updated scripts for SSH, zero M error handling

This commit is contained in:
2017-07-04 15:41:30 +02:00
parent fbba8ae4fd
commit 674a63f272
16 changed files with 119 additions and 51 deletions

View File

@@ -4,8 +4,8 @@
% AND CUMULATIVE DISTRIBUTION FUNCTIONS FOR THE UPPER-BOUNDED MAGNITUDE
% DISTRIBUTION.
%
% AUTHOR: Stanislaw. Lasocki, Institute of Geophysics Polish Academy of
% Sciences, Warsaw, Poland
%
% AUTHOR: S. Lasocki 06/2014 within IS-EPOS project.
%
% DESCRIPTION: The kernel estimator approach is a model-free alternative
% to estimating the magnitude distribution functions. It is assumed that
@@ -51,11 +51,16 @@
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details , <http://www.gnu.org/licenses/>.
% GNU General Public License for more details.
%
function [m,PDF_NPT,CDF_NPT]=dist_NPT(Md,Mu,dM,Mmin,eps,h,xx,ambd,Mmax)
% -------------- VALIDATION RULES ------------- K_21NOV2016
if dM<=0;error('Magnitude Step must be greater than 0');end
%----------------------------------------------------------
m=(Md:dM:Mu)';
nn=length(m);
@@ -77,7 +82,8 @@ function [gau]=dens_npr1(y,x,ambd,h,x1)
%Nonparametric adaptive density for a variable from the interval [x1,inf)
% x - the sample data doubled and sorted in the ascending order.
% x - the sample data doubled and sorted in the ascending order. Use
% "podwajanie.m" first to accmoplish that.
% ambd - the local scaling factors for the adaptive estimation
% h - the optimal smoothing factor
% y - the value of random variable X for which the density is calculated