updated scripts for SSH, zero M error handling
This commit is contained in:
parent
fbba8ae4fd
commit
674a63f272
@ -3,8 +3,7 @@
|
|||||||
%EVALUATES THE EXCEEDANCE PROBABILITY VALUES USING THE UPPER-BOUNDED G-R
|
%EVALUATES THE EXCEEDANCE PROBABILITY VALUES USING THE UPPER-BOUNDED G-R
|
||||||
% LED MAGNITUDE DISTRIBUTION MODEL.
|
% LED MAGNITUDE DISTRIBUTION MODEL.
|
||||||
%
|
%
|
||||||
% AUTHOR: Stanislaw. Lasocki, Institute of Geophysics Polish Academy of
|
% AUTHOR: S. Lasocki 06/2014 within IS-EPOS project.
|
||||||
% Sciences, Warsaw, Poland
|
|
||||||
%
|
%
|
||||||
% DESCRIPTION: The assumption on the upper-bounded Gutenberg-Richter
|
% DESCRIPTION: The assumption on the upper-bounded Gutenberg-Richter
|
||||||
% relation leads to the upper truncated exponential distribution to model
|
% relation leads to the upper truncated exponential distribution to model
|
||||||
@ -57,11 +56,17 @@
|
|||||||
% This program is distributed in the hope that it will be useful,
|
% This program is distributed in the hope that it will be useful,
|
||||||
% but WITHOUT ANY WARRANTY; without even the implied warranty of
|
% but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
% GNU General Public License for more details, <http://www.gnu.org/licenses/>.
|
% GNU General Public License for more details.
|
||||||
%
|
%
|
||||||
|
|
||||||
function [x,z]=ExcProbGRT(opt,xd,xu,dx,y,Mmin,lamb,eps,b,Mmax)
|
function [x,z]=ExcProbGRT(opt,xd,xu,dx,y,Mmin,lamb,eps,b,Mmax)
|
||||||
|
|
||||||
|
|
||||||
|
% -------------- VALIDATION RULES ------------- K_21NOV2016
|
||||||
|
if dx<=0;error('Step must be greater than 0');end
|
||||||
|
%----------------------------------------------------------
|
||||||
|
|
||||||
|
|
||||||
beta=b*log(10);
|
beta=b*log(10);
|
||||||
if opt==0
|
if opt==0
|
||||||
if xd<Mmin; xd=Mmin;end
|
if xd<Mmin; xd=Mmin;end
|
||||||
|
@ -3,8 +3,7 @@
|
|||||||
%EVALUATES THE EXCEEDANCE PROBABILITY VALUES USING THE UNLIMITED G-R
|
%EVALUATES THE EXCEEDANCE PROBABILITY VALUES USING THE UNLIMITED G-R
|
||||||
% LED MAGNITUDE DISTRIBUTION MODEL.
|
% LED MAGNITUDE DISTRIBUTION MODEL.
|
||||||
%
|
%
|
||||||
% AUTHOR: Stanislaw. Lasocki, Institute of Geophysics Polish Academy of
|
% AUTHOR: S. Lasocki 06/2014 within IS-EPOS project.
|
||||||
% Sciences, Warsaw, Poland
|
|
||||||
%
|
%
|
||||||
% DESCRIPTION: The assumption on the unlimited Gutenberg-Richter relation
|
% DESCRIPTION: The assumption on the unlimited Gutenberg-Richter relation
|
||||||
% leads to the exponential distribution model of magnitude distribution
|
% leads to the exponential distribution model of magnitude distribution
|
||||||
@ -54,11 +53,16 @@
|
|||||||
% This program is distributed in the hope that it will be useful,
|
% This program is distributed in the hope that it will be useful,
|
||||||
% but WITHOUT ANY WARRANTY; without even the implied warranty of
|
% but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
% GNU General Public License for more details, <http://www.gnu.org/licenses/>.
|
% GNU General Public License for more details.
|
||||||
%
|
%
|
||||||
|
|
||||||
function [x,z]=ExcProbGRU(opt,xd,xu,dx,y,Mmin,lamb,eps,b)
|
function [x,z]=ExcProbGRU(opt,xd,xu,dx,y,Mmin,lamb,eps,b)
|
||||||
|
|
||||||
|
% -------------- VALIDATION RULES ------------- K_21NOV2016
|
||||||
|
if dx<=0;error('Step must be greater than 0');end
|
||||||
|
%----------------------------------------------------------
|
||||||
|
|
||||||
|
|
||||||
beta=b*log(10);
|
beta=b*log(10);
|
||||||
|
|
||||||
if opt==0
|
if opt==0
|
||||||
|
@ -5,8 +5,7 @@
|
|||||||
% DISTRIBUTION FOR MAGNITUDE.
|
% DISTRIBUTION FOR MAGNITUDE.
|
||||||
|
|
||||||
%
|
%
|
||||||
% AUTHOR: Stanislaw. Lasocki, Institute of Geophysics Polish Academy of
|
% AUTHOR: S. Lasocki 06/2014 within IS-EPOS project.
|
||||||
% Sciences, Warsaw, Poland
|
|
||||||
%
|
%
|
||||||
% DESCRIPTION: The kernel estimator approach is a model-free alternative
|
% DESCRIPTION: The kernel estimator approach is a model-free alternative
|
||||||
% to estimating the magnitude distribution functions. It is assumed that
|
% to estimating the magnitude distribution functions. It is assumed that
|
||||||
@ -66,12 +65,17 @@
|
|||||||
% This program is distributed in the hope that it will be useful,
|
% This program is distributed in the hope that it will be useful,
|
||||||
% but WITHOUT ANY WARRANTY; without even the implied warranty of
|
% but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
% GNU General Public License for more details, <http://www.gnu.org/licenses/>.
|
% GNU General Public License for more details.
|
||||||
%
|
%
|
||||||
|
|
||||||
function [x,z]=...
|
function [x,z]=...
|
||||||
ExcProbNPT(opt,xd,xu,dx,y,Mmin,lamb,eps,h,xx,ambd,Mmax)
|
ExcProbNPT(opt,xd,xu,dx,y,Mmin,lamb,eps,h,xx,ambd,Mmax)
|
||||||
|
|
||||||
|
% -------------- VALIDATION RULES ------------- K_21NOV2016
|
||||||
|
if dx<=0;error('Step must be greater than 0');end
|
||||||
|
%----------------------------------------------------------
|
||||||
|
|
||||||
|
|
||||||
if opt==0
|
if opt==0
|
||||||
if xd<Mmin; xd=Mmin;end
|
if xd<Mmin; xd=Mmin;end
|
||||||
if xu>Mmax; xu=Mmax;end
|
if xu>Mmax; xu=Mmax;end
|
||||||
@ -90,7 +94,7 @@ else
|
|||||||
CDF_NPT=2*(Dystr_npr(y,xx,ambd,h)...
|
CDF_NPT=2*(Dystr_npr(y,xx,ambd,h)...
|
||||||
-Dystr_npr(Mmin-eps/2,xx,ambd,h))./mian;
|
-Dystr_npr(Mmin-eps/2,xx,ambd,h))./mian;
|
||||||
z=1-exp(-lamb*(1-CDF_NPT).*x);
|
z=1-exp(-lamb*(1-CDF_NPT).*x);
|
||||||
if y>Mmax;z=zeros(size(x));end
|
if y>Mmax;z=zeros(size(x));end %K15DEC2015
|
||||||
end
|
end
|
||||||
end
|
end
|
||||||
|
|
||||||
|
@ -4,8 +4,7 @@
|
|||||||
% EXCEEDANCE PROBABILITY VALUES FOR THE UNBOUNDED NONPARAMETRIC
|
% EXCEEDANCE PROBABILITY VALUES FOR THE UNBOUNDED NONPARAMETRIC
|
||||||
% DISTRIBUTION FOR MAGNITUDE.
|
% DISTRIBUTION FOR MAGNITUDE.
|
||||||
%
|
%
|
||||||
% AUTHOR: Stanislaw. Lasocki, Institute of Geophysics Polish Academy of
|
% AUTHOR: S. Lasocki 06/2014 within IS-EPOS project.
|
||||||
% Sciences, Warsaw, Poland
|
|
||||||
%
|
%
|
||||||
% DESCRIPTION: The kernel estimator approach is a model-free alternative
|
% DESCRIPTION: The kernel estimator approach is a model-free alternative
|
||||||
% to estimating the magnitude distribution functions. It is assumed that
|
% to estimating the magnitude distribution functions. It is assumed that
|
||||||
@ -64,11 +63,16 @@
|
|||||||
% This program is distributed in the hope that it will be useful,
|
% This program is distributed in the hope that it will be useful,
|
||||||
% but WITHOUT ANY WARRANTY; without even the implied warranty of
|
% but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
% GNU General Public License for more details, <http://www.gnu.org/licenses/>.
|
% GNU General Public License for more details.
|
||||||
%
|
%
|
||||||
|
|
||||||
function [x,z]=ExcProbNPU(opt,xd,xu,dx,y,Mmin,lamb,eps,h,xx,ambd)
|
function [x,z]=ExcProbNPU(opt,xd,xu,dx,y,Mmin,lamb,eps,h,xx,ambd)
|
||||||
|
|
||||||
|
% -------------- VALIDATION RULES ------------- K_21NOV2016
|
||||||
|
if dx<=0;error('Step must be greater than 0');end
|
||||||
|
%----------------------------------------------------------
|
||||||
|
|
||||||
|
|
||||||
x=(xd:dx:xu)';
|
x=(xd:dx:xu)';
|
||||||
n=length(x);
|
n=length(x);
|
||||||
|
|
||||||
|
@ -3,8 +3,7 @@
|
|||||||
%EVALUATES THE MAXIMUM CREDIBLE MAGNITUDE VALUES USING THE UPPER-BOUNDED
|
%EVALUATES THE MAXIMUM CREDIBLE MAGNITUDE VALUES USING THE UPPER-BOUNDED
|
||||||
% G-R LED MAGNITUDE DISTRIBUTION MODEL.
|
% G-R LED MAGNITUDE DISTRIBUTION MODEL.
|
||||||
%
|
%
|
||||||
% AUTHOR: Stanislaw. Lasocki, Institute of Geophysics Polish Academy of
|
% AUTHOR: S. Lasocki 06/2014 within IS-EPOS project.
|
||||||
% Sciences, Warsaw, Poland
|
|
||||||
%
|
%
|
||||||
% DESCRIPTION: The assumption on the upper-bounded Gutenberg-Richter
|
% DESCRIPTION: The assumption on the upper-bounded Gutenberg-Richter
|
||||||
% relation leads to the upper truncated exponential distribution to model
|
% relation leads to the upper truncated exponential distribution to model
|
||||||
@ -43,10 +42,15 @@
|
|||||||
% This program is distributed in the hope that it will be useful,
|
% This program is distributed in the hope that it will be useful,
|
||||||
% but WITHOUT ANY WARRANTY; without even the implied warranty of
|
% but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
% GNU General Public License for more details, <http://www.gnu.org/licenses/>.
|
% GNU General Public License for more details.
|
||||||
%
|
%
|
||||||
|
|
||||||
function [T,m]=Max_credM_GRT(Td,Tu,dT,Mmin,lamb,eps,b,Mmax)
|
function [T,m]=Max_credM_GRT(Td,Tu,dT,Mmin,lamb,eps,b,Mmax)
|
||||||
|
|
||||||
|
% -------------- VALIDATION RULES ------------- K_21NOV2016
|
||||||
|
if dT<=0;error('Time Step must be greater than 0');end
|
||||||
|
%----------------------------------------------------------
|
||||||
|
|
||||||
T=(Td:dT:Tu)';
|
T=(Td:dT:Tu)';
|
||||||
beta=b*log(10);
|
beta=b*log(10);
|
||||||
mian=(1-exp(-beta*(Mmax-Mmin+eps/2)));
|
mian=(1-exp(-beta*(Mmax-Mmin+eps/2)));
|
||||||
|
@ -3,8 +3,7 @@
|
|||||||
%EVALUATES THE MAXIMUM CREDIBLE MAGNITUDE VALUES USING THE UNLIMITED
|
%EVALUATES THE MAXIMUM CREDIBLE MAGNITUDE VALUES USING THE UNLIMITED
|
||||||
% G-R LED MAGNITUDE DISTRIBUTION MODEL.
|
% G-R LED MAGNITUDE DISTRIBUTION MODEL.
|
||||||
%
|
%
|
||||||
% AUTHOR: Stanislaw. Lasocki, Institute of Geophysics Polish Academy of
|
% AUTHOR: S. Lasocki 06/2014 within IS-EPOS project.
|
||||||
% Sciences, Warsaw, Poland
|
|
||||||
%
|
%
|
||||||
% DESCRIPTION: The assumption on the unlimited Gutenberg-Richter relation
|
% DESCRIPTION: The assumption on the unlimited Gutenberg-Richter relation
|
||||||
% leads to the exponential distribution model of magnitude distribution
|
% leads to the exponential distribution model of magnitude distribution
|
||||||
@ -44,11 +43,16 @@
|
|||||||
% This program is distributed in the hope that it will be useful,
|
% This program is distributed in the hope that it will be useful,
|
||||||
% but WITHOUT ANY WARRANTY; without even the implied warranty of
|
% but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
% GNU General Public License for more details, <http://www.gnu.org/licenses/>.
|
% GNU General Public License for more details.
|
||||||
%
|
%
|
||||||
|
|
||||||
function [T,m]=Max_credM_GRU(Td,Tu,dT,Mmin,lamb,eps,b)
|
function [T,m]=Max_credM_GRU(Td,Tu,dT,Mmin,lamb,eps,b)
|
||||||
|
|
||||||
|
% -------------- VALIDATION RULES ------------- K_21NOV2016
|
||||||
|
if dT<=0;error('Time Step must be greater than 0');end
|
||||||
|
%----------------------------------------------------------
|
||||||
|
|
||||||
|
|
||||||
T=(Td:dT:Tu)';
|
T=(Td:dT:Tu)';
|
||||||
beta=b*log(10);
|
beta=b*log(10);
|
||||||
m=Mmin-eps/2+1/beta.*log(lamb*T);
|
m=Mmin-eps/2+1/beta.*log(lamb*T);
|
||||||
|
@ -4,8 +4,7 @@
|
|||||||
% CREDIBLE MAGNITUDE VALUES FOR THE UPPER-BOUNDED NONPARAMETRIC
|
% CREDIBLE MAGNITUDE VALUES FOR THE UPPER-BOUNDED NONPARAMETRIC
|
||||||
% DISTRIBUTION FOR MAGNITUDE.
|
% DISTRIBUTION FOR MAGNITUDE.
|
||||||
%
|
%
|
||||||
% AUTHOR: Stanislaw. Lasocki, Institute of Geophysics Polish Academy of
|
% AUTHOR: S. Lasocki 06/2014 within IS-EPOS project.
|
||||||
% Sciences, Warsaw, Poland
|
|
||||||
%
|
%
|
||||||
% DESCRIPTION: The kernel estimator approach is a model-free alternative
|
% DESCRIPTION: The kernel estimator approach is a model-free alternative
|
||||||
% to estimating the magnitude distribution functions. It is assumed that
|
% to estimating the magnitude distribution functions. It is assumed that
|
||||||
@ -56,11 +55,16 @@
|
|||||||
% This program is distributed in the hope that it will be useful,
|
% This program is distributed in the hope that it will be useful,
|
||||||
% but WITHOUT ANY WARRANTY; without even the implied warranty of
|
% but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
% GNU General Public License for more details, <http://www.gnu.org/licenses/>.
|
% GNU General Public License for more details.
|
||||||
%
|
%
|
||||||
|
|
||||||
function [T,m]=Max_credM_NPT(Td,Tu,dT,Mmin,lamb,eps,h,xx,ambd,Mmax)
|
function [T,m]=Max_credM_NPT(Td,Tu,dT,Mmin,lamb,eps,h,xx,ambd,Mmax)
|
||||||
|
|
||||||
|
% -------------- VALIDATION RULES ------------- K_21NOV2016
|
||||||
|
if dT<=0;error('Time Step must be greater than 0');end
|
||||||
|
%----------------------------------------------------------
|
||||||
|
|
||||||
|
|
||||||
T=(Td:dT:Tu)';
|
T=(Td:dT:Tu)';
|
||||||
n=length(T);
|
n=length(T);
|
||||||
interval=[Mmin-eps/2 Mmax-0.001];
|
interval=[Mmin-eps/2 Mmax-0.001];
|
||||||
|
@ -4,8 +4,7 @@
|
|||||||
% THE MAXIMUM CREDIBLE MAGNITUDE VALUES FOR THE UNBOUNDED
|
% THE MAXIMUM CREDIBLE MAGNITUDE VALUES FOR THE UNBOUNDED
|
||||||
% NONPARAMETRIC DISTRIBUTION FOR MAGNITUDE.
|
% NONPARAMETRIC DISTRIBUTION FOR MAGNITUDE.
|
||||||
%
|
%
|
||||||
% AUTHOR: Stanislaw. Lasocki, Institute of Geophysics Polish Academy of
|
% AUTHOR: S. Lasocki 06/2014 within IS-EPOS project.
|
||||||
% Sciences, Warsaw, Poland
|
|
||||||
%
|
%
|
||||||
% DESCRIPTION: The kernel estimator approach is a model-free alternative
|
% DESCRIPTION: The kernel estimator approach is a model-free alternative
|
||||||
% to estimating the magnitude distribution functions. It is assumed that
|
% to estimating the magnitude distribution functions. It is assumed that
|
||||||
@ -58,11 +57,16 @@
|
|||||||
% This program is distributed in the hope that it will be useful,
|
% This program is distributed in the hope that it will be useful,
|
||||||
% but WITHOUT ANY WARRANTY; without even the implied warranty of
|
% but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
% GNU General Public License for more details, <http://www.gnu.org/licenses/>.
|
% GNU General Public License for more details.
|
||||||
%
|
%
|
||||||
|
|
||||||
function [T,m]=Max_credM_NPU(Td,Tu,dT,Mmin,lamb,eps,h,xx,ambd)
|
function [T,m]=Max_credM_NPU(Td,Tu,dT,Mmin,lamb,eps,h,xx,ambd)
|
||||||
|
|
||||||
|
% -------------- VALIDATION RULES ------------- K_21NOV2016
|
||||||
|
if dT<=0;error('Time Step must be greater than 0');end
|
||||||
|
%----------------------------------------------------------
|
||||||
|
|
||||||
|
|
||||||
T=(Td:dT:Tu)';
|
T=(Td:dT:Tu)';
|
||||||
n=length(T);
|
n=length(T);
|
||||||
interval=[Mmin-eps/2 10.0];
|
interval=[Mmin-eps/2 10.0];
|
||||||
|
@ -3,8 +3,7 @@
|
|||||||
% EVALUATES THE MEAN RETURN PERIOD VALUES USING THE UPPER-BOUNDED G-R LED
|
% EVALUATES THE MEAN RETURN PERIOD VALUES USING THE UPPER-BOUNDED G-R LED
|
||||||
% MAGNITUDE DISTRIBUTION MODEL.
|
% MAGNITUDE DISTRIBUTION MODEL.
|
||||||
%
|
%
|
||||||
% AUTHOR: Stanislaw. Lasocki, Institute of Geophysics Polish Academy of
|
% AUTHOR: S. Lasocki 06/2014 within IS-EPOS project.
|
||||||
% Sciences, Warsaw, Poland
|
|
||||||
%
|
%
|
||||||
% DESCRIPTION: The assumption on the upper-bounded Gutenberg-Richter
|
% DESCRIPTION: The assumption on the upper-bounded Gutenberg-Richter
|
||||||
% relation leads to the upper truncated exponential distribution to model
|
% relation leads to the upper truncated exponential distribution to model
|
||||||
@ -47,11 +46,16 @@
|
|||||||
% This program is distributed in the hope that it will be useful,
|
% This program is distributed in the hope that it will be useful,
|
||||||
% but WITHOUT ANY WARRANTY; without even the implied warranty of
|
% but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
% GNU General Public License for more details, <http://www.gnu.org/licenses/>.
|
% GNU General Public License for more details.
|
||||||
%
|
%
|
||||||
|
|
||||||
|
|
||||||
function [m,T]=Ret_periodGRT(Md,Mu,dM,Mmin,lamb,eps,b,Mmax)
|
function [m,T]=Ret_periodGRT(Md,Mu,dM,Mmin,lamb,eps,b,Mmax)
|
||||||
|
|
||||||
|
% -------------- VALIDATION RULES ------------- K_21NOV2016
|
||||||
|
if dM<=0;error('Magnitude Step must be greater than 0');end
|
||||||
|
%----------------------------------------------------------
|
||||||
|
|
||||||
if Md<Mmin; Md=Mmin;end
|
if Md<Mmin; Md=Mmin;end
|
||||||
if Mu>Mmax; Mu=Mmax;end
|
if Mu>Mmax; Mu=Mmax;end
|
||||||
m=(Md:dM:Mu)';
|
m=(Md:dM:Mu)';
|
||||||
|
@ -3,8 +3,7 @@
|
|||||||
% EVALUATES THE MEAN RETURN PERIOD VALUES USING THE UNLIMITED G-R LED
|
% EVALUATES THE MEAN RETURN PERIOD VALUES USING THE UNLIMITED G-R LED
|
||||||
% MAGNITUDE DISTRIBUTION MODEL.
|
% MAGNITUDE DISTRIBUTION MODEL.
|
||||||
%
|
%
|
||||||
% AUTHOR: Stanislaw. Lasocki, Institute of Geophysics Polish Academy of
|
% AUTHOR: S. Lasocki 06/2014 within IS-EPOS project.
|
||||||
% Sciences, Warsaw, Poland
|
|
||||||
%
|
%
|
||||||
% DESCRIPTION: The assumption on the unlimited Gutenberg-Richter relation
|
% DESCRIPTION: The assumption on the unlimited Gutenberg-Richter relation
|
||||||
% leads to the exponential distribution model of magnitude distribution
|
% leads to the exponential distribution model of magnitude distribution
|
||||||
@ -42,10 +41,15 @@
|
|||||||
% This program is distributed in the hope that it will be useful,
|
% This program is distributed in the hope that it will be useful,
|
||||||
% but WITHOUT ANY WARRANTY; without even the implied warranty of
|
% but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
% GNU General Public License for more details, <http://www.gnu.org/licenses/>.
|
% GNU General Public License for more details.
|
||||||
%
|
%
|
||||||
|
|
||||||
function [m,T]=Ret_periodGRU(Md,Mu,dM,Mmin,lamb,eps,b)
|
function [m,T]=Ret_periodGRU(Md,Mu,dM,Mmin,lamb,eps,b)
|
||||||
|
|
||||||
|
% -------------- VALIDATION RULES ------------- K_21NOV2016
|
||||||
|
if dM<=0;error('Magnitude Step must be greater than 0');end
|
||||||
|
%----------------------------------------------------------
|
||||||
|
|
||||||
if Md<Mmin; Md=Mmin;end
|
if Md<Mmin; Md=Mmin;end
|
||||||
m=(Md:dM:Mu)';
|
m=(Md:dM:Mu)';
|
||||||
beta=b*log(10);
|
beta=b*log(10);
|
||||||
|
@ -5,8 +5,7 @@
|
|||||||
% RETURN PERIOD VALUES FOR THE UPPER-BOUNDED NONPARAMETRIC
|
% RETURN PERIOD VALUES FOR THE UPPER-BOUNDED NONPARAMETRIC
|
||||||
% DISTRIBUTION FOR MAGNITUDE.
|
% DISTRIBUTION FOR MAGNITUDE.
|
||||||
%
|
%
|
||||||
% AUTHOR: Stanislaw. Lasocki, Institute of Geophysics Polish Academy of
|
% AUTHOR: S. Lasocki 06/2014 within IS-EPOS project.
|
||||||
% Sciences, Warsaw, Poland
|
|
||||||
%
|
%
|
||||||
% DESCRIPTION: The kernel estimator approach is a model-free alternative
|
% DESCRIPTION: The kernel estimator approach is a model-free alternative
|
||||||
% to estimating the magnitude distribution functions. It is assumed that
|
% to estimating the magnitude distribution functions. It is assumed that
|
||||||
@ -55,11 +54,16 @@
|
|||||||
% This program is distributed in the hope that it will be useful,
|
% This program is distributed in the hope that it will be useful,
|
||||||
% but WITHOUT ANY WARRANTY; without even the implied warranty of
|
% but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
% GNU General Public License for more details, <http://www.gnu.org/licenses/>.
|
% GNU General Public License for more details.
|
||||||
%
|
%
|
||||||
|
|
||||||
function [m,T]=Ret_periodNPT(Md,Mu,dM,Mmin,lamb,eps,h,xx,ambd,Mmax)
|
function [m,T]=Ret_periodNPT(Md,Mu,dM,Mmin,lamb,eps,h,xx,ambd,Mmax)
|
||||||
|
|
||||||
|
% -------------- VALIDATION RULES ------------- K_21NOV2016
|
||||||
|
if dM<=0;error('Magnitude Step must be greater than 0');end
|
||||||
|
%----------------------------------------------------------
|
||||||
|
|
||||||
|
|
||||||
if Md<Mmin; Md=Mmin;end
|
if Md<Mmin; Md=Mmin;end
|
||||||
if Mu>Mmax; Mu=Mmax;end
|
if Mu>Mmax; Mu=Mmax;end
|
||||||
m=(Md:dM:Mu)';
|
m=(Md:dM:Mu)';
|
||||||
|
@ -4,8 +4,7 @@
|
|||||||
% THE MEAN RETURN PERIOD VALUES FOR THE UNBOUNDED
|
% THE MEAN RETURN PERIOD VALUES FOR THE UNBOUNDED
|
||||||
% NONPARAMETRIC DISTRIBUTION FOR MAGNITUDE.
|
% NONPARAMETRIC DISTRIBUTION FOR MAGNITUDE.
|
||||||
%
|
%
|
||||||
% AUTHOR: Stanislaw. Lasocki, Institute of Geophysics Polish Academy of
|
% AUTHOR: S. Lasocki 06/2014 within IS-EPOS project.
|
||||||
% Sciences, Warsaw, Poland
|
|
||||||
%
|
%
|
||||||
% DESCRIPTION: The kernel estimator approach is a model-free alternative
|
% DESCRIPTION: The kernel estimator approach is a model-free alternative
|
||||||
% to estimating the magnitude distribution functions. It is assumed that
|
% to estimating the magnitude distribution functions. It is assumed that
|
||||||
@ -53,11 +52,16 @@
|
|||||||
% This program is distributed in the hope that it will be useful,
|
% This program is distributed in the hope that it will be useful,
|
||||||
% but WITHOUT ANY WARRANTY; without even the implied warranty of
|
% but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
% GNU General Public License for more details, <http://www.gnu.org/licenses/>.
|
% GNU General Public License for more details.
|
||||||
%
|
%
|
||||||
|
|
||||||
function [m,T]=Ret_periodNPU(Md,Mu,dM,Mmin,lamb,eps,h,xx,ambd)
|
function [m,T]=Ret_periodNPU(Md,Mu,dM,Mmin,lamb,eps,h,xx,ambd)
|
||||||
|
|
||||||
|
% -------------- VALIDATION RULES ------------- K_21NOV2016
|
||||||
|
if dM<=0;error('Magnitude Step must be greater than 0');end
|
||||||
|
%----------------------------------------------------------
|
||||||
|
|
||||||
|
|
||||||
if Md<Mmin; Md=Mmin;end
|
if Md<Mmin; Md=Mmin;end
|
||||||
m=(Md:dM:Mu)';
|
m=(Md:dM:Mu)';
|
||||||
n=length(m);
|
n=length(m);
|
||||||
|
@ -3,8 +3,7 @@
|
|||||||
% EVALUATES THE DENSITY AND CUMULATIVE DISTRIBUTION FUNCTIONS OF MAGNITUDE
|
% EVALUATES THE DENSITY AND CUMULATIVE DISTRIBUTION FUNCTIONS OF MAGNITUDE
|
||||||
% UNDER THE UPPER-BOUNDED G-R LED MAGNITUDE DISTRIBUTION MODEL.
|
% UNDER THE UPPER-BOUNDED G-R LED MAGNITUDE DISTRIBUTION MODEL.
|
||||||
%
|
%
|
||||||
% AUTHOR: Stanislaw. Lasocki, Institute of Geophysics Polish Academy of
|
% AUTHOR: S. Lasocki 06/2014 within IS-EPOS project.
|
||||||
% Sciences, Warsaw, Poland
|
|
||||||
%
|
%
|
||||||
% DESCRIPTION: The assumption on the upper-bounded Gutenberg-Richter
|
% DESCRIPTION: The assumption on the upper-bounded Gutenberg-Richter
|
||||||
% relation leads to the upper truncated exponential distribution to model
|
% relation leads to the upper truncated exponential distribution to model
|
||||||
@ -42,11 +41,16 @@
|
|||||||
% This program is distributed in the hope that it will be useful,
|
% This program is distributed in the hope that it will be useful,
|
||||||
% but WITHOUT ANY WARRANTY; without even the implied warranty of
|
% but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
% GNU General Public License for more details, <http://www.gnu.org/licenses/>.
|
% GNU General Public License for more details.
|
||||||
%
|
%
|
||||||
|
|
||||||
|
|
||||||
function [m, PDF_GRT, CDF_GRT]=dist_GRT(Md,Mu,dM,Mmin,eps,b,Mmax)
|
function [m, PDF_GRT, CDF_GRT]=dist_GRT(Md,Mu,dM,Mmin,eps,b,Mmax)
|
||||||
|
|
||||||
|
% -------------- VALIDATION RULES ------------- K_21NOV2016
|
||||||
|
if dM<=0;error('Magnitude Step must be greater than 0');end
|
||||||
|
%----------------------------------------------------------
|
||||||
|
|
||||||
m=(Md:dM:Mu)';
|
m=(Md:dM:Mu)';
|
||||||
beta=b*log(10);
|
beta=b*log(10);
|
||||||
mian=(1-exp(-beta*(Mmax-Mmin+eps/2)));
|
mian=(1-exp(-beta*(Mmax-Mmin+eps/2)));
|
||||||
|
@ -3,8 +3,7 @@
|
|||||||
% EVALUATES THE DENSITY AND CUMULATIVE DISTRIBUTION FUNCTIONS OF MAGNITUDE
|
% EVALUATES THE DENSITY AND CUMULATIVE DISTRIBUTION FUNCTIONS OF MAGNITUDE
|
||||||
% UNDER THE UNLIMITED G-R LED MAGNITUDE DISTRIBUTION MODEL.
|
% UNDER THE UNLIMITED G-R LED MAGNITUDE DISTRIBUTION MODEL.
|
||||||
%
|
%
|
||||||
% AUTHOR: Stanislaw. Lasocki, Institute of Geophysics Polish Academy of
|
% AUTHOR: S. Lasocki 06/2014 within IS-EPOS project.
|
||||||
% Sciences, Warsaw, Poland
|
|
||||||
%
|
%
|
||||||
% DESCRIPTION: The assumption on the unlimited Gutenberg-Richter relation
|
% DESCRIPTION: The assumption on the unlimited Gutenberg-Richter relation
|
||||||
% leads to the exponential distribution model of magnitude distribution
|
% leads to the exponential distribution model of magnitude distribution
|
||||||
@ -41,10 +40,15 @@
|
|||||||
% This program is distributed in the hope that it will be useful,
|
% This program is distributed in the hope that it will be useful,
|
||||||
% but WITHOUT ANY WARRANTY; without even the implied warranty of
|
% but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
% GNU General Public License for more details, <http://www.gnu.org/licenses/>.
|
% GNU General Public License for more details.
|
||||||
%
|
%
|
||||||
|
|
||||||
function [m, PDF_GRU, CDF_GRU]=dist_GRU(Md,Mu,dM,Mmin,eps,b)
|
function [m, PDF_GRU, CDF_GRU]=dist_GRU(Md,Mu,dM,Mmin,eps,b)
|
||||||
|
|
||||||
|
% -------------- VALIDATION RULES ------------- K_21NOV2016
|
||||||
|
if dM<=0;error('Magnitude Step must be greater than 0');end
|
||||||
|
%----------------------------------------------------------
|
||||||
|
|
||||||
m=(Md:dM:Mu)';
|
m=(Md:dM:Mu)';
|
||||||
beta=b*log(10);
|
beta=b*log(10);
|
||||||
PDF_GRU=beta*exp(-beta*(m-Mmin+eps/2));
|
PDF_GRU=beta*exp(-beta*(m-Mmin+eps/2));
|
||||||
|
@ -4,8 +4,8 @@
|
|||||||
% AND CUMULATIVE DISTRIBUTION FUNCTIONS FOR THE UPPER-BOUNDED MAGNITUDE
|
% AND CUMULATIVE DISTRIBUTION FUNCTIONS FOR THE UPPER-BOUNDED MAGNITUDE
|
||||||
% DISTRIBUTION.
|
% DISTRIBUTION.
|
||||||
%
|
%
|
||||||
% AUTHOR: Stanislaw. Lasocki, Institute of Geophysics Polish Academy of
|
%
|
||||||
% Sciences, Warsaw, Poland
|
% AUTHOR: S. Lasocki 06/2014 within IS-EPOS project.
|
||||||
%
|
%
|
||||||
% DESCRIPTION: The kernel estimator approach is a model-free alternative
|
% DESCRIPTION: The kernel estimator approach is a model-free alternative
|
||||||
% to estimating the magnitude distribution functions. It is assumed that
|
% to estimating the magnitude distribution functions. It is assumed that
|
||||||
@ -51,11 +51,16 @@
|
|||||||
% This program is distributed in the hope that it will be useful,
|
% This program is distributed in the hope that it will be useful,
|
||||||
% but WITHOUT ANY WARRANTY; without even the implied warranty of
|
% but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
% GNU General Public License for more details , <http://www.gnu.org/licenses/>.
|
% GNU General Public License for more details.
|
||||||
%
|
%
|
||||||
|
|
||||||
function [m,PDF_NPT,CDF_NPT]=dist_NPT(Md,Mu,dM,Mmin,eps,h,xx,ambd,Mmax)
|
function [m,PDF_NPT,CDF_NPT]=dist_NPT(Md,Mu,dM,Mmin,eps,h,xx,ambd,Mmax)
|
||||||
|
|
||||||
|
% -------------- VALIDATION RULES ------------- K_21NOV2016
|
||||||
|
if dM<=0;error('Magnitude Step must be greater than 0');end
|
||||||
|
%----------------------------------------------------------
|
||||||
|
|
||||||
|
|
||||||
m=(Md:dM:Mu)';
|
m=(Md:dM:Mu)';
|
||||||
nn=length(m);
|
nn=length(m);
|
||||||
|
|
||||||
@ -77,7 +82,8 @@ function [gau]=dens_npr1(y,x,ambd,h,x1)
|
|||||||
|
|
||||||
%Nonparametric adaptive density for a variable from the interval [x1,inf)
|
%Nonparametric adaptive density for a variable from the interval [x1,inf)
|
||||||
|
|
||||||
% x - the sample data doubled and sorted in the ascending order.
|
% x - the sample data doubled and sorted in the ascending order. Use
|
||||||
|
% "podwajanie.m" first to accmoplish that.
|
||||||
% ambd - the local scaling factors for the adaptive estimation
|
% ambd - the local scaling factors for the adaptive estimation
|
||||||
% h - the optimal smoothing factor
|
% h - the optimal smoothing factor
|
||||||
% y - the value of random variable X for which the density is calculated
|
% y - the value of random variable X for which the density is calculated
|
||||||
|
@ -4,8 +4,7 @@
|
|||||||
% AND CUMULATIVE DISTRIBUTION FUNCTIONS FOR THE UNLIMITED MAGNITUDE
|
% AND CUMULATIVE DISTRIBUTION FUNCTIONS FOR THE UNLIMITED MAGNITUDE
|
||||||
% DISTRIBUTION.
|
% DISTRIBUTION.
|
||||||
%
|
%
|
||||||
% AUTHOR: Stanislaw. Lasocki, Institute of Geophysics Polish Academy of
|
% AUTHOR: S. Lasocki 06/2014 within IS-EPOS project.
|
||||||
% Sciences, Warsaw, Poland
|
|
||||||
%
|
%
|
||||||
% DESCRIPTION: The kernel estimator approach is a model-free alternative
|
% DESCRIPTION: The kernel estimator approach is a model-free alternative
|
||||||
% to estimating the magnitude distribution functions. It is assumed that
|
% to estimating the magnitude distribution functions. It is assumed that
|
||||||
@ -52,11 +51,16 @@
|
|||||||
% This program is distributed in the hope that it will be useful,
|
% This program is distributed in the hope that it will be useful,
|
||||||
% but WITHOUT ANY WARRANTY; without even the implied warranty of
|
% but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
% GNU General Public License for more details , <http://www.gnu.org/licenses/>.
|
% GNU General Public License for more details.
|
||||||
%
|
%
|
||||||
|
|
||||||
function [m, PDF_NPU, CDF_NPU]=dist_NPU(Md,Mu,dM,Mmin,eps,h,xx,ambd)
|
function [m, PDF_NPU, CDF_NPU]=dist_NPU(Md,Mu,dM,Mmin,eps,h,xx,ambd)
|
||||||
|
|
||||||
|
% -------------- VALIDATION RULES ------------- K_21NOV2016
|
||||||
|
if dM<=0;error('Magnitude Step must be greater than 0');end
|
||||||
|
%----------------------------------------------------------
|
||||||
|
|
||||||
|
|
||||||
m=(Md:dM:Mu)';
|
m=(Md:dM:Mu)';
|
||||||
nn=length(m);
|
nn=length(m);
|
||||||
|
|
||||||
@ -76,7 +80,8 @@ function [gau]=dens_npr1(y,x,ambd,h,x1)
|
|||||||
|
|
||||||
%Nonparametric adaptive density for a variable from the interval [x1,inf)
|
%Nonparametric adaptive density for a variable from the interval [x1,inf)
|
||||||
|
|
||||||
% x - the sample data doubled and sorted in the ascending order.
|
% x - the sample data doubled and sorted in the ascending order. Use
|
||||||
|
% "podwajanie.m" first to accmoplish that.
|
||||||
% ambd - the local scaling factors for the adaptive estimation
|
% ambd - the local scaling factors for the adaptive estimation
|
||||||
% h - the optimal smoothing factor
|
% h - the optimal smoothing factor
|
||||||
% y - the value of random variable X for which the density is calculated
|
% y - the value of random variable X for which the density is calculated
|
||||||
|
Loading…
Reference in New Issue
Block a user