updated scripts for SSH, zero M error handling
This commit is contained in:
		@@ -3,8 +3,7 @@
 | 
				
			|||||||
%EVALUATES THE EXCEEDANCE PROBABILITY VALUES USING THE UPPER-BOUNDED G-R 
 | 
					%EVALUATES THE EXCEEDANCE PROBABILITY VALUES USING THE UPPER-BOUNDED G-R 
 | 
				
			||||||
%   LED MAGNITUDE DISTRIBUTION MODEL.
 | 
					%   LED MAGNITUDE DISTRIBUTION MODEL.
 | 
				
			||||||
%
 | 
					%
 | 
				
			||||||
% AUTHOR: Stanislaw. Lasocki, Institute of Geophysics Polish Academy of
 | 
					% AUTHOR: S. Lasocki 06/2014 within IS-EPOS project.
 | 
				
			||||||
% Sciences, Warsaw, Poland
 | 
					 | 
				
			||||||
%
 | 
					%
 | 
				
			||||||
% DESCRIPTION: The assumption on the upper-bounded Gutenberg-Richter 
 | 
					% DESCRIPTION: The assumption on the upper-bounded Gutenberg-Richter 
 | 
				
			||||||
% relation leads to the upper truncated exponential distribution to model 
 | 
					% relation leads to the upper truncated exponential distribution to model 
 | 
				
			||||||
@@ -57,11 +56,17 @@
 | 
				
			|||||||
%     This program is distributed in the hope that it will be useful,
 | 
					%     This program is distributed in the hope that it will be useful,
 | 
				
			||||||
%     but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
					%     but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
				
			||||||
%     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
					%     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
				
			||||||
%     GNU General Public License for more details, <http://www.gnu.org/licenses/>.
 | 
					%     GNU General Public License for more details.
 | 
				
			||||||
% 
 | 
					% 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
function [x,z]=ExcProbGRT(opt,xd,xu,dx,y,Mmin,lamb,eps,b,Mmax)
 | 
					function [x,z]=ExcProbGRT(opt,xd,xu,dx,y,Mmin,lamb,eps,b,Mmax)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					% -------------- VALIDATION RULES -------------  K_21NOV2016
 | 
				
			||||||
 | 
					 if dx<=0;error('Step must be greater than 0');end
 | 
				
			||||||
 | 
					%----------------------------------------------------------
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
beta=b*log(10);
 | 
					beta=b*log(10);
 | 
				
			||||||
if opt==0
 | 
					if opt==0
 | 
				
			||||||
    if xd<Mmin; xd=Mmin;end
 | 
					    if xd<Mmin; xd=Mmin;end
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -3,8 +3,7 @@
 | 
				
			|||||||
%EVALUATES THE EXCEEDANCE PROBABILITY VALUES USING THE UNLIMITED G-R 
 | 
					%EVALUATES THE EXCEEDANCE PROBABILITY VALUES USING THE UNLIMITED G-R 
 | 
				
			||||||
%   LED MAGNITUDE DISTRIBUTION MODEL.
 | 
					%   LED MAGNITUDE DISTRIBUTION MODEL.
 | 
				
			||||||
%
 | 
					%
 | 
				
			||||||
% AUTHOR: Stanislaw. Lasocki, Institute of Geophysics Polish Academy of
 | 
					% AUTHOR: S. Lasocki 06/2014 within IS-EPOS project.
 | 
				
			||||||
% Sciences, Warsaw, Poland
 | 
					 | 
				
			||||||
%
 | 
					%
 | 
				
			||||||
% DESCRIPTION: The assumption on the unlimited Gutenberg-Richter relation 
 | 
					% DESCRIPTION: The assumption on the unlimited Gutenberg-Richter relation 
 | 
				
			||||||
% leads to the exponential distribution model of magnitude distribution 
 | 
					% leads to the exponential distribution model of magnitude distribution 
 | 
				
			||||||
@@ -54,11 +53,16 @@
 | 
				
			|||||||
%     This program is distributed in the hope that it will be useful,
 | 
					%     This program is distributed in the hope that it will be useful,
 | 
				
			||||||
%     but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
					%     but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
				
			||||||
%     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
					%     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
				
			||||||
%     GNU General Public License for more details, <http://www.gnu.org/licenses/>.
 | 
					%     GNU General Public License for more details.
 | 
				
			||||||
% 
 | 
					% 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
function [x,z]=ExcProbGRU(opt,xd,xu,dx,y,Mmin,lamb,eps,b)
 | 
					function [x,z]=ExcProbGRU(opt,xd,xu,dx,y,Mmin,lamb,eps,b)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					% -------------- VALIDATION RULES -------------  K_21NOV2016
 | 
				
			||||||
 | 
					 if dx<=0;error('Step must be greater than 0');end
 | 
				
			||||||
 | 
					%----------------------------------------------------------
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
beta=b*log(10);
 | 
					beta=b*log(10);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
if opt==0
 | 
					if opt==0
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -5,8 +5,7 @@
 | 
				
			|||||||
%   DISTRIBUTION FOR MAGNITUDE. 
 | 
					%   DISTRIBUTION FOR MAGNITUDE. 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
%
 | 
					%
 | 
				
			||||||
% AUTHOR: Stanislaw. Lasocki, Institute of Geophysics Polish Academy of
 | 
					% AUTHOR: S. Lasocki 06/2014 within IS-EPOS project.
 | 
				
			||||||
% Sciences, Warsaw, Poland
 | 
					 | 
				
			||||||
%
 | 
					%
 | 
				
			||||||
% DESCRIPTION: The kernel estimator approach is a model-free alternative 
 | 
					% DESCRIPTION: The kernel estimator approach is a model-free alternative 
 | 
				
			||||||
% to estimating the magnitude distribution functions. It is assumed that 
 | 
					% to estimating the magnitude distribution functions. It is assumed that 
 | 
				
			||||||
@@ -66,12 +65,17 @@
 | 
				
			|||||||
%     This program is distributed in the hope that it will be useful,
 | 
					%     This program is distributed in the hope that it will be useful,
 | 
				
			||||||
%     but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
					%     but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
				
			||||||
%     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
					%     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
				
			||||||
%     GNU General Public License for more details, <http://www.gnu.org/licenses/>.
 | 
					%     GNU General Public License for more details.
 | 
				
			||||||
% 
 | 
					% 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
function [x,z]=...
 | 
					function [x,z]=...
 | 
				
			||||||
    ExcProbNPT(opt,xd,xu,dx,y,Mmin,lamb,eps,h,xx,ambd,Mmax)
 | 
					    ExcProbNPT(opt,xd,xu,dx,y,Mmin,lamb,eps,h,xx,ambd,Mmax)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					% -------------- VALIDATION RULES -------------  K_21NOV2016
 | 
				
			||||||
 | 
					 if dx<=0;error('Step must be greater than 0');end
 | 
				
			||||||
 | 
					%----------------------------------------------------------
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
if opt==0
 | 
					if opt==0
 | 
				
			||||||
    if xd<Mmin; xd=Mmin;end
 | 
					    if xd<Mmin; xd=Mmin;end
 | 
				
			||||||
    if xu>Mmax; xu=Mmax;end
 | 
					    if xu>Mmax; xu=Mmax;end
 | 
				
			||||||
@@ -90,7 +94,7 @@ else
 | 
				
			|||||||
    CDF_NPT=2*(Dystr_npr(y,xx,ambd,h)...
 | 
					    CDF_NPT=2*(Dystr_npr(y,xx,ambd,h)...
 | 
				
			||||||
        -Dystr_npr(Mmin-eps/2,xx,ambd,h))./mian;
 | 
					        -Dystr_npr(Mmin-eps/2,xx,ambd,h))./mian;
 | 
				
			||||||
    z=1-exp(-lamb*(1-CDF_NPT).*x);
 | 
					    z=1-exp(-lamb*(1-CDF_NPT).*x);
 | 
				
			||||||
        if y>Mmax;z=zeros(size(x));end 
 | 
					        if y>Mmax;z=zeros(size(x));end %K15DEC2015
 | 
				
			||||||
end
 | 
					end
 | 
				
			||||||
end
 | 
					end
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -4,8 +4,7 @@
 | 
				
			|||||||
%   EXCEEDANCE PROBABILITY VALUES FOR THE UNBOUNDED NONPARAMETRIC 
 | 
					%   EXCEEDANCE PROBABILITY VALUES FOR THE UNBOUNDED NONPARAMETRIC 
 | 
				
			||||||
%   DISTRIBUTION FOR MAGNITUDE. 
 | 
					%   DISTRIBUTION FOR MAGNITUDE. 
 | 
				
			||||||
%
 | 
					%
 | 
				
			||||||
% AUTHOR: Stanislaw. Lasocki, Institute of Geophysics Polish Academy of
 | 
					% AUTHOR: S. Lasocki 06/2014 within IS-EPOS project.
 | 
				
			||||||
% Sciences, Warsaw, Poland
 | 
					 | 
				
			||||||
%
 | 
					%
 | 
				
			||||||
% DESCRIPTION: The kernel estimator approach is a model-free alternative 
 | 
					% DESCRIPTION: The kernel estimator approach is a model-free alternative 
 | 
				
			||||||
% to estimating the magnitude distribution functions. It is assumed that 
 | 
					% to estimating the magnitude distribution functions. It is assumed that 
 | 
				
			||||||
@@ -64,11 +63,16 @@
 | 
				
			|||||||
%     This program is distributed in the hope that it will be useful,
 | 
					%     This program is distributed in the hope that it will be useful,
 | 
				
			||||||
%     but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
					%     but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
				
			||||||
%     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
					%     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
				
			||||||
%     GNU General Public License for more details, <http://www.gnu.org/licenses/>.
 | 
					%     GNU General Public License for more details.
 | 
				
			||||||
% 
 | 
					% 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
function [x,z]=ExcProbNPU(opt,xd,xu,dx,y,Mmin,lamb,eps,h,xx,ambd)
 | 
					function [x,z]=ExcProbNPU(opt,xd,xu,dx,y,Mmin,lamb,eps,h,xx,ambd)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					% -------------- VALIDATION RULES -------------  K_21NOV2016
 | 
				
			||||||
 | 
					 if dx<=0;error('Step must be greater than 0');end
 | 
				
			||||||
 | 
					%----------------------------------------------------------
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
x=(xd:dx:xu)';
 | 
					x=(xd:dx:xu)';
 | 
				
			||||||
n=length(x);
 | 
					n=length(x);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -3,8 +3,7 @@
 | 
				
			|||||||
%EVALUATES THE MAXIMUM CREDIBLE MAGNITUDE VALUES USING THE UPPER-BOUNDED 
 | 
					%EVALUATES THE MAXIMUM CREDIBLE MAGNITUDE VALUES USING THE UPPER-BOUNDED 
 | 
				
			||||||
%   G-R LED MAGNITUDE DISTRIBUTION MODEL. 
 | 
					%   G-R LED MAGNITUDE DISTRIBUTION MODEL. 
 | 
				
			||||||
%
 | 
					%
 | 
				
			||||||
% AUTHOR: Stanislaw. Lasocki, Institute of Geophysics Polish Academy of
 | 
					% AUTHOR: S. Lasocki 06/2014 within IS-EPOS project.
 | 
				
			||||||
% Sciences, Warsaw, Poland
 | 
					 | 
				
			||||||
%
 | 
					%
 | 
				
			||||||
% DESCRIPTION: The assumption on the upper-bounded Gutenberg-Richter 
 | 
					% DESCRIPTION: The assumption on the upper-bounded Gutenberg-Richter 
 | 
				
			||||||
% relation leads to the upper truncated exponential distribution to model 
 | 
					% relation leads to the upper truncated exponential distribution to model 
 | 
				
			||||||
@@ -43,10 +42,15 @@
 | 
				
			|||||||
%     This program is distributed in the hope that it will be useful,
 | 
					%     This program is distributed in the hope that it will be useful,
 | 
				
			||||||
%     but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
					%     but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
				
			||||||
%     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
					%     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
				
			||||||
%     GNU General Public License for more details, <http://www.gnu.org/licenses/>.
 | 
					%     GNU General Public License for more details.
 | 
				
			||||||
% 
 | 
					% 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
function [T,m]=Max_credM_GRT(Td,Tu,dT,Mmin,lamb,eps,b,Mmax)
 | 
					function [T,m]=Max_credM_GRT(Td,Tu,dT,Mmin,lamb,eps,b,Mmax)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					% -------------- VALIDATION RULES -------------  K_21NOV2016
 | 
				
			||||||
 | 
					 if dT<=0;error('Time Step must be greater than 0');end
 | 
				
			||||||
 | 
					%----------------------------------------------------------
 | 
				
			||||||
 | 
					
 | 
				
			||||||
T=(Td:dT:Tu)';
 | 
					T=(Td:dT:Tu)';
 | 
				
			||||||
beta=b*log(10);
 | 
					beta=b*log(10);
 | 
				
			||||||
mian=(1-exp(-beta*(Mmax-Mmin+eps/2)));
 | 
					mian=(1-exp(-beta*(Mmax-Mmin+eps/2)));
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -3,8 +3,7 @@
 | 
				
			|||||||
%EVALUATES THE MAXIMUM CREDIBLE MAGNITUDE VALUES USING THE UNLIMITED 
 | 
					%EVALUATES THE MAXIMUM CREDIBLE MAGNITUDE VALUES USING THE UNLIMITED 
 | 
				
			||||||
%   G-R LED MAGNITUDE DISTRIBUTION MODEL. 
 | 
					%   G-R LED MAGNITUDE DISTRIBUTION MODEL. 
 | 
				
			||||||
%
 | 
					%
 | 
				
			||||||
% AUTHOR: Stanislaw. Lasocki, Institute of Geophysics Polish Academy of
 | 
					% AUTHOR: S. Lasocki 06/2014 within IS-EPOS project.
 | 
				
			||||||
% Sciences, Warsaw, Poland
 | 
					 | 
				
			||||||
%
 | 
					%
 | 
				
			||||||
% DESCRIPTION: The assumption on the unlimited Gutenberg-Richter relation 
 | 
					% DESCRIPTION: The assumption on the unlimited Gutenberg-Richter relation 
 | 
				
			||||||
% leads to the exponential distribution model of magnitude distribution 
 | 
					% leads to the exponential distribution model of magnitude distribution 
 | 
				
			||||||
@@ -44,11 +43,16 @@
 | 
				
			|||||||
%     This program is distributed in the hope that it will be useful,
 | 
					%     This program is distributed in the hope that it will be useful,
 | 
				
			||||||
%     but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
					%     but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
				
			||||||
%     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
					%     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
				
			||||||
%     GNU General Public License for more details, <http://www.gnu.org/licenses/>.
 | 
					%     GNU General Public License for more details.
 | 
				
			||||||
% 
 | 
					% 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
function [T,m]=Max_credM_GRU(Td,Tu,dT,Mmin,lamb,eps,b)
 | 
					function [T,m]=Max_credM_GRU(Td,Tu,dT,Mmin,lamb,eps,b)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					% -------------- VALIDATION RULES -------------  K_21NOV2016
 | 
				
			||||||
 | 
					 if dT<=0;error('Time Step must be greater than 0');end
 | 
				
			||||||
 | 
					%----------------------------------------------------------
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
T=(Td:dT:Tu)';
 | 
					T=(Td:dT:Tu)';
 | 
				
			||||||
beta=b*log(10);
 | 
					beta=b*log(10);
 | 
				
			||||||
m=Mmin-eps/2+1/beta.*log(lamb*T);
 | 
					m=Mmin-eps/2+1/beta.*log(lamb*T);
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -4,8 +4,7 @@
 | 
				
			|||||||
%   CREDIBLE MAGNITUDE VALUES FOR THE UPPER-BOUNDED NONPARAMETRIC 
 | 
					%   CREDIBLE MAGNITUDE VALUES FOR THE UPPER-BOUNDED NONPARAMETRIC 
 | 
				
			||||||
%   DISTRIBUTION FOR MAGNITUDE. 
 | 
					%   DISTRIBUTION FOR MAGNITUDE. 
 | 
				
			||||||
%
 | 
					%
 | 
				
			||||||
% AUTHOR: Stanislaw. Lasocki, Institute of Geophysics Polish Academy of
 | 
					% AUTHOR: S. Lasocki 06/2014 within IS-EPOS project.
 | 
				
			||||||
% Sciences, Warsaw, Poland
 | 
					 | 
				
			||||||
%
 | 
					%
 | 
				
			||||||
% DESCRIPTION: The kernel estimator approach is a model-free alternative 
 | 
					% DESCRIPTION: The kernel estimator approach is a model-free alternative 
 | 
				
			||||||
% to estimating the magnitude distribution functions. It is assumed that 
 | 
					% to estimating the magnitude distribution functions. It is assumed that 
 | 
				
			||||||
@@ -56,11 +55,16 @@
 | 
				
			|||||||
%     This program is distributed in the hope that it will be useful,
 | 
					%     This program is distributed in the hope that it will be useful,
 | 
				
			||||||
%     but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
					%     but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
				
			||||||
%     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
					%     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
				
			||||||
%     GNU General Public License for more details, <http://www.gnu.org/licenses/>.
 | 
					%     GNU General Public License for more details.
 | 
				
			||||||
% 
 | 
					% 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
function [T,m]=Max_credM_NPT(Td,Tu,dT,Mmin,lamb,eps,h,xx,ambd,Mmax)
 | 
					function [T,m]=Max_credM_NPT(Td,Tu,dT,Mmin,lamb,eps,h,xx,ambd,Mmax)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					% -------------- VALIDATION RULES -------------  K_21NOV2016
 | 
				
			||||||
 | 
					 if dT<=0;error('Time Step must be greater than 0');end
 | 
				
			||||||
 | 
					%----------------------------------------------------------
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
T=(Td:dT:Tu)';
 | 
					T=(Td:dT:Tu)';
 | 
				
			||||||
n=length(T);
 | 
					n=length(T);
 | 
				
			||||||
interval=[Mmin-eps/2 Mmax-0.001];
 | 
					interval=[Mmin-eps/2 Mmax-0.001];
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -4,8 +4,7 @@
 | 
				
			|||||||
%   THE MAXIMUM CREDIBLE MAGNITUDE VALUES FOR THE UNBOUNDED 
 | 
					%   THE MAXIMUM CREDIBLE MAGNITUDE VALUES FOR THE UNBOUNDED 
 | 
				
			||||||
%   NONPARAMETRIC DISTRIBUTION FOR MAGNITUDE. 
 | 
					%   NONPARAMETRIC DISTRIBUTION FOR MAGNITUDE. 
 | 
				
			||||||
%
 | 
					%
 | 
				
			||||||
% AUTHOR: Stanislaw. Lasocki, Institute of Geophysics Polish Academy of
 | 
					% AUTHOR: S. Lasocki 06/2014 within IS-EPOS project.
 | 
				
			||||||
% Sciences, Warsaw, Poland
 | 
					 | 
				
			||||||
%
 | 
					%
 | 
				
			||||||
% DESCRIPTION: The kernel estimator approach is a model-free alternative 
 | 
					% DESCRIPTION: The kernel estimator approach is a model-free alternative 
 | 
				
			||||||
% to estimating the magnitude distribution functions. It is assumed that 
 | 
					% to estimating the magnitude distribution functions. It is assumed that 
 | 
				
			||||||
@@ -58,11 +57,16 @@
 | 
				
			|||||||
%     This program is distributed in the hope that it will be useful,
 | 
					%     This program is distributed in the hope that it will be useful,
 | 
				
			||||||
%     but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
					%     but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
				
			||||||
%     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
					%     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
				
			||||||
%     GNU General Public License for more details, <http://www.gnu.org/licenses/>.
 | 
					%     GNU General Public License for more details.
 | 
				
			||||||
% 
 | 
					% 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
function [T,m]=Max_credM_NPU(Td,Tu,dT,Mmin,lamb,eps,h,xx,ambd)
 | 
					function [T,m]=Max_credM_NPU(Td,Tu,dT,Mmin,lamb,eps,h,xx,ambd)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					% -------------- VALIDATION RULES -------------  K_21NOV2016
 | 
				
			||||||
 | 
					 if dT<=0;error('Time Step must be greater than 0');end
 | 
				
			||||||
 | 
					%----------------------------------------------------------
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
T=(Td:dT:Tu)';
 | 
					T=(Td:dT:Tu)';
 | 
				
			||||||
n=length(T);
 | 
					n=length(T);
 | 
				
			||||||
interval=[Mmin-eps/2 10.0];
 | 
					interval=[Mmin-eps/2 10.0];
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -3,8 +3,7 @@
 | 
				
			|||||||
% EVALUATES THE MEAN RETURN PERIOD VALUES USING THE UPPER-BOUNDED G-R LED 
 | 
					% EVALUATES THE MEAN RETURN PERIOD VALUES USING THE UPPER-BOUNDED G-R LED 
 | 
				
			||||||
%   MAGNITUDE DISTRIBUTION MODEL.
 | 
					%   MAGNITUDE DISTRIBUTION MODEL.
 | 
				
			||||||
%
 | 
					%
 | 
				
			||||||
% AUTHOR: Stanislaw. Lasocki, Institute of Geophysics Polish Academy of
 | 
					% AUTHOR: S. Lasocki 06/2014 within IS-EPOS project.
 | 
				
			||||||
% Sciences, Warsaw, Poland
 | 
					 | 
				
			||||||
%
 | 
					%
 | 
				
			||||||
% DESCRIPTION: The assumption on the upper-bounded Gutenberg-Richter 
 | 
					% DESCRIPTION: The assumption on the upper-bounded Gutenberg-Richter 
 | 
				
			||||||
% relation leads to the upper truncated exponential distribution to model 
 | 
					% relation leads to the upper truncated exponential distribution to model 
 | 
				
			||||||
@@ -47,11 +46,16 @@
 | 
				
			|||||||
%     This program is distributed in the hope that it will be useful,
 | 
					%     This program is distributed in the hope that it will be useful,
 | 
				
			||||||
%     but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
					%     but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
				
			||||||
%     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
					%     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
				
			||||||
%     GNU General Public License for more details, <http://www.gnu.org/licenses/>.
 | 
					%     GNU General Public License for more details.
 | 
				
			||||||
% 
 | 
					% 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
function [m,T]=Ret_periodGRT(Md,Mu,dM,Mmin,lamb,eps,b,Mmax)
 | 
					function [m,T]=Ret_periodGRT(Md,Mu,dM,Mmin,lamb,eps,b,Mmax)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					% -------------- VALIDATION RULES -------------  K_21NOV2016
 | 
				
			||||||
 | 
					 if dM<=0;error('Magnitude Step must be greater than 0');end
 | 
				
			||||||
 | 
					%----------------------------------------------------------
 | 
				
			||||||
 | 
					
 | 
				
			||||||
if Md<Mmin; Md=Mmin;end
 | 
					if Md<Mmin; Md=Mmin;end
 | 
				
			||||||
if Mu>Mmax; Mu=Mmax;end
 | 
					if Mu>Mmax; Mu=Mmax;end
 | 
				
			||||||
m=(Md:dM:Mu)';
 | 
					m=(Md:dM:Mu)';
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -3,8 +3,7 @@
 | 
				
			|||||||
% EVALUATES THE MEAN RETURN PERIOD VALUES USING THE UNLIMITED G-R LED 
 | 
					% EVALUATES THE MEAN RETURN PERIOD VALUES USING THE UNLIMITED G-R LED 
 | 
				
			||||||
%   MAGNITUDE DISTRIBUTION MODEL.
 | 
					%   MAGNITUDE DISTRIBUTION MODEL.
 | 
				
			||||||
%
 | 
					%
 | 
				
			||||||
% AUTHOR: Stanislaw. Lasocki, Institute of Geophysics Polish Academy of
 | 
					% AUTHOR: S. Lasocki 06/2014 within IS-EPOS project.
 | 
				
			||||||
% Sciences, Warsaw, Poland
 | 
					 | 
				
			||||||
%
 | 
					%
 | 
				
			||||||
% DESCRIPTION: The assumption on the unlimited Gutenberg-Richter relation 
 | 
					% DESCRIPTION: The assumption on the unlimited Gutenberg-Richter relation 
 | 
				
			||||||
% leads to the exponential distribution model of magnitude distribution 
 | 
					% leads to the exponential distribution model of magnitude distribution 
 | 
				
			||||||
@@ -42,10 +41,15 @@
 | 
				
			|||||||
%     This program is distributed in the hope that it will be useful,
 | 
					%     This program is distributed in the hope that it will be useful,
 | 
				
			||||||
%     but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
					%     but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
				
			||||||
%     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
					%     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
				
			||||||
%     GNU General Public License for more details, <http://www.gnu.org/licenses/>.
 | 
					%     GNU General Public License for more details.
 | 
				
			||||||
% 
 | 
					% 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
function [m,T]=Ret_periodGRU(Md,Mu,dM,Mmin,lamb,eps,b)
 | 
					function [m,T]=Ret_periodGRU(Md,Mu,dM,Mmin,lamb,eps,b)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					% -------------- VALIDATION RULES -------------  K_21NOV2016
 | 
				
			||||||
 | 
					 if dM<=0;error('Magnitude Step must be greater than 0');end
 | 
				
			||||||
 | 
					%----------------------------------------------------------
 | 
				
			||||||
 | 
					
 | 
				
			||||||
if Md<Mmin; Md=Mmin;end
 | 
					if Md<Mmin; Md=Mmin;end
 | 
				
			||||||
m=(Md:dM:Mu)';
 | 
					m=(Md:dM:Mu)';
 | 
				
			||||||
beta=b*log(10);
 | 
					beta=b*log(10);
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -5,8 +5,7 @@
 | 
				
			|||||||
%   RETURN PERIOD VALUES FOR THE UPPER-BOUNDED NONPARAMETRIC 
 | 
					%   RETURN PERIOD VALUES FOR THE UPPER-BOUNDED NONPARAMETRIC 
 | 
				
			||||||
%   DISTRIBUTION FOR MAGNITUDE. 
 | 
					%   DISTRIBUTION FOR MAGNITUDE. 
 | 
				
			||||||
%
 | 
					%
 | 
				
			||||||
% AUTHOR: Stanislaw. Lasocki, Institute of Geophysics Polish Academy of
 | 
					% AUTHOR: S. Lasocki 06/2014 within IS-EPOS project.
 | 
				
			||||||
% Sciences, Warsaw, Poland
 | 
					 | 
				
			||||||
%
 | 
					%
 | 
				
			||||||
% DESCRIPTION: The kernel estimator approach is a model-free alternative 
 | 
					% DESCRIPTION: The kernel estimator approach is a model-free alternative 
 | 
				
			||||||
% to estimating the magnitude distribution functions. It is assumed that 
 | 
					% to estimating the magnitude distribution functions. It is assumed that 
 | 
				
			||||||
@@ -55,11 +54,16 @@
 | 
				
			|||||||
%     This program is distributed in the hope that it will be useful,
 | 
					%     This program is distributed in the hope that it will be useful,
 | 
				
			||||||
%     but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
					%     but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
				
			||||||
%     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
					%     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
				
			||||||
%     GNU General Public License for more details, <http://www.gnu.org/licenses/>.
 | 
					%     GNU General Public License for more details.
 | 
				
			||||||
% 
 | 
					% 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
function [m,T]=Ret_periodNPT(Md,Mu,dM,Mmin,lamb,eps,h,xx,ambd,Mmax)
 | 
					function [m,T]=Ret_periodNPT(Md,Mu,dM,Mmin,lamb,eps,h,xx,ambd,Mmax)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					% -------------- VALIDATION RULES -------------  K_21NOV2016
 | 
				
			||||||
 | 
					 if dM<=0;error('Magnitude Step must be greater than 0');end
 | 
				
			||||||
 | 
					%----------------------------------------------------------
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
if Md<Mmin; Md=Mmin;end
 | 
					if Md<Mmin; Md=Mmin;end
 | 
				
			||||||
if Mu>Mmax; Mu=Mmax;end
 | 
					if Mu>Mmax; Mu=Mmax;end
 | 
				
			||||||
m=(Md:dM:Mu)';
 | 
					m=(Md:dM:Mu)';
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -4,8 +4,7 @@
 | 
				
			|||||||
%   THE MEAN RETURN PERIOD VALUES FOR THE UNBOUNDED 
 | 
					%   THE MEAN RETURN PERIOD VALUES FOR THE UNBOUNDED 
 | 
				
			||||||
%   NONPARAMETRIC DISTRIBUTION FOR MAGNITUDE. 
 | 
					%   NONPARAMETRIC DISTRIBUTION FOR MAGNITUDE. 
 | 
				
			||||||
%
 | 
					%
 | 
				
			||||||
% AUTHOR: Stanislaw. Lasocki, Institute of Geophysics Polish Academy of
 | 
					% AUTHOR: S. Lasocki 06/2014 within IS-EPOS project.
 | 
				
			||||||
% Sciences, Warsaw, Poland
 | 
					 | 
				
			||||||
%
 | 
					%
 | 
				
			||||||
% DESCRIPTION: The kernel estimator approach is a model-free alternative 
 | 
					% DESCRIPTION: The kernel estimator approach is a model-free alternative 
 | 
				
			||||||
% to estimating the magnitude distribution functions. It is assumed that 
 | 
					% to estimating the magnitude distribution functions. It is assumed that 
 | 
				
			||||||
@@ -53,11 +52,16 @@
 | 
				
			|||||||
%     This program is distributed in the hope that it will be useful,
 | 
					%     This program is distributed in the hope that it will be useful,
 | 
				
			||||||
%     but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
					%     but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
				
			||||||
%     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
					%     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
				
			||||||
%     GNU General Public License for more details, <http://www.gnu.org/licenses/>.
 | 
					%     GNU General Public License for more details.
 | 
				
			||||||
% 
 | 
					% 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
function [m,T]=Ret_periodNPU(Md,Mu,dM,Mmin,lamb,eps,h,xx,ambd)
 | 
					function [m,T]=Ret_periodNPU(Md,Mu,dM,Mmin,lamb,eps,h,xx,ambd)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					% -------------- VALIDATION RULES -------------  K_21NOV2016
 | 
				
			||||||
 | 
					 if dM<=0;error('Magnitude Step must be greater than 0');end
 | 
				
			||||||
 | 
					%----------------------------------------------------------
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
if Md<Mmin; Md=Mmin;end
 | 
					if Md<Mmin; Md=Mmin;end
 | 
				
			||||||
m=(Md:dM:Mu)';
 | 
					m=(Md:dM:Mu)';
 | 
				
			||||||
n=length(m);
 | 
					n=length(m);
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -3,8 +3,7 @@
 | 
				
			|||||||
% EVALUATES THE DENSITY AND CUMULATIVE DISTRIBUTION FUNCTIONS OF MAGNITUDE
 | 
					% EVALUATES THE DENSITY AND CUMULATIVE DISTRIBUTION FUNCTIONS OF MAGNITUDE
 | 
				
			||||||
%   UNDER THE UPPER-BOUNDED G-R LED MAGNITUDE DISTRIBUTION MODEL. 
 | 
					%   UNDER THE UPPER-BOUNDED G-R LED MAGNITUDE DISTRIBUTION MODEL. 
 | 
				
			||||||
%
 | 
					%
 | 
				
			||||||
% AUTHOR: Stanislaw. Lasocki, Institute of Geophysics Polish Academy of
 | 
					% AUTHOR: S. Lasocki 06/2014 within IS-EPOS project.
 | 
				
			||||||
% Sciences, Warsaw, Poland
 | 
					 | 
				
			||||||
%
 | 
					%
 | 
				
			||||||
% DESCRIPTION: The assumption on the upper-bounded Gutenberg-Richter 
 | 
					% DESCRIPTION: The assumption on the upper-bounded Gutenberg-Richter 
 | 
				
			||||||
% relation leads to the upper truncated exponential distribution to model 
 | 
					% relation leads to the upper truncated exponential distribution to model 
 | 
				
			||||||
@@ -42,11 +41,16 @@
 | 
				
			|||||||
%     This program is distributed in the hope that it will be useful,
 | 
					%     This program is distributed in the hope that it will be useful,
 | 
				
			||||||
%     but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
					%     but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
				
			||||||
%     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
					%     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
				
			||||||
%     GNU General Public License for more details, <http://www.gnu.org/licenses/>.
 | 
					%     GNU General Public License for more details.
 | 
				
			||||||
% 
 | 
					% 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
function [m, PDF_GRT, CDF_GRT]=dist_GRT(Md,Mu,dM,Mmin,eps,b,Mmax)
 | 
					function [m, PDF_GRT, CDF_GRT]=dist_GRT(Md,Mu,dM,Mmin,eps,b,Mmax)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					% -------------- VALIDATION RULES -------------  K_21NOV2016
 | 
				
			||||||
 | 
					 if dM<=0;error('Magnitude Step must be greater than 0');end
 | 
				
			||||||
 | 
					%----------------------------------------------------------
 | 
				
			||||||
 | 
					
 | 
				
			||||||
m=(Md:dM:Mu)';
 | 
					m=(Md:dM:Mu)';
 | 
				
			||||||
beta=b*log(10);
 | 
					beta=b*log(10);
 | 
				
			||||||
mian=(1-exp(-beta*(Mmax-Mmin+eps/2))); 
 | 
					mian=(1-exp(-beta*(Mmax-Mmin+eps/2))); 
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -3,8 +3,7 @@
 | 
				
			|||||||
% EVALUATES THE DENSITY AND CUMULATIVE DISTRIBUTION FUNCTIONS OF MAGNITUDE 
 | 
					% EVALUATES THE DENSITY AND CUMULATIVE DISTRIBUTION FUNCTIONS OF MAGNITUDE 
 | 
				
			||||||
%   UNDER THE UNLIMITED G-R LED MAGNITUDE DISTRIBUTION MODEL. 
 | 
					%   UNDER THE UNLIMITED G-R LED MAGNITUDE DISTRIBUTION MODEL. 
 | 
				
			||||||
%
 | 
					%
 | 
				
			||||||
% AUTHOR: Stanislaw. Lasocki, Institute of Geophysics Polish Academy of
 | 
					% AUTHOR: S. Lasocki 06/2014 within IS-EPOS project.
 | 
				
			||||||
% Sciences, Warsaw, Poland
 | 
					 | 
				
			||||||
%
 | 
					%
 | 
				
			||||||
% DESCRIPTION: The assumption on the unlimited Gutenberg-Richter relation 
 | 
					% DESCRIPTION: The assumption on the unlimited Gutenberg-Richter relation 
 | 
				
			||||||
% leads to the exponential distribution model of magnitude distribution 
 | 
					% leads to the exponential distribution model of magnitude distribution 
 | 
				
			||||||
@@ -41,10 +40,15 @@
 | 
				
			|||||||
%     This program is distributed in the hope that it will be useful,
 | 
					%     This program is distributed in the hope that it will be useful,
 | 
				
			||||||
%     but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
					%     but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
				
			||||||
%     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
					%     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
				
			||||||
%     GNU General Public License for more details, <http://www.gnu.org/licenses/>.
 | 
					%     GNU General Public License for more details.
 | 
				
			||||||
% 
 | 
					% 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
function [m, PDF_GRU, CDF_GRU]=dist_GRU(Md,Mu,dM,Mmin,eps,b)
 | 
					function [m, PDF_GRU, CDF_GRU]=dist_GRU(Md,Mu,dM,Mmin,eps,b)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					% -------------- VALIDATION RULES -------------  K_21NOV2016
 | 
				
			||||||
 | 
					 if dM<=0;error('Magnitude Step must be greater than 0');end
 | 
				
			||||||
 | 
					%----------------------------------------------------------
 | 
				
			||||||
 | 
					
 | 
				
			||||||
m=(Md:dM:Mu)';
 | 
					m=(Md:dM:Mu)';
 | 
				
			||||||
beta=b*log(10);
 | 
					beta=b*log(10);
 | 
				
			||||||
PDF_GRU=beta*exp(-beta*(m-Mmin+eps/2));
 | 
					PDF_GRU=beta*exp(-beta*(m-Mmin+eps/2));
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -4,8 +4,8 @@
 | 
				
			|||||||
%   AND CUMULATIVE DISTRIBUTION FUNCTIONS FOR THE UPPER-BOUNDED MAGNITUDE 
 | 
					%   AND CUMULATIVE DISTRIBUTION FUNCTIONS FOR THE UPPER-BOUNDED MAGNITUDE 
 | 
				
			||||||
%   DISTRIBUTION.
 | 
					%   DISTRIBUTION.
 | 
				
			||||||
%
 | 
					%
 | 
				
			||||||
% AUTHOR: Stanislaw. Lasocki, Institute of Geophysics Polish Academy of
 | 
					%
 | 
				
			||||||
% Sciences, Warsaw, Poland
 | 
					% AUTHOR: S. Lasocki 06/2014 within IS-EPOS project.
 | 
				
			||||||
%
 | 
					%
 | 
				
			||||||
% DESCRIPTION: The kernel estimator approach is a model-free alternative 
 | 
					% DESCRIPTION: The kernel estimator approach is a model-free alternative 
 | 
				
			||||||
% to estimating the magnitude distribution functions. It is assumed that 
 | 
					% to estimating the magnitude distribution functions. It is assumed that 
 | 
				
			||||||
@@ -51,11 +51,16 @@
 | 
				
			|||||||
%     This program is distributed in the hope that it will be useful,
 | 
					%     This program is distributed in the hope that it will be useful,
 | 
				
			||||||
%     but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
					%     but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
				
			||||||
%     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
					%     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
				
			||||||
%     GNU General Public License for more details , <http://www.gnu.org/licenses/>.
 | 
					%     GNU General Public License for more details.
 | 
				
			||||||
% 
 | 
					% 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
function [m,PDF_NPT,CDF_NPT]=dist_NPT(Md,Mu,dM,Mmin,eps,h,xx,ambd,Mmax)
 | 
					function [m,PDF_NPT,CDF_NPT]=dist_NPT(Md,Mu,dM,Mmin,eps,h,xx,ambd,Mmax)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					% -------------- VALIDATION RULES -------------  K_21NOV2016
 | 
				
			||||||
 | 
					 if dM<=0;error('Magnitude Step must be greater than 0');end
 | 
				
			||||||
 | 
					%----------------------------------------------------------
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
m=(Md:dM:Mu)';
 | 
					m=(Md:dM:Mu)';
 | 
				
			||||||
nn=length(m);
 | 
					nn=length(m);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -77,7 +82,8 @@ function [gau]=dens_npr1(y,x,ambd,h,x1)
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
%Nonparametric adaptive density for a variable from the interval [x1,inf)
 | 
					%Nonparametric adaptive density for a variable from the interval [x1,inf)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
% x - the sample data doubled and sorted in the ascending order.
 | 
					% x - the sample data doubled and sorted in the ascending order. Use 
 | 
				
			||||||
 | 
					%   "podwajanie.m" first to accmoplish that.
 | 
				
			||||||
% ambd - the local scaling factors for the adaptive estimation 
 | 
					% ambd - the local scaling factors for the adaptive estimation 
 | 
				
			||||||
% h - the optimal smoothing factor 
 | 
					% h - the optimal smoothing factor 
 | 
				
			||||||
% y - the value of random variable X for which the density is calculated
 | 
					% y - the value of random variable X for which the density is calculated
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -4,8 +4,7 @@
 | 
				
			|||||||
%   AND CUMULATIVE DISTRIBUTION FUNCTIONS FOR THE UNLIMITED MAGNITUDE 
 | 
					%   AND CUMULATIVE DISTRIBUTION FUNCTIONS FOR THE UNLIMITED MAGNITUDE 
 | 
				
			||||||
%   DISTRIBUTION.
 | 
					%   DISTRIBUTION.
 | 
				
			||||||
%
 | 
					%
 | 
				
			||||||
% AUTHOR: Stanislaw. Lasocki, Institute of Geophysics Polish Academy of
 | 
					% AUTHOR: S. Lasocki 06/2014 within IS-EPOS project.
 | 
				
			||||||
% Sciences, Warsaw, Poland
 | 
					 | 
				
			||||||
%
 | 
					%
 | 
				
			||||||
% DESCRIPTION: The kernel estimator approach is a model-free alternative 
 | 
					% DESCRIPTION: The kernel estimator approach is a model-free alternative 
 | 
				
			||||||
% to estimating the magnitude distribution functions. It is assumed that 
 | 
					% to estimating the magnitude distribution functions. It is assumed that 
 | 
				
			||||||
@@ -52,11 +51,16 @@
 | 
				
			|||||||
%     This program is distributed in the hope that it will be useful,
 | 
					%     This program is distributed in the hope that it will be useful,
 | 
				
			||||||
%     but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
					%     but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
				
			||||||
%     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
					%     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
				
			||||||
%     GNU General Public License for more details , <http://www.gnu.org/licenses/>.
 | 
					%     GNU General Public License for more details.
 | 
				
			||||||
% 
 | 
					% 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
function [m, PDF_NPU, CDF_NPU]=dist_NPU(Md,Mu,dM,Mmin,eps,h,xx,ambd)
 | 
					function [m, PDF_NPU, CDF_NPU]=dist_NPU(Md,Mu,dM,Mmin,eps,h,xx,ambd)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					% -------------- VALIDATION RULES -------------  K_21NOV2016
 | 
				
			||||||
 | 
					 if dM<=0;error('Magnitude Step must be greater than 0');end
 | 
				
			||||||
 | 
					%----------------------------------------------------------
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
m=(Md:dM:Mu)';
 | 
					m=(Md:dM:Mu)';
 | 
				
			||||||
nn=length(m);
 | 
					nn=length(m);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -76,7 +80,8 @@ function [gau]=dens_npr1(y,x,ambd,h,x1)
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
%Nonparametric adaptive density for a variable from the interval [x1,inf)
 | 
					%Nonparametric adaptive density for a variable from the interval [x1,inf)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
% x - the sample data doubled and sorted in the ascending order.
 | 
					% x - the sample data doubled and sorted in the ascending order. Use 
 | 
				
			||||||
 | 
					%   "podwajanie.m" first to accmoplish that.
 | 
				
			||||||
% ambd - the local scaling factors for the adaptive estimation 
 | 
					% ambd - the local scaling factors for the adaptive estimation 
 | 
				
			||||||
% h - the optimal smoothing factor 
 | 
					% h - the optimal smoothing factor 
 | 
				
			||||||
% y - the value of random variable X for which the density is calculated
 | 
					% y - the value of random variable X for which the density is calculated
 | 
				
			||||||
 
 | 
				
			|||||||
		Reference in New Issue
	
	Block a user