
					%  Silverman B.W. (1986) Density Estimation for Statistics and Data Analysis, 
 | 
				
			||||||
 | 
					%   Chapman and Hall, London 
 | 
				
			||||||
 | 
					%  Kijko A., Lasocki S., Graham G. (2001) Pure appl. geophys. 158, 1655-1665
 | 
				
			||||||
 | 
					%  Lasocki S., Orlecka-Sikora B. (2008) Tectonophysics 456, 28-37
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% INPUT:
 | 
				
			||||||
 | 
					%   Md - starting magnitude for return period calculations
 | 
				
			||||||
 | 
					%   Mu - ending magnitude for return period calculations
 | 
				
			||||||
 | 
					%   dM - magnitude step for return period calculations 
 | 
				
			||||||
 | 
					%   Mmin - lower bound of the distribution - catalog completeness level
 | 
				
			||||||
 | 
					%   lamb - mean activity rate for events M>=Mmin
 | 
				
			||||||
 | 
					%   eps - length of round-off interval of magnitudes.  
 | 
				
			||||||
 | 
					%   h - kernel smoothing factor.
 | 
				
			||||||
 | 
					%   xx - the background sample
 | 
				
			||||||
 | 
					%   ambd - the weigthing factors for the adaptive kernel
 | 
				
			||||||
 | 
					%   Mmax - upper limit of magnitude distribution
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% OUTPUT:
 | 
				
			||||||
 | 
					%   m - vector of independent variable (magnitude) m=(Md:dM:Mu)
 | 
				
			||||||
 | 
					%   T - vector od mean return periods of the same length as m
 | 
				
			||||||
 | 
					% 
 | 
				
			||||||
 | 
					% LICENSE
 | 
				
			||||||
 | 
					%     This file is a part of the IS-EPOS e-PLATFORM.
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					%     This is free software: you can redistribute it and/or modify it under 
 | 
				
			||||||
 | 
					%     the terms of the GNU General Public License as published by the Free 
 | 
				
			||||||
 | 
					%     Software Foundation, either version 3 of the License, or 
 | 
				
			||||||
 | 
					%     (at your option) any later version.
 | 
				
			||||||
 | 
					% 
 | 
				
			||||||
 | 
					%     This program is distributed in the hope that it will be useful,
 | 
				
			||||||
 | 
					%     but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
				
			||||||
 | 
					%     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
				
			||||||
 | 
					%     GNU General Public License for more details, <http://www.gnu.org/licenses/>.
 | 
				
			||||||
 | 
					% 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					function [m,T]=Ret_periodNPT(Md,Mu,dM,Mmin,lamb,eps,h,xx,ambd,Mmax)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					if Md<Mmin; Md=Mmin;end
 | 
				
			||||||
 | 
					if Mu>Mmax; Mu=Mmax;end
 | 
				
			||||||
 | 
					m=(Md:dM:Mu)';
 | 
				
			||||||
 | 
					n=length(m);
 | 
				
			||||||
 | 
					mian=2*(Dystr_npr(Mmax,xx,ambd,h)-Dystr_npr(Mmin-eps/2,xx,ambd,h));
 | 
				
			||||||
 | 
					for i=1:n
 | 
				
			||||||
 | 
					    CDF_NPT=2*(Dystr_npr(m(i),xx,ambd,h)-Dystr_npr(Mmin-eps/2,xx,ambd,h))/mian;
 | 
				
			||||||
 | 
					    T(i)=1/lamb./(1-CDF_NPT);
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					T=T';
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					function [Fgau]=Dystr_npr(y,x,ambd,h)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					%Nonparametric adaptive cumulative distribution for a variable from the
 | 
				
			||||||
 | 
					%interval (-inf,inf)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					% x - the sample data 
 | 
				
			||||||
 | 
					% ambd - the local scaling factors for the adaptive estimation 
 | 
				
			||||||
 | 
					% h - the optimal smoothing factor 
 | 
				
			||||||
 | 
					% y - the value of random variable X for which the density is calculated
 | 
				
			||||||
 | 
					% gau - the density value f(y)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					n=length(x);
 | 
				
			||||||
 | 
					Fgau=sum(normcdf(((y-x)./ambd')./h))/n;
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
							
								
								
									
										87
									
								
								src/StationarySeismicHazardAnalysis/Ret_periodNPU.m
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										87
									
								
								src/StationarySeismicHazardAnalysis/Ret_periodNPU.m
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,87 @@
 | 
				
			|||||||
 | 
					%   [m,T]=Ret_periodNPU(Md,Mu,dM,Mmin,lamb,eps,h,xx,ambd)
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					%USING THE NONPARAMETRIC ADAPTATIVE KERNEL APPROACH EVALUATES 
 | 
				
			||||||
 | 
					%   THE MEAN RETURN PERIOD VALUES FOR THE UNBOUNDED 
 | 
				
			||||||
 | 
					%   NONPARAMETRIC DISTRIBUTION FOR MAGNITUDE. 
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% AUTHOR: Stanislaw. Lasocki, Institute of Geophysics Polish Academy of
 | 
				
			||||||
 | 
					% Sciences, Warsaw, Poland
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% DESCRIPTION: The kernel estimator approach is a model-free alternative 
 | 
				
			||||||
 | 
					% to estimating the magnitude distribution functions. It is assumed that 
 | 
				
			||||||
 | 
					% the magnitude distribution is unlimited from the right hand side. 
 | 
				
			||||||
 | 
					% The estimation makes use of the previously estimated parameters of kernel 
 | 
				
			||||||
 | 
					% estimation, namely the smoothing factor, the background sample and the 
 | 
				
			||||||
 | 
					% scaling factors for the background sample. The background sample 
 | 
				
			||||||
 | 
					% - xx comprises the randomized values of observed magnitude doubled 
 | 
				
			||||||
 | 
					% symmetrically with respect to the value Mmin-eps/2.
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% The mean return period of magnitude M is the average 
 | 
				
			||||||
 | 
					%   elapsed time between the consecutive earthquakes of magnitude M.   
 | 
				
			||||||
 | 
					% The mean return periods are calculated for magnitude starting from Md up
 | 
				
			||||||
 | 
					% to Mu with step dM.
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% REFERENCES:
 | 
				
			||||||
 | 
					%Silverman B.W. (1986) Density Estimation fro Statistics and Data Analysis, 
 | 
				
			||||||
 | 
					%   Chapman and Hall, London 
 | 
				
			||||||
 | 
					%Kijko A., Lasocki S., Graham G. (2001) Pure appl. geophys. 158, 1655-1665
 | 
				
			||||||
 | 
					%Lasocki S., Orlecka-Sikora B. (2008) Tectonophysics 456, 28-37
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% INPUT:
 | 
				
			||||||
 | 
					%   Md - starting magnitude for return period calculations
 | 
				
			||||||
 | 
					%   Mu - ending magnitude for return period calculations
 | 
				
			||||||
 | 
					%   dM - magnitude step for return period calculations 
 | 
				
			||||||
 | 
					%   Mmin - lower bound of the distribution - catalog completeness level
 | 
				
			||||||
 | 
					%   lamb - mean activity rate for events M>=Mmin
 | 
				
			||||||
 | 
					%   eps - length of the round-off interval of magnitudes.
 | 
				
			||||||
 | 
					%   h - kernel smoothing factor.
 | 
				
			||||||
 | 
					%   xx - the background sample
 | 
				
			||||||
 | 
					%   ambd - the weigthing factors for the adaptive kernel
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					%OUTPUT:
 | 
				
			||||||
 | 
					%   m - vector of independent variable (magnitude) m=(Md:dM:Mu)
 | 
				
			||||||
 | 
					%   T - vector od mean return periods of the same length as m
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% LICENSE
 | 
				
			||||||
 | 
					%     This file is a part of the IS-EPOS e-PLATFORM.
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					%     This is free software: you can redistribute it and/or modify it under 
 | 
				
			||||||
 | 
					%     the terms of the GNU General Public License as published by the Free 
 | 
				
			||||||
 | 
					%     Software Foundation, either version 3 of the License, or 
 | 
				
			||||||
 | 
					%     (at your option) any later version.
 | 
				
			||||||
 | 
					% 
 | 
				
			||||||
 | 
					%     This program is distributed in the hope that it will be useful,
 | 
				
			||||||
 | 
					%     but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
				
			||||||
 | 
					%     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
				
			||||||
 | 
					%     GNU General Public License for more details, <http://www.gnu.org/licenses/>.
 | 
				
			||||||
 | 
					% 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					function [m,T]=Ret_periodNPU(Md,Mu,dM,Mmin,lamb,eps,h,xx,ambd)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					if Md<Mmin; Md=Mmin;end
 | 
				
			||||||
 | 
					m=(Md:dM:Mu)';
 | 
				
			||||||
 | 
					n=length(m);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					for i=1:n
 | 
				
			||||||
 | 
					    CDF_NPU=2*(Dystr_npr(m(i),xx,ambd,h)-Dystr_npr(Mmin-eps/2,xx,ambd,h));
 | 
				
			||||||
 | 
					    T(i)=1/lamb./(1-CDF_NPU);
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					T=T';
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					function [Fgau]=Dystr_npr(y,x,ambd,h)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					%Nonparametric adaptive cumulative distribution for a variable from the
 | 
				
			||||||
 | 
					%interval (-inf,inf)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					% x - the sample data 
 | 
				
			||||||
 | 
					% ambd - the local scaling factors for the adaptive estimation 
 | 
				
			||||||
 | 
					% h - the optimal smoothing factor 
 | 
				
			||||||
 | 
					% y - the value of random variable X for which the density is calculated
 | 
				
			||||||
 | 
					% gau - the density value f(y)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					n=length(x);
 | 
				
			||||||
 | 
					Fgau=sum(normcdf(((y-x)./ambd')./h))/n;
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					
 | 
				
			||||||
							
								
								
									
										241
									
								
								src/StationarySeismicHazardAnalysis/TruncGR.m
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										241
									
								
								src/StationarySeismicHazardAnalysis/TruncGR.m
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,241 @@
 | 
				
			|||||||
 | 
					%
 | 
				
			||||||
 | 
					%   [lamb_all,lamb,lamb_err,unit,eps,b,Mmax,err]=TruncGR(t,M,iop,Mmin)
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% ESTIMATES THE MEAN ACTIVITY RATE WITHIN THE WHOLE SAMPLE AND WITHIN THE 
 | 
				
			||||||
 | 
					% PART OF THE SAMPLE COMPRISING EVENTS >=Mmin (COMPLETE PART), 
 | 
				
			||||||
 | 
					%THE ROUND-OFF ERROR OF MAGNITUDE, THE GUTENBERG-RICHTER B-VALUE 
 | 
				
			||||||
 | 
					% AND THE UPPER BOUND OF MAGNITUDE DISTRIBUTION USING THE UPPER-BOUNDED 
 | 
				
			||||||
 | 
					% G-R LED MAGNITUDE DISTRIBUTION MODEL
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% AUTHOR: Stanislaw. Lasocki, Institute of Geophysics Polish Academy of
 | 
				
			||||||
 | 
					% Sciences, Warsaw, Poland
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% DESCRIPTION: The assumption on the upper-bounded Gutenberg-Richter 
 | 
				
			||||||
 | 
					% relation leads to the upper truncated exponential distribution to model 
 | 
				
			||||||
 | 
					% magnitude distribution from and above the catalog completness level 
 | 
				
			||||||
 | 
					% Mmin. The shape parameter of this distribution and consequently the G-R
 | 
				
			||||||
 | 
					% b-value is estimated by maximum likelihood method (Aki-Utsu procedure).   
 | 
				
			||||||
 | 
					% The upper limit of the distribution Mmax is evaluated using 
 | 
				
			||||||
 | 
					% the Kijko-Sellevol generic formula. If convergence is not reached the
 | 
				
			||||||
 | 
					% Whitlock @ Robson simplified formula is used: 
 | 
				
			||||||
 | 
					% Mmaxest= 2(max obs M) - (second max obs M)).
 | 
				
			||||||
 | 
					% The mean activity rate, lamb, is the number of events >=Mmin into the
 | 
				
			||||||
 | 
					% length of the period in which they occurred. Upon the value of the input 
 | 
				
			||||||
 | 
					% parameter, iop, the used unit of time can be either day ot month or year.    
 | 
				
			||||||
 | 
					% The round-off interval length - eps is the least non-zero difference 
 | 
				
			||||||
 | 
					% between sample data or 0.1 if the least difference is greater than 0.1.
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% REFERENCES:
 | 
				
			||||||
 | 
					%Kijko, A., and M.A. Sellevoll (1989) Bull. Seismol. Soc. Am. 79, 3,645-654 
 | 
				
			||||||
 | 
					%Lasocki, S., Urban, P. (2011) Acta Geophys 59, 659-673, 
 | 
				
			||||||
 | 
					% doi: 10.2478/s11600-010-0049-y
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% INPUT:
 | 
				
			||||||
 | 
					%   t - vector of earthquake occurrence times
 | 
				
			||||||
 | 
					%   M - vector of magnitudes from a user selected catalog
 | 
				
			||||||
 | 
					%   iop - determines the used unit of time. iop=0 - 'day', iop=1 - 'month', 
 | 
				
			||||||
 | 
					%       iop=2 - 'year'
 | 
				
			||||||
 | 
					%   Mmin - catalog completeness level. Can take any value from [min(M), max(M)].
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% OUTPUT:
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					%   lamb_all - mean activity rate for all events
 | 
				
			||||||
 | 
					%   lamb - mean activity rate for events >= Mmin
 | 
				
			||||||
 | 
					%   lamb_err - error paramter on the number of events >=Mmin. lamb_err=0
 | 
				
			||||||
 | 
					%       for 15 or more events >=Mmin and the parameter estimation is
 | 
				
			||||||
 | 
					%       continued, lamb_err=1 otherwise, all output paramters except 
 | 
				
			||||||
 | 
					%       lamb_all and lamb are set to zero and the function execution is 
 | 
				
			||||||
 | 
					%       terminated.  
 | 
				
			||||||
 | 
					%   unit - string with name of time unit used ('year' or 'month' or 'day').
 | 
				
			||||||
 | 
					%   eps - length of the round-off interval of magnitudes.
 | 
				
			||||||
 | 
					%   b - Gutenberg-Richter b-value
 | 
				
			||||||
 | 
					%   Mmax - upper limit of magnitude distribution
 | 
				
			||||||
 | 
					%   err - error parameter on Mmax estimation, err=0 - convergence, err=1 - 
 | 
				
			||||||
 | 
					%   no converegence of Kijko-Sellevol estimator, Robinson @ Whitlock
 | 
				
			||||||
 | 
					%   method used.
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% LICENSE
 | 
				
			||||||
 | 
					%     This file is a part of the IS-EPOS e-PLATFORM.
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					%     This is free software: you can redistribute it and/or modify it under 
 | 
				
			||||||
 | 
					%     the terms of the GNU General Public License as published by the Free 
 | 
				
			||||||
 | 
					%     Software Foundation, either version 3 of the License, or 
 | 
				
			||||||
 | 
					%     (at your option) any later version.
 | 
				
			||||||
 | 
					% 
 | 
				
			||||||
 | 
					%     This program is distributed in the hope that it will be useful,
 | 
				
			||||||
 | 
					%     but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
				
			||||||
 | 
					%     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
				
			||||||
 | 
					%     GNU General Public License for more details, <http://www.gnu.org/licenses/>.
 | 
				
			||||||
 | 
					% 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					function [lamb_all,lamb,lamb_err,unit,eps,b,Mmax,err]=TruncGR(t,M,iop,Mmin)
 | 
				
			||||||
 | 
					n=length(M);
 | 
				
			||||||
 | 
					lamb_err=0;
 | 
				
			||||||
 | 
					t1=t(1);
 | 
				
			||||||
 | 
					for i=1:n
 | 
				
			||||||
 | 
					    if M(i)>=Mmin; break; end
 | 
				
			||||||
 | 
					    t1=t(i+1);
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					    t2=t(n);
 | 
				
			||||||
 | 
					for i=n:1
 | 
				
			||||||
 | 
					    if M(i)>=Mmin; break; end
 | 
				
			||||||
 | 
					    t2=t(i-1);
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					nn=0;
 | 
				
			||||||
 | 
					for i=1:n
 | 
				
			||||||
 | 
					    if M(i)>=Mmin
 | 
				
			||||||
 | 
					        nn=nn+1;
 | 
				
			||||||
 | 
					    end
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					if iop==0
 | 
				
			||||||
 | 
					    lamb_all=n/round(t(n)-t(1));
 | 
				
			||||||
 | 
					    lamb=nn/round(t2-t1);
 | 
				
			||||||
 | 
					    unit='day';
 | 
				
			||||||
 | 
					elseif iop==1
 | 
				
			||||||
 | 
					lamb_all=30*n/(t(n)-t(1));      
 | 
				
			||||||
 | 
					lamb=30*nn/(t2-t1);             
 | 
				
			||||||
 | 
					    unit='month';
 | 
				
			||||||
 | 
					else
 | 
				
			||||||
 | 
					lamb_all=365*n/(t(n)-t(1));    
 | 
				
			||||||
 | 
					lamb=365*nn/(t2-t1);               
 | 
				
			||||||
 | 
					    unit='year';
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					if nn<15
 | 
				
			||||||
 | 
					    eps=0;b=0;Mmax=0;err=0;
 | 
				
			||||||
 | 
					    lamb_err=1;
 | 
				
			||||||
 | 
					    return;
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					eps=magn_accur(M);
 | 
				
			||||||
 | 
					xx=M(M>=Mmin);
 | 
				
			||||||
 | 
					clear x;
 | 
				
			||||||
 | 
					nn=length(xx);
 | 
				
			||||||
 | 
					Max_obs=max(xx);
 | 
				
			||||||
 | 
					beta0=0;
 | 
				
			||||||
 | 
					Mmax1=Max_obs;
 | 
				
			||||||
 | 
					for i=1:50,
 | 
				
			||||||
 | 
					    beta=fzero(@bet_est,[0.05,4.0],[],mean(xx),Mmin-eps/2,Mmax1);
 | 
				
			||||||
 | 
					  	Mmax=Max_obs+moja_calka('f_podc',Mmin,Max_obs,1e-5,nn,beta,Mmin-eps/2,Mmax1);
 | 
				
			||||||
 | 
					    if ((abs(Mmax-Mmax1)<0.01)&&(abs(beta-beta0)<0.0001))
 | 
				
			||||||
 | 
					        err=0;
 | 
				
			||||||
 | 
					        break;
 | 
				
			||||||
 | 
					    end
 | 
				
			||||||
 | 
					    Mmax1=Mmax;
 | 
				
			||||||
 | 
					    beta0=beta;
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					if i==50; 
 | 
				
			||||||
 | 
					    err=1.0;
 | 
				
			||||||
 | 
					    Mmax=2*xx(1)-xx(2);
 | 
				
			||||||
 | 
					    beta=fzero(@bet_est,1.0,[],mean(xx),Mmin-eps/2,Mmax);
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					b=beta/log(10);
 | 
				
			||||||
 | 
					clear xx
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					function [zero]=bet_est(b,ms,Mmin,Mmax)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					%First derivative of the log likelihood function of the upper-bounded 
 | 
				
			||||||
 | 
					% exponential distribution (truncated GR model)
 | 
				
			||||||
 | 
					% b - parameter of the distribution 'beta'
 | 
				
			||||||
 | 
					% ms - mean of the observed magnitudes
 | 
				
			||||||
 | 
					% Mmin - catalog completeness level
 | 
				
			||||||
 | 
					% Mmax - upper limit of the distribution
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					M_max_min=Mmax-Mmin;
 | 
				
			||||||
 | 
					e_m=exp(-b*M_max_min);
 | 
				
			||||||
 | 
					zero=1/b-ms+Mmin-M_max_min*e_m/(1-e_m);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					function [calka,ier]=moja_calka(funfc,a,b,eps,varargin)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					% Integration by means of 16th poit Gauss method. Adopted from CERNLIBRARY
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					% funfc - string with the name of function to be integrated
 | 
				
			||||||
 | 
					% a,b - integration limits
 | 
				
			||||||
 | 
					% eps - accurracy
 | 
				
			||||||
 | 
					% varargin - other parameters of function to be integrated
 | 
				
			||||||
 | 
					% calka - integral
 | 
				
			||||||
 | 
					% ier=0 - convergence, ier=1 - no conbergence
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					persistent W X CONST
 | 
				
			||||||
 | 
					W=[0.101228536290376 0.222381034453374 0.313706645877887 ...
 | 
				
			||||||
 | 
					0.362683783378362 0.027152459411754 0.062253523938648 ...
 | 
				
			||||||
 | 
					0.095158511682493 0.124628971255534 0.149595988816577 ...
 | 
				
			||||||
 | 
					0.169156519395003 0.182603415044924 0.189450610455069];
 | 
				
			||||||
 | 
					X=[0.960289856497536 0.796666477413627 0.525532409916329 ...
 | 
				
			||||||
 | 
					0.183434642495650 0.989400934991650 0.944575023073233 ...
 | 
				
			||||||
 | 
					0.865631202387832 0.755404408355003 0.617876244402644 ...
 | 
				
			||||||
 | 
					0.458016777657227 0.281603550779259 0.095012509837637];
 | 
				
			||||||
 | 
					CONST=1E-12;
 | 
				
			||||||
 | 
					delta=CONST*abs(a-b);
 | 
				
			||||||
 | 
					calka=0.;
 | 
				
			||||||
 | 
					aa=a;
 | 
				
			||||||
 | 
					y=b-aa;
 | 
				
			||||||
 | 
					ier=0;
 | 
				
			||||||
 | 
					while abs(y)>delta,
 | 
				
			||||||
 | 
					   bb=aa+y;
 | 
				
			||||||
 | 
					   c1=0.5*(aa+bb);
 | 
				
			||||||
 | 
					   c2=c1-aa;
 | 
				
			||||||
 | 
					   s8=0.;
 | 
				
			||||||
 | 
					   s16=0.;
 | 
				
			||||||
 | 
					   for i=1:4,
 | 
				
			||||||
 | 
					      u=X(i)*c2;
 | 
				
			||||||
 | 
					      s8=s8+W(i)*(feval(funfc,c1+u,varargin{:})+feval(funfc,c1-u,varargin{:}));
 | 
				
			||||||
 | 
					   end
 | 
				
			||||||
 | 
					   for i=5:12,
 | 
				
			||||||
 | 
					      u=X(i)*c2;
 | 
				
			||||||
 | 
					      s16=s16+W(i)*(feval(funfc,c1+u,varargin{:})+feval(funfc,c1-u,varargin{:}));
 | 
				
			||||||
 | 
					   end
 | 
				
			||||||
 | 
					   s8=s8*c2;
 | 
				
			||||||
 | 
					   s16=s16*c2;
 | 
				
			||||||
 | 
					   if abs(s16-s8)>eps*(1+abs(s16))
 | 
				
			||||||
 | 
					      y=0.5*y;
 | 
				
			||||||
 | 
					      calka=0.;
 | 
				
			||||||
 | 
					      ier=1;
 | 
				
			||||||
 | 
					   else
 | 
				
			||||||
 | 
					      calka=calka+s16;
 | 
				
			||||||
 | 
					      aa=bb;
 | 
				
			||||||
 | 
					      y=b-aa;
 | 
				
			||||||
 | 
					      ier=0;
 | 
				
			||||||
 | 
					   end
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					function [y]=f_podc(z,n,beta,Mmin,Mmax)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					% Integrated function for Mmax estimation. Truncated GR model
 | 
				
			||||||
 | 
					% z - column vector of independent variable
 | 
				
			||||||
 | 
					% n - the size of 'z'
 | 
				
			||||||
 | 
					% beta - the distribution parameter
 | 
				
			||||||
 | 
					% Mmin - the catalog completeness level
 | 
				
			||||||
 | 
					% Mmax - the upper limit of the distribution
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					y=Cdfgr(z,beta,Mmin,Mmax).^n;
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					function [y]=Cdfgr(t,beta,Mmin,Mmax)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					%CDF of the truncated upper-bounded exponential distribution (truncated G-R
 | 
				
			||||||
 | 
					% model
 | 
				
			||||||
 | 
					% Mmin - catalog completeness level
 | 
				
			||||||
 | 
					% Mmax - upper limit of the distribution
 | 
				
			||||||
 | 
					% beta - the distribution parameter
 | 
				
			||||||
 | 
					% t - vector of magnitudes (independent variable)
 | 
				
			||||||
 | 
					% y - CDF vector
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					mian=(1-exp(-beta*(Mmax-Mmin)));
 | 
				
			||||||
 | 
					y=(1-exp(-beta*(t-Mmin)))/mian;
 | 
				
			||||||
 | 
					idx=find(y>1);
 | 
				
			||||||
 | 
					y(idx)=ones(size(idx));
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					function [eps]=magn_accur(M)
 | 
				
			||||||
 | 
					x=sort(M);
 | 
				
			||||||
 | 
					d=x(2:length(x))-x(1:length(x)-1);
 | 
				
			||||||
 | 
					eps=min(d(d>0));
 | 
				
			||||||
 | 
					if eps>0.1; eps=0.1;end
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
							
								
								
									
										149
									
								
								src/StationarySeismicHazardAnalysis/UnlimitGR.m
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										149
									
								
								src/StationarySeismicHazardAnalysis/UnlimitGR.m
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,149 @@
 | 
				
			|||||||
 | 
					%   [lamb_all,lamb,lamb_err,unit,eps,b]=UnlimitGR(t,M,iop,Mmin)
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% ESTIMATES THE MEAN ACTIVITY RATE WITHIN THE WHOLE SAMPLE AND WITHIN THE 
 | 
				
			||||||
 | 
					% PART OF THE SAMPLE COMPRISING EVENTS >=Mmin (COMPLETE PART), 
 | 
				
			||||||
 | 
					%THE ROUND-OFF ERROR OF MAGNITUDE AND THE GUTENBERG-RICHTER B-VALUE 
 | 
				
			||||||
 | 
					%USING THE UNLIMITED G-R LED MAGNITUDE DISTRIBUTION MODEL 
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% AUTHOR: Stanislaw. Lasocki, Institute of Geophysics Polish Academy of
 | 
				
			||||||
 | 
					% Sciences, Warsaw, Poland
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% DESCRIPTION: The assumption on the unlimited Gutenberg-Richter relation 
 | 
				
			||||||
 | 
					% leads to the exponential distribution model of magnitude distribution 
 | 
				
			||||||
 | 
					% from and above the catalog completness level Mmin. The shape parameter of 
 | 
				
			||||||
 | 
					% this distribution and consequently the G-R b-value is estimated by 
 | 
				
			||||||
 | 
					% maximum likelihood method (Aki-Utsu procedure).  
 | 
				
			||||||
 | 
					% The mean activity rate, lamb, is the number of events >=Mmin into the
 | 
				
			||||||
 | 
					% length of the period in which they occurred. Upon the value of the input 
 | 
				
			||||||
 | 
					% parameter, iop, the used unit of time can be either day ot month or year.    
 | 
				
			||||||
 | 
					% The round-off interval length - eps is either the least non-zero difference 
 | 
				
			||||||
 | 
					% between sample data or 0.1 if the least difference is greater than 0.1. 
 | 
				
			||||||
 | 
					% 
 | 
				
			||||||
 | 
					% INPUT:
 | 
				
			||||||
 | 
					%   t - vector of earthquake occurrence times
 | 
				
			||||||
 | 
					%   M - vector of magnitudes from a user selected catalog
 | 
				
			||||||
 | 
					%   iop - determines the used unit of time. iop=0 - 'day', iop=1 - 'month', 
 | 
				
			||||||
 | 
					%       iop=2 - 'year'
 | 
				
			||||||
 | 
					%   Mmin - catalog completeness level. Can take any value from [min(M), max(M)].
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% OUTPUT:
 | 
				
			||||||
 | 
					%   lamb_all - mean activity rate for all events
 | 
				
			||||||
 | 
					%   lamb - mean activity rate for events >= Mmin
 | 
				
			||||||
 | 
					%   lamb_err - error paramter on the number of events >=Mmin. lamb_err=0
 | 
				
			||||||
 | 
					%       for 7 or more events >=Mmin and the parameter estimation is
 | 
				
			||||||
 | 
					%       continued, lamb_err=1 otherwise, all output paramters except 
 | 
				
			||||||
 | 
					%       lamb_all and lamb are set to zero and the function execution is 
 | 
				
			||||||
 | 
					%       terminated.  
 | 
				
			||||||
 | 
					%   unit - string with name of time unit used ('year' or 'month' or 'day').
 | 
				
			||||||
 | 
					%   eps - length of the round-off interval of magnitudes.
 | 
				
			||||||
 | 
					%   b - Gutenberg-Richter b-value
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% LICENSE
 | 
				
			||||||
 | 
					%     This file is a part of the IS-EPOS e-PLATFORM.
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					%     This is free software: you can redistribute it and/or modify it under 
 | 
				
			||||||
 | 
					%     the terms of the GNU General Public License as published by the Free 
 | 
				
			||||||
 | 
					%     Software Foundation, either version 3 of the License, or 
 | 
				
			||||||
 | 
					%     (at your option) any later version.
 | 
				
			||||||
 | 
					% 
 | 
				
			||||||
 | 
					%     This program is distributed in the hope that it will be useful,
 | 
				
			||||||
 | 
					%     but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
				
			||||||
 | 
					%     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
				
			||||||
 | 
					%     GNU General Public License for more details <http://www.gnu.org/licenses/>.
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					function [lamb_all,lamb,lamb_err,unit,eps,b]=UnlimitGR(t,M,iop,Mmin)
 | 
				
			||||||
 | 
					if isempty(t) || numel(t)<3 || isempty(M(M>=Mmin)) 
 | 
				
			||||||
 | 
					    t=[1 2];M=[1 2];   end 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					lamb_err=0;
 | 
				
			||||||
 | 
					n=length(M);
 | 
				
			||||||
 | 
					t1=t(1);
 | 
				
			||||||
 | 
					for i=1:n
 | 
				
			||||||
 | 
					    if M(i)>=Mmin; break; end
 | 
				
			||||||
 | 
					    t1=t(i+1);
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					    t2=t(n);
 | 
				
			||||||
 | 
					for i=n:1
 | 
				
			||||||
 | 
					    if M(i)>=Mmin; break; end
 | 
				
			||||||
 | 
					    t2=t(i-1);
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					nn=0;
 | 
				
			||||||
 | 
					for i=1:n
 | 
				
			||||||
 | 
					    if M(i)>=Mmin
 | 
				
			||||||
 | 
					        nn=nn+1;
 | 
				
			||||||
 | 
					    end
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					[NM,unit]=time_diff(t(1),t(n),iop);    
 | 
				
			||||||
 | 
					lamb_all=n/NM;
 | 
				
			||||||
 | 
					[NM,unit]=time_diff(t1,t2,iop);        
 | 
				
			||||||
 | 
					lamb=nn/NM;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					if nn<7
 | 
				
			||||||
 | 
					    eps=0;b=0;
 | 
				
			||||||
 | 
					    lamb_err=1;
 | 
				
			||||||
 | 
					    return;
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					eps=magn_accur(M);
 | 
				
			||||||
 | 
					xx=M(M>=Mmin);
 | 
				
			||||||
 | 
					clear x;
 | 
				
			||||||
 | 
					beta=1/(mean(xx)-Mmin+eps/2);
 | 
				
			||||||
 | 
					b=beta/log(10);
 | 
				
			||||||
 | 
					clear xx
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					function [NM,unit]=time_diff(t1,t2,iop)              
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					% TIME DIFFERENCE BETWEEEN t1,t2 EXPRESSED IN DAY, MONTH OR YEAR UNIT
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% t1 - start time (in MATLAB numerical format)
 | 
				
			||||||
 | 
					% t2 - end time (in MATLAB numerical format)  t2>=t1
 | 
				
			||||||
 | 
					%   iop - determines the used unit of time. iop=0 - 'day', iop=1 - 'month', 
 | 
				
			||||||
 | 
					%       iop=2 - 'year'
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					%   NM - number of time units from t1 to t2
 | 
				
			||||||
 | 
					%   unit - string with name of time unit used ('year' or 'month' or 'day').
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					if iop==0
 | 
				
			||||||
 | 
					    NM=(t2-t1);
 | 
				
			||||||
 | 
					    unit='day';
 | 
				
			||||||
 | 
					elseif iop==1
 | 
				
			||||||
 | 
					    V1=datevec(t1);
 | 
				
			||||||
 | 
					    V2=datevec(t2);
 | 
				
			||||||
 | 
					    NM=V2(3)/eomday(V2(1),V2(2))+V2(2)+12-V1(2)-V1(3)/eomday(V1(1),V1(2))...
 | 
				
			||||||
 | 
					        +(V2(1)-V1(1)-1)*12;
 | 
				
			||||||
 | 
					    unit='month';
 | 
				
			||||||
 | 
					else
 | 
				
			||||||
 | 
					    V1=datevec(t1);
 | 
				
			||||||
 | 
					    V2=datevec(t2);
 | 
				
			||||||
 | 
					    NM2=V2(3);
 | 
				
			||||||
 | 
					    if V2(2)>1
 | 
				
			||||||
 | 
					        for k=1:V2(2)-1
 | 
				
			||||||
 | 
					            NM2=NM2+eomday(V2(1),k);
 | 
				
			||||||
 | 
					        end
 | 
				
			||||||
 | 
					    end
 | 
				
			||||||
 | 
					    day2=365; if eomday(V2(1),2)==29; day2=366; end;
 | 
				
			||||||
 | 
					    NM2=NM2/day2;
 | 
				
			||||||
 | 
					    NM1=V1(3);
 | 
				
			||||||
 | 
					    if V1(2)>1
 | 
				
			||||||
 | 
					        for k=1:V1(2)-1
 | 
				
			||||||
 | 
					            NM1=NM1+eomday(V1(1),k);
 | 
				
			||||||
 | 
					        end
 | 
				
			||||||
 | 
					    end
 | 
				
			||||||
 | 
					    day1=365; if eomday(V1(1),2)==29; day1=366; end;
 | 
				
			||||||
 | 
					    NM1=(day1-NM1)/day1;
 | 
				
			||||||
 | 
					    NM=NM2+NM1+V2(1)-V1(1)-1;
 | 
				
			||||||
 | 
					    unit='year';
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					function [eps]=magn_accur(M)
 | 
				
			||||||
 | 
					x=sort(M);
 | 
				
			||||||
 | 
					d=x(2:length(x))-x(1:length(x)-1);
 | 
				
			||||||
 | 
					eps=min(d(d>0));
 | 
				
			||||||
 | 
					if eps>0.1; eps=0.1;end
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
							
								
								
									
										60
									
								
								src/StationarySeismicHazardAnalysis/dist_GRT.m
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										60
									
								
								src/StationarySeismicHazardAnalysis/dist_GRT.m
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,60 @@
 | 
				
			|||||||
 | 
					%   [m, PDF_GRT, CDF_GRT]=dist_GRT(Md,Mu,dM,Mmin,eps,b,Mmax)
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% EVALUATES THE DENSITY AND CUMULATIVE DISTRIBUTION FUNCTIONS OF MAGNITUDE
 | 
				
			||||||
 | 
					%   UNDER THE UPPER-BOUNDED G-R LED MAGNITUDE DISTRIBUTION MODEL. 
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% AUTHOR: Stanislaw. Lasocki, Institute of Geophysics Polish Academy of
 | 
				
			||||||
 | 
					% Sciences, Warsaw, Poland
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% DESCRIPTION: The assumption on the upper-bounded Gutenberg-Richter 
 | 
				
			||||||
 | 
					% relation leads to the upper truncated exponential distribution to model 
 | 
				
			||||||
 | 
					% magnitude distribution from and above the catalog completness level 
 | 
				
			||||||
 | 
					% Mmin. The shape parameter of this distribution, consequently the G-R
 | 
				
			||||||
 | 
					% b-value and the end-point of the distribution Mmax are calculated at 
 | 
				
			||||||
 | 
					% start-up of the stationary hazard assessment services in the
 | 
				
			||||||
 | 
					% upper-bounded Gutenberg-Richter estimation mode.
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% The distribution function values are calculated for magnitude starting 
 | 
				
			||||||
 | 
					% from Md up to Mu with step dM.
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					%INPUT:
 | 
				
			||||||
 | 
					%   Md - starting magnitude for distribution functions calculations
 | 
				
			||||||
 | 
					%   Mu - ending magnitude for distribution functions calculations
 | 
				
			||||||
 | 
					%   dM - magnitude step for distribution functions calculations
 | 
				
			||||||
 | 
					%   Mmin - lower bound of the distribution - catalog completeness level
 | 
				
			||||||
 | 
					%   eps - length of the round-off interval of magnitudes.
 | 
				
			||||||
 | 
					%   b - Gutenberg-Richter b-value
 | 
				
			||||||
 | 
					%   Mmax - upper limit of magnitude distribution
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					%OUTPUT:
 | 
				
			||||||
 | 
					%   m - vector of the independent variable (magnitude) m=(Md:dM:Mu)
 | 
				
			||||||
 | 
					%   PDF_GRT - PDF vector of the same length as m
 | 
				
			||||||
 | 
					%   CDF_GRT - CDF vector of the same length as m
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% LICENSE
 | 
				
			||||||
 | 
					%     This file is a part of the IS-EPOS e-PLATFORM.
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					%     This is free software: you can redistribute it and/or modify it under 
 | 
				
			||||||
 | 
					%     the terms of the GNU General Public License as published by the Free 
 | 
				
			||||||
 | 
					%     Software Foundation, either version 3 of the License, or 
 | 
				
			||||||
 | 
					%     (at your option) any later version.
 | 
				
			||||||
 | 
					% 
 | 
				
			||||||
 | 
					%     This program is distributed in the hope that it will be useful,
 | 
				
			||||||
 | 
					%     but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
				
			||||||
 | 
					%     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
				
			||||||
 | 
					%     GNU General Public License for more details, <http://www.gnu.org/licenses/>.
 | 
				
			||||||
 | 
					% 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					function [m, PDF_GRT, CDF_GRT]=dist_GRT(Md,Mu,dM,Mmin,eps,b,Mmax)
 | 
				
			||||||
 | 
					m=(Md:dM:Mu)';
 | 
				
			||||||
 | 
					beta=b*log(10);
 | 
				
			||||||
 | 
					mian=(1-exp(-beta*(Mmax-Mmin+eps/2))); 
 | 
				
			||||||
 | 
					PDF_GRT=beta*exp(-beta*(m-Mmin+eps/2))/mian;
 | 
				
			||||||
 | 
					CDF_GRT=(1-exp(-beta*(m-Mmin+eps/2)))/mian;
 | 
				
			||||||
 | 
					idx=find(CDF_GRT<0);
 | 
				
			||||||
 | 
					PDF_GRT(idx)=zeros(size(idx));CDF_GRT(idx)=zeros(size(idx));
 | 
				
			||||||
 | 
					idx=find(CDF_GRT>1);
 | 
				
			||||||
 | 
					PDF_GRT(idx)=zeros(size(idx));CDF_GRT(idx)=ones(size(idx));
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					
 | 
				
			||||||
							
								
								
									
										57
									
								
								src/StationarySeismicHazardAnalysis/dist_GRU.m
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										57
									
								
								src/StationarySeismicHazardAnalysis/dist_GRU.m
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,57 @@
 | 
				
			|||||||
 | 
					%   [m, PDF_GRU, CDF_GRU]=dist_GRU(Md,Mu,dM,Mmin,eps,b)
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% EVALUATES THE DENSITY AND CUMULATIVE DISTRIBUTION FUNCTIONS OF MAGNITUDE 
 | 
				
			||||||
 | 
					%   UNDER THE UNLIMITED G-R LED MAGNITUDE DISTRIBUTION MODEL. 
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% AUTHOR: Stanislaw. Lasocki, Institute of Geophysics Polish Academy of
 | 
				
			||||||
 | 
					% Sciences, Warsaw, Poland
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% DESCRIPTION: The assumption on the unlimited Gutenberg-Richter relation 
 | 
				
			||||||
 | 
					% leads to the exponential distribution model of magnitude distribution 
 | 
				
			||||||
 | 
					% from and above the catalog completness level Mmin. The shape parameter of 
 | 
				
			||||||
 | 
					% this distribution and consequently the G-R b-value are calculated at 
 | 
				
			||||||
 | 
					% start-up of the stationary hazard assessment services in the
 | 
				
			||||||
 | 
					% unlimited Gutenberg-Richter estimation mode.
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% The distribution function values are calculated for magnitude starting 
 | 
				
			||||||
 | 
					% from Md up to Mu with step dM.
 | 
				
			||||||
 | 
					% 
 | 
				
			||||||
 | 
					%INPUT:
 | 
				
			||||||
 | 
					%   Md - starting magnitude for distribution functions calculations
 | 
				
			||||||
 | 
					%   Mu - ending magnitude for distribution functions calculations
 | 
				
			||||||
 | 
					%   dM - magnitude step for distribution functions calculations
 | 
				
			||||||
 | 
					%   Mmin - lower bound of the distribution - catalog completeness level
 | 
				
			||||||
 | 
					%   eps - length of the round-off interval of magnitudes.
 | 
				
			||||||
 | 
					%   b - Gutenberg-Richter b-value
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					%OUTPUT:
 | 
				
			||||||
 | 
					%   m - vector of the independent variable (magnitude) m=(Md:dM:Mu)
 | 
				
			||||||
 | 
					%   PDF_GRT - PDF vector of the same length as m
 | 
				
			||||||
 | 
					%   CDF_GRT - CDF vector of the same length as m
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% LICENSE
 | 
				
			||||||
 | 
					%     This file is a part of the IS-EPOS e-PLATFORM.
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					%     This is free software: you can redistribute it and/or modify it under 
 | 
				
			||||||
 | 
					%     the terms of the GNU General Public License as published by the Free 
 | 
				
			||||||
 | 
					%     Software Foundation, either version 3 of the License, or 
 | 
				
			||||||
 | 
					%     (at your option) any later version.
 | 
				
			||||||
 | 
					% 
 | 
				
			||||||
 | 
					%     This program is distributed in the hope that it will be useful,
 | 
				
			||||||
 | 
					%     but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
				
			||||||
 | 
					%     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
				
			||||||
 | 
					%     GNU General Public License for more details, <http://www.gnu.org/licenses/>.
 | 
				
			||||||
 | 
					% 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					function [m, PDF_GRU, CDF_GRU]=dist_GRU(Md,Mu,dM,Mmin,eps,b)
 | 
				
			||||||
 | 
					m=(Md:dM:Mu)';
 | 
				
			||||||
 | 
					beta=b*log(10);
 | 
				
			||||||
 | 
					PDF_GRU=beta*exp(-beta*(m-Mmin+eps/2));
 | 
				
			||||||
 | 
					CDF_GRU=1-exp(-beta*(m-Mmin+eps/2));
 | 
				
			||||||
 | 
					idx=find(CDF_GRU<0);
 | 
				
			||||||
 | 
					PDF_GRU(idx)=zeros(size(idx));CDF_GRU(idx)=zeros(size(idx));
 | 
				
			||||||
 | 
					idx=find(CDF_GRU>1);
 | 
				
			||||||
 | 
					PDF_GRU(idx)=zeros(size(idx));CDF_GRU(idx)=ones(size(idx));
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					
 | 
				
			||||||
							
								
								
									
										110
									
								
								src/StationarySeismicHazardAnalysis/dist_NPT.m
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										110
									
								
								src/StationarySeismicHazardAnalysis/dist_NPT.m
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,110 @@
 | 
				
			|||||||
 | 
					%   [m,PDF_NPT,CDF_NPT]=dist_NPT(Md,Mu,dM,Mmin,eps,h,xx,ambd,Mmax)
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% USING THE NONPARAMETRIC ADAPTATIVE KERNEL ESTIMATORS EVALUATES THE DENSITY 
 | 
				
			||||||
 | 
					%   AND CUMULATIVE DISTRIBUTION FUNCTIONS FOR THE UPPER-BOUNDED MAGNITUDE 
 | 
				
			||||||
 | 
					%   DISTRIBUTION.
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% AUTHOR: Stanislaw. Lasocki, Institute of Geophysics Polish Academy of
 | 
				
			||||||
 | 
					% Sciences, Warsaw, Poland
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% DESCRIPTION: The kernel estimator approach is a model-free alternative 
 | 
				
			||||||
 | 
					% to estimating the magnitude distribution functions. It is assumed that 
 | 
				
			||||||
 | 
					% the magnitude distribution has a hard end point Mmax from the right hand  
 | 
				
			||||||
 | 
					% side.The estimation makes use of the previously estimated parameters 
 | 
				
			||||||
 | 
					% namely the mean activity rate lamb, the length of magnitude round-off 
 | 
				
			||||||
 | 
					% interval, eps, the smoothing factor, h, the background sample, xx, the 
 | 
				
			||||||
 | 
					% scaling factors for the background sample, ambd, and the end-point of 
 | 
				
			||||||
 | 
					% magnitude distribution Mmax. The background sample,xx, comprises the 
 | 
				
			||||||
 | 
					% randomized values of observed magnitude doubled symmetrically with 
 | 
				
			||||||
 | 
					% respect to the value Mmin-eps/2.
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% REFERENCES:
 | 
				
			||||||
 | 
					%  Silverman B.W. (1986) Density Estimation for Statistics and Data Analysis, 
 | 
				
			||||||
 | 
					%   Chapman and Hall, London 
 | 
				
			||||||
 | 
					%  Kijko A., Lasocki S., Graham G. (2001) Pure appl. geophys. 158, 1655-1665
 | 
				
			||||||
 | 
					%  Lasocki S., Orlecka-Sikora B. (2008) Tectonophysics 456, 28-37
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					%INPUT:
 | 
				
			||||||
 | 
					%   Md - starting magnitude for distribution functions calculations
 | 
				
			||||||
 | 
					%   Mu - ending magnitude for distribution functions calculations
 | 
				
			||||||
 | 
					%   dM - magnitude step for distribution functions calculations
 | 
				
			||||||
 | 
					%   Mmin - lower bound of the distribution - catalog completeness level
 | 
				
			||||||
 | 
					%   eps - length of round-off interval of magnitudes.  
 | 
				
			||||||
 | 
					%   h - kernel smoothing factor.
 | 
				
			||||||
 | 
					%   xx - the background sample
 | 
				
			||||||
 | 
					%   ambd - the weigthing factors for the adaptive kernel
 | 
				
			||||||
 | 
					%   Mmax - upper limit of magnitude distribution
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% OUTPUT:
 | 
				
			||||||
 | 
					%   m - vector of the independent variable (magnitude)
 | 
				
			||||||
 | 
					%   PDF_NPT - PDF vector
 | 
				
			||||||
 | 
					%   CDF_NPT - CDF vector
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% LICENSE
 | 
				
			||||||
 | 
					%     This file is a part of the IS-EPOS e-PLATFORM.
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					%     This is free software: you can redistribute it and/or modify it under 
 | 
				
			||||||
 | 
					%     the terms of the GNU General Public License as published by the Free 
 | 
				
			||||||
 | 
					%     Software Foundation, either version 3 of the License, or 
 | 
				
			||||||
 | 
					%     (at your option) any later version.
 | 
				
			||||||
 | 
					% 
 | 
				
			||||||
 | 
					%     This program is distributed in the hope that it will be useful,
 | 
				
			||||||
 | 
					%     but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
				
			||||||
 | 
					%     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
				
			||||||
 | 
					%     GNU General Public License for more details , <http://www.gnu.org/licenses/>.
 | 
				
			||||||
 | 
					% 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					function [m,PDF_NPT,CDF_NPT]=dist_NPT(Md,Mu,dM,Mmin,eps,h,xx,ambd,Mmax)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					m=(Md:dM:Mu)';
 | 
				
			||||||
 | 
					nn=length(m);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					mian=2*(Dystr_npr(Mmax,xx,ambd,h)-Dystr_npr(Mmin-eps/2,xx,ambd,h));
 | 
				
			||||||
 | 
					for i=1:nn
 | 
				
			||||||
 | 
					    if m(i)<Mmin-eps/2
 | 
				
			||||||
 | 
					        PDF_NPT(i)=0;CDF_NPT(i)=0;
 | 
				
			||||||
 | 
					    elseif m(i)>Mmax
 | 
				
			||||||
 | 
					        PDF_NPT(i)=0;CDF_NPT(i)=1;
 | 
				
			||||||
 | 
					    else
 | 
				
			||||||
 | 
					    PDF_NPT(i)=dens_npr1(m(i),xx,ambd,h,Mmin-eps/2)/mian;
 | 
				
			||||||
 | 
					    CDF_NPT(i)=2*(Dystr_npr(m(i),xx,ambd,h)-Dystr_npr(Mmin-eps/2,xx,ambd,h))/mian;
 | 
				
			||||||
 | 
					    end
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					PDF_NPT=PDF_NPT';CDF_NPT=CDF_NPT';
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					function [gau]=dens_npr1(y,x,ambd,h,x1)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					%Nonparametric adaptive density for a variable from the interval [x1,inf)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					% x - the sample data doubled and sorted in the ascending order.
 | 
				
			||||||
 | 
					% ambd - the local scaling factors for the adaptive estimation 
 | 
				
			||||||
 | 
					% h - the optimal smoothing factor 
 | 
				
			||||||
 | 
					% y - the value of random variable X for which the density is calculated
 | 
				
			||||||
 | 
					% gau - the density value f(y)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					n=length(x);
 | 
				
			||||||
 | 
					c=sqrt(2*pi);
 | 
				
			||||||
 | 
					if y<x1
 | 
				
			||||||
 | 
					    gau=0;
 | 
				
			||||||
 | 
					else
 | 
				
			||||||
 | 
					    gau=2*sum(exp(-0.5*(((y-x)./ambd')./h).^2)./ambd')/c/n/h;
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					function [Fgau]=Dystr_npr(y,x,ambd,h)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					%Nonparametric adaptive cumulative distribution for a variable from the
 | 
				
			||||||
 | 
					%interval (-inf,inf)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					% x - the sample data 
 | 
				
			||||||
 | 
					% ambd - the local scaling factors for the adaptive estimation 
 | 
				
			||||||
 | 
					% h - the optimal smoothing factor 
 | 
				
			||||||
 | 
					% y - the value of random variable X for which the density is calculated
 | 
				
			||||||
 | 
					% gau - the density value f(y)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					n=length(x);
 | 
				
			||||||
 | 
					Fgau=sum(normcdf(((y-x)./ambd')./h))/n;
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					
 | 
				
			||||||
							
								
								
									
										109
									
								
								src/StationarySeismicHazardAnalysis/dist_NPU.m
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										109
									
								
								src/StationarySeismicHazardAnalysis/dist_NPU.m
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,109 @@
 | 
				
			|||||||
 | 
					%   [m, PDF_NPU, CDF_NPU]=dist_NPU(Md,Mu,dM,Mmin,eps,h,xx,ambd)
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% USING THE NONPARAMETRIC ADAPTATIVE KERNEL ESTIMATORS EVALUATES THE DENSITY 
 | 
				
			||||||
 | 
					%   AND CUMULATIVE DISTRIBUTION FUNCTIONS FOR THE UNLIMITED MAGNITUDE 
 | 
				
			||||||
 | 
					%   DISTRIBUTION.
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% AUTHOR: Stanislaw. Lasocki, Institute of Geophysics Polish Academy of
 | 
				
			||||||
 | 
					% Sciences, Warsaw, Poland
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% DESCRIPTION: The kernel estimator approach is a model-free alternative 
 | 
				
			||||||
 | 
					% to estimating the magnitude distribution functions. It is assumed that 
 | 
				
			||||||
 | 
					% the magnitude distribution is unlimited from the right hand side. 
 | 
				
			||||||
 | 
					% The estimation makes use of the previously estimated parameters of kernel 
 | 
				
			||||||
 | 
					% estimation, namely the smoothing factor, the background sample and the 
 | 
				
			||||||
 | 
					% scaling factors for the background sample. The background sample 
 | 
				
			||||||
 | 
					% - xx comprises the randomized values of observed magnitude doubled 
 | 
				
			||||||
 | 
					% symmetrically with respect to the value Mmin-eps/2 
 | 
				
			||||||
 | 
					% 
 | 
				
			||||||
 | 
					% The distribution function values are calculated for magnitude starting 
 | 
				
			||||||
 | 
					% from Md up to Mu with step dM.
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% REFERENCES:
 | 
				
			||||||
 | 
					%Silverman B.W. (1986) Density Estimation fro Statistics and Data Analysis, 
 | 
				
			||||||
 | 
					%   Chapman and Hall, London 
 | 
				
			||||||
 | 
					%Kijko A., Lasocki S., Graham G. (2001) Pure appl. geophys. 158, 1655-1665
 | 
				
			||||||
 | 
					%Lasocki S., Orlecka-Sikora B. (2008) Tectonophysics 456, 28-37
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					%INPUT:
 | 
				
			||||||
 | 
					%   Md - starting magnitude for distribution functions calculations
 | 
				
			||||||
 | 
					%   Mu - ending magnitude for distribution functions calculations
 | 
				
			||||||
 | 
					%   dM - magnitude step for distribution functions calculations
 | 
				
			||||||
 | 
					%   Mmin - lower bound of the distribution - catalog completeness level
 | 
				
			||||||
 | 
					%   eps - length of round-off interval of magnitudes.  
 | 
				
			||||||
 | 
					%   h - kernel smoothing factor.
 | 
				
			||||||
 | 
					%   xx - the background sample
 | 
				
			||||||
 | 
					%   ambd - the weigthing factors for the adaptive kernel
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					%OUTPUT
 | 
				
			||||||
 | 
					% m - vector of the independent variable (magnitude) m=(Md:dM:Mu)
 | 
				
			||||||
 | 
					%   PDF_NPU - PDF vector of the same length as m
 | 
				
			||||||
 | 
					%   CDF_NPU - CDF vector of the same length as m
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% LICENSE
 | 
				
			||||||
 | 
					%     This file is a part of the IS-EPOS e-PLATFORM.
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					%     This is free software: you can redistribute it and/or modify it under 
 | 
				
			||||||
 | 
					%     the terms of the GNU General Public License as published by the Free 
 | 
				
			||||||
 | 
					%     Software Foundation, either version 3 of the License, or 
 | 
				
			||||||
 | 
					%     (at your option) any later version.
 | 
				
			||||||
 | 
					% 
 | 
				
			||||||
 | 
					%     This program is distributed in the hope that it will be useful,
 | 
				
			||||||
 | 
					%     but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
				
			||||||
 | 
					%     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
				
			||||||
 | 
					%     GNU General Public License for more details , <http://www.gnu.org/licenses/>.
 | 
				
			||||||
 | 
					% 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					function [m, PDF_NPU, CDF_NPU]=dist_NPU(Md,Mu,dM,Mmin,eps,h,xx,ambd)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					m=(Md:dM:Mu)';
 | 
				
			||||||
 | 
					nn=length(m);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					for i=1:nn
 | 
				
			||||||
 | 
					    if m(i)>=Mmin-eps/2
 | 
				
			||||||
 | 
					        PDF_NPU(i)=dens_npr1(m(i),xx,ambd,h,Mmin-eps/2);
 | 
				
			||||||
 | 
					        CDF_NPU(i)=2*(Dystr_npr(m(i),xx,ambd,h)-Dystr_npr(Mmin-eps/2,xx,ambd,h));
 | 
				
			||||||
 | 
					    else
 | 
				
			||||||
 | 
					        PDF_NPU(i)=0;
 | 
				
			||||||
 | 
					        CDF_NPU(i)=0;
 | 
				
			||||||
 | 
					    end
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					PDF_NPU=PDF_NPU';CDF_NPU=CDF_NPU';
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					function [gau]=dens_npr1(y,x,ambd,h,x1)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					%Nonparametric adaptive density for a variable from the interval [x1,inf)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					% x - the sample data doubled and sorted in the ascending order.
 | 
				
			||||||
 | 
					% ambd - the local scaling factors for the adaptive estimation 
 | 
				
			||||||
 | 
					% h - the optimal smoothing factor 
 | 
				
			||||||
 | 
					% y - the value of random variable X for which the density is calculated
 | 
				
			||||||
 | 
					% gau - the density value f(y)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					n=length(x);
 | 
				
			||||||
 | 
					c=sqrt(2*pi);
 | 
				
			||||||
 | 
					if y<x1
 | 
				
			||||||
 | 
					    gau=0;
 | 
				
			||||||
 | 
					else
 | 
				
			||||||
 | 
					    gau=2*sum(exp(-0.5*(((y-x)./ambd')./h).^2)./ambd')/c/n/h;
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					function [Fgau]=Dystr_npr(y,x,ambd,h)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					%Nonparametric adaptive cumulative distribution for a variable from the
 | 
				
			||||||
 | 
					%interval (-inf,inf)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					% x - the sample data 
 | 
				
			||||||
 | 
					% ambd - the local scaling factors for the adaptive estimation 
 | 
				
			||||||
 | 
					% h - the optimal smoothing factor 
 | 
				
			||||||
 | 
					% y - the value of random variable X for which the density is calculated
 | 
				
			||||||
 | 
					% gau - the density value f(y)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					n=length(x);
 | 
				
			||||||
 | 
					Fgau=sum(normcdf(((y-x)./ambd')./h))/n;
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					
 | 
				
			||||||
		Reference in New Issue
	
	Block a user