SERA Toolbox1 and Toolbox2 standalone versions
This commit is contained in:
@@ -0,0 +1,355 @@
|
||||
% FUNCTION: ADTestMag
|
||||
% VERSION: [Interactive Hybrid Standalone Version] V1.8
|
||||
% COMPATIBLE with Matlab version 2017b or later
|
||||
% TOOLBOX: "Magnitude Complexity Toolbox" within SERA Project
|
||||
% DOCUMENT: "READ_ME_App_2A_v1_Description_ADTestMag.docx"
|
||||
% -----------------------------------------------------------------------------------------------------------------------
|
||||
%% EXAMPLE TO RUN:
|
||||
% x=exprnd(log10(exp(1)),1000,1);
|
||||
% [pval mmin NN P S bval]=ADTestMag_V1_8(x,0.1,'exp',0.5,2.0,200) % for Interactivity OFF
|
||||
% [pval mmin NN P S bval ]=ADTestMag_V1_8(x); % for Interactivity ON
|
||||
%% ------------------------------------------------------------------------------------------------------------------------
|
||||
% Test for Exponential/Weibull distribution of a time-series (e.g. Magnitudes)
|
||||
% -----------------------------------------------------------------------------------------------------------------------
|
||||
% INPUT DATA:THE CURRENT VERSION USES AS INPUT A MAGNITUDE VECTOR
|
||||
% (Appropriate for standalone use - function mode)
|
||||
% -----------------------------------------------------------------------------------------------------------------------
|
||||
% OVERVIEW: THE FUNCTION performs the Anderson-Darling test for testing whether
|
||||
% a given set of observations (e.g. magnitudes), follows the exponential, or the
|
||||
% Weibull distribution
|
||||
% -----------------------------------------------------------------------------------------------------------------------
|
||||
% AUTHORS: K. Leptokaropoulos, and P. Urban
|
||||
% last updated: 03/2019, within SERA PROJECT, EU Horizon 2020 R&I
|
||||
% programme under grant agreement No.730900
|
||||
% CURRENT VERSION: v1.8 **** [INTERACTIVE HYBRID STANDALONE VERSION!!]
|
||||
% ----- THIS IS a dual-mode version: If all input arguments are set, then the
|
||||
% ----- Application operates as a function. However, if only the input vector
|
||||
% ----- is introduced, the application switch to interactive mode.
|
||||
%% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||||
% PLEASE refer to the accompanying document:
|
||||
% "READ_ME_App_2A_v1_Description_ADTestMag.docx"
|
||||
% for description of the Application and its requirements.
|
||||
%% -----------------------------------------------------------------------------------------------------------------------
|
||||
% DESCRIPTION:
|
||||
% THE FUNCTION performs the Anderson-Darling test for testing the Null Hypothesis, H0,
|
||||
% that a given dataset (e.g. magnitudes), has been drawn from the exponential or Weibull distribution
|
||||
%(e.g. Marsaglia and % Marsaglia, 2004). This is performed as a function on minimum magnitude, such that
|
||||
% multiple results are produced. The significance of the the H0 (p-value) is the main
|
||||
% output of the program. Before applying the AD test the magnitudes are randomized
|
||||
% within their round-off interval, by the formula introduced by Lasocki & Papadimitriou,
|
||||
% 2006.
|
||||
% % -----------------------------------------------------------------------------------------------------------------------
|
||||
%
|
||||
%CALLING SEQUENCE
|
||||
% [pval mmin NN P S bval ]=ADTestMag_V1_8(vector,EPS,MTdistribution,Mmin,Mmax,trials)
|
||||
%
|
||||
% INPUT PARAMETERS:
|
||||
% -- 'vector': A sample data (e.g. Magnitude) Vector. The program
|
||||
% takes as input any matlab vector. The input data can
|
||||
% be uploaded by the User from an ASCII file (e. g. the
|
||||
% file "test_vector.txt" file, located within the directory
|
||||
% "Sample_Data").Such file should contain a vector (row
|
||||
% or column) of the Data the User wishes to process. The
|
||||
% User is afterwards requested to enter parameters values:
|
||||
%
|
||||
% - EPS: Round-off interval, i.e. minimum non-zero difference of the
|
||||
% input data. It also corresponds to step for calculations (AD
|
||||
% test iterations process). Default value is calculated from the
|
||||
% given dataset. It is recommended to use 0.1 (or 0.01) for
|
||||
% magnitude vectors
|
||||
% - MTdistribution: Distribution to be tested. Possible values:
|
||||
% 'exp' for the Exponential, 'weibul' for the Weibull distribution
|
||||
% - Mmin: Corresponds to the minumum 'vector' value for which
|
||||
% the AD test is performed (cut-off value). If 'vector' consists of magnitudes
|
||||
% it is recommended (yet, not restricted) to set Mmin equal to the
|
||||
% catalog completeness threshold, Mc (if known).
|
||||
% - Mmax: The test is carried out succesively for 'vector' values >= [Mmin, Mmin+EPS, Mmin+2EPS,..,Mmax]
|
||||
% The default MMax is the 'vector' value for which the number of
|
||||
% 'vector' values >=Mmax is greater than 4 (minimum possible
|
||||
% sample for AD test function execution)
|
||||
% - trials: Number of randomization realizations (trials) perfomed in
|
||||
% order to diminish the influence of randomization on the
|
||||
% resulting p-value. Default is 100.
|
||||
|
||||
% The User may also use the calling sequence [pval mmin NN P S bval ]=ADTestMag_V1_8(vector)
|
||||
% In such a case they are requested interactivelly to provide the rest of input
|
||||
% parameters.
|
||||
% -----------------------------------------------------------------------------------------------------------------------
|
||||
% OUTPUT:
|
||||
%
|
||||
% - Output Parameters:
|
||||
% * pval - Structure with 3 fields:
|
||||
% p - vector of test p-values obtained in successive trials,
|
||||
% mmin - Minimum value of 'vector' used in the test,
|
||||
% P - the average of p-values
|
||||
% [NOTE: histograms of such p-values indicate that
|
||||
% their distribution is not normal, neither even symmetric
|
||||
% for a large number of cases]
|
||||
%
|
||||
% * P - vector of the average of the p-values obtained when testing for
|
||||
% the consecutive mmin values
|
||||
% * S - vector of the standard deviation of the
|
||||
% p-values obtained when testing for the consecutive mmin values
|
||||
% * mmin - vector with minimum values of 'vector' used in the consecutive tests
|
||||
% * NN - vector with the number of 'vector' values >= each mmin value.
|
||||
% * bval - the Gutenberg-Richter b-value for 'vector' values >= each mmin value.
|
||||
% This parameter has a meaning only when 'vector' consists of magnitudes.
|
||||
%
|
||||
% - Output:
|
||||
% RES - a five column matrix. Col 1 - mmin values,
|
||||
% Col 2 - NN values, Col 3 - b values, Col 4 - P
|
||||
% values, Col 5 - S values
|
||||
% mmin, NN, P, S as defined above
|
||||
%
|
||||
% - Output Figures:
|
||||
% Figure with the average p-value (P parameter) as a function of
|
||||
% mmin, together with histogram of events count in bin=EPS.
|
||||
% The 0.05 significance level is plotted as well
|
||||
% -----------------------------------------------------------------------------------------------------------------------
|
||||
% REFERENCES:
|
||||
% -- Lasocki S. and E. E, Papadimitriou (2006), "Magnitude distribution
|
||||
% complexity revealed in seismicity from Greece", J. Geophys. Res.,
|
||||
% 111, B11309, doi:10.1029/2005JB003794.
|
||||
% -- Marsaglia, G., and J. Marsaglia (2004), "Evaluating the Anderson-Darling
|
||||
% distribution", J. Stat. Soft., 1-5.
|
||||
% -----------------------------------------------------------------------------------------------------------------------
|
||||
% LICENSE
|
||||
% This is free software: you can redistribute it and/or modify it under
|
||||
% the terms of the GNU General Public License as published by the Free
|
||||
% Software Foundation, either version 3 of the License, or
|
||||
% (at your option) any later version.
|
||||
%
|
||||
% This program is distributed in the hope that it will be useful,
|
||||
% but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
||||
% See the GNU General Public License for more details.
|
||||
% -----------------------------------------------------------------------------------------------------------------------
|
||||
%% EXAMPLE TO RUN:
|
||||
% x=exprnd(log10(exp(1)),1000,1);
|
||||
% [pval mmin NN P S bval]=ADTestMag_V1_8(x,0.1,'exp',0.5,2.0,200) % for Interactivity OFF
|
||||
% [pval mmin NN P S bval ]=ADTestMag_V1_8(x); % for Interactivity ON
|
||||
%% ------------------------------------------------------------------------------------------------------------------------
|
||||
|
||||
|
||||
function [pval, mmin, NN, P, S, bval ]=ADTestMag_V1_8(vector,EPS,MTdistribution,Mmin,Mmax,trials)
|
||||
mkdir Outputs_ADTestMag
|
||||
if nargin==1
|
||||
%DEFINE INPUT PARAMETERS MANUALLY: NARGIN==1
|
||||
% Select Mc and filter parameters for M>=Mc
|
||||
[MM,Mmin,EPS,MTdistribution]=FiltMcVector(vector);
|
||||
if Mmin<min(MM);Mmin=min(MM);end
|
||||
|
||||
|
||||
% ROUND MAGNITUDES to the selected EPS
|
||||
M=round(MM/EPS)*EPS;
|
||||
|
||||
|
||||
Mmin=floor(Mmin/EPS)*EPS;MMax=ceil(max(M)/EPS)*EPS;
|
||||
Rp=round(-log10(EPS));
|
||||
|
||||
trials=dialog1('number of trials',{'100'})
|
||||
% define number of classes for calculation,
|
||||
% up to the M where a minimum of N=5 occurs
|
||||
mags=Mmin:EPS:MMax;mags=round(mags/EPS)*EPS;
|
||||
|
||||
%%Alternative way to estimate counts of events
|
||||
hi=histc(M,mags-eps/2); % Check the rounding
|
||||
H=flipud(cumsum(flipud(hi)));
|
||||
|
||||
N1=numel(H(H>=4));
|
||||
|
||||
Mmax=dialog1(['Maximum value for calculations ',num2str(Mmin),'\leqM\leq', num2str(mags(N1)),')'],{num2str(mags(N1))})
|
||||
N=find(abs(mags-Mmax)<EPS/2);
|
||||
|
||||
tic;
|
||||
elseif nargin>1
|
||||
% INPUT PARAMETERS ARE SPECIFIED AS FUNCTION ARGUMENTS
|
||||
M=round(vector/EPS)*EPS;
|
||||
Mmin=floor(Mmin/EPS)*EPS;MMax=ceil(max(M)/EPS)*EPS;
|
||||
Rp=round(-log10(EPS));if Mmax>max(M);Mmax=max(M);end
|
||||
mags=Mmin:EPS:MMax;mags=round(mags/EPS)*EPS;
|
||||
N1=find(abs(mags-Mmax)<EPS/2);
|
||||
|
||||
hi=histc(M,mags-eps/2); % Check the rounding
|
||||
H=flipud(cumsum(flipud(hi)));
|
||||
N2=numel(H(H>=4));
|
||||
|
||||
N=min(N1,N2);
|
||||
end
|
||||
|
||||
% magnitude distribution to be tested
|
||||
if strcmp(MTdistribution,'exp')==1;MTdist='Exponential';
|
||||
elseif strcmp(MTdistribution,'weibul')==1;MTdist='Weibull';
|
||||
end
|
||||
|
||||
% Anderson-Darling Test for exponentiality
|
||||
% Loop for different maggnitudes
|
||||
for j=1:N
|
||||
|
||||
mmin(j)=Mmin+(j-1)*EPS;%mmin=round(mmin/EPS)*EPS;
|
||||
m=M(M>=mmin(j)-EPS/2);
|
||||
cou=0;
|
||||
for i=1:trials
|
||||
[beta]=beta_AK_UT_Mbin(mmin(j),m,Rp);
|
||||
[m_corr]=korekta(m,mmin(j),EPS,beta);
|
||||
|
||||
Mag=m_corr-min(m)+EPS/2;
|
||||
|
||||
[h1, p1]=adtest(Mag,'Distribution',MTdistribution);
|
||||
h(i)=h1;p(i,j)=p1;
|
||||
|
||||
if p1<=0.0005+eps;cou=cou+1;else, cou=0;end
|
||||
if cou==2;p(i:trials,j)=0.0005;break;end
|
||||
|
||||
end
|
||||
%j
|
||||
|
||||
NN(j)=numel(m);bval(j)=beta/log(10);sb(j)=bval(j)/sqrt(NN(j));
|
||||
P(j)=mean(p(:,j));
|
||||
S(j)=std(p(:,j)); % p-values are not normally distributed!!
|
||||
clear b
|
||||
end
|
||||
|
||||
%mean(p),std(p)
|
||||
%subplot(2,1,1);hist(h);xlim([-1 2]);subplot(2,1,2);histogram(p,0:0.05:1.0);
|
||||
%hold on;plot([mean(p) mean(p)],[0 200],'r--','LineWidth',2);
|
||||
|
||||
%PLOTTING
|
||||
EPS2=0.1;
|
||||
xa=min(M):EPS2:max(M);xa1=[min(mmin) max(mmin)];
|
||||
|
||||
subplot(2,1,1);plot(mmin,P,'ro-','MarkerSize',12,'LineWidth',1,'MarkerFaceColor',[0.33 0.66 0.99]);
|
||||
hold on;plot([min(M)-EPS max(M)],[0.05 0.05],'k--','Linewidth',2);xlim([min(M)-EPS max(M)]);
|
||||
ylabel('p-value','FontSize',16);
|
||||
if strcmp(MTdistribution,'exp')==1;title('AD Test for Exponentiality','FontSize',16);
|
||||
elseif strcmp(MTdistribution,'weibul')==1;title('AD Test for Weibull Distribution','FontSize',16);
|
||||
end
|
||||
subplot(2,1,2);histogram(M,numel(xa),'FaceColor',[0.7 0.7 0.8]);set(gca,'YScale','log');hold on
|
||||
xlim([min(M)-EPS max(M)]);xlabel('Data','FontSize',16);ylabel('N','FontSize',16);
|
||||
|
||||
|
||||
for j=1:N
|
||||
pval(j).p=p(:,j);
|
||||
pval(j).mmin=mmin(j);
|
||||
pval(j).P=P(j);
|
||||
end
|
||||
|
||||
for i=1:length(P);
|
||||
if P(i)<0.05;h_decision{i,1}='rejected';
|
||||
else h_decision{i,1}='not_rejected';
|
||||
end
|
||||
end
|
||||
%h_decision=h_decision';
|
||||
|
||||
RES=[mmin' NN' bval' P' S']
|
||||
%SAVE OUTPUTS
|
||||
cd Outputs_ADTestMag
|
||||
SaveOuts(EPS,Mmin,Mmax,trials,RES,h_decision,MTdist)
|
||||
%saveas(gcf,'Exponentiality_Output.jpg')
|
||||
print(gcf,'ADTestMag_Output.jpeg','-djpeg','-r300')
|
||||
cd ../
|
||||
|
||||
end
|
||||
|
||||
%% ******************************************************************
|
||||
% *************************** FUNCTIONS ***************************
|
||||
% ****-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-****
|
||||
%% Select Mc and filter parameters for M>=Mc
|
||||
% [OK!!!!!!!!!!!!!!]
|
||||
function [Cmag,Mc,EPS,MTdist]=FiltMcVector(vector)
|
||||
Cmag=vector;
|
||||
|
||||
sm=sort(Cmag); sm1=sm(2:length(sm))-sm(1:length(sm)-1); EPS1=min(sm1(sm1>0));clc
|
||||
if EPS1<0.01;warning('Data round-off interval is too small, please consider setting a higher value (e.g. 0.1)');end
|
||||
EPS=dialog1('Data round-off interval',{num2str(EPS1)});
|
||||
|
||||
ar=min(Cmag):0.1:max(Cmag);
|
||||
fig_Mc=figure;histogram(Cmag,length(ar));set(gca,'YScale','log')
|
||||
title('Please Select Data Cutoff','FontSize',14);xlabel('M','FontSize',14),ylabel('Log_1_0N','FontSize',14)
|
||||
% Select events above Mc
|
||||
[Mc,N]=ginput(1);Mc=floor(Mc/EPS)*EPS,close(fig_Mc);
|
||||
|
||||
%Cmag=Cmag(Cmag>=Mc);
|
||||
|
||||
% select magnitude distribution to be tested
|
||||
[MTd,ok]=listdlg('PromptString','Select field:',...
|
||||
'ListString',{'Exponential','Weibul'},'SelectionMode','single')
|
||||
if MTd==1;MTdist='exp';else; MTdist='weibul';end
|
||||
|
||||
end
|
||||
%% --------------------------------------------------------------------------------------
|
||||
function [ou]=dialog1(name,defaultanswer)
|
||||
|
||||
prompt=['\fontsize{12} Please enter ',name, ':'];
|
||||
prompt={prompt};
|
||||
numlines=1; opts.Interpreter='tex';
|
||||
ou=inputdlg(prompt,'Parameter Setting',numlines,defaultanswer,opts);ou=str2double(ou{1});
|
||||
|
||||
end
|
||||
%% --------------------------------------------------------------------------------------
|
||||
function [beta]=beta_AK_UT_Mbin(Mmin,m,Rp)
|
||||
%
|
||||
% m - magnitude vector
|
||||
% Mmin - completeness magitude threshold
|
||||
% beta - beta value. b(G-R)=beta/log(10)
|
||||
% Rp - Rounding precision, (1 - one decimal, 2 - two decimals, etc)
|
||||
beta=1/(mean(m)-(Mmin-0.5*10^(-Rp)));
|
||||
end
|
||||
|
||||
%% --------------------------------------------------------------------------------------
|
||||
% Magnitude randomization
|
||||
%
|
||||
function [m_corr]=korekta(m,Mmin,EPS,beta)
|
||||
%
|
||||
% m - magnitude vector
|
||||
% Mmin - completeness magitude threshold
|
||||
% beta - beta value. b(G-R)=beta/log(10)
|
||||
% EPS - magnitude round-off interval
|
||||
%
|
||||
% m_corr - randomized magnitude vector
|
||||
%
|
||||
F1=1-exp(-beta*(m-Mmin-0.5*EPS));
|
||||
F2=1-exp(-beta*(m-Mmin+0.5*EPS));
|
||||
u=rand(size(m));
|
||||
w=u.*(F2-F1)+F1;
|
||||
m_corr=Mmin-log(1-w)./beta;
|
||||
end
|
||||
%% --------------------------------------------------------------------------------------------------------
|
||||
% --------------------------------------- SAVE OUTPUTS in the report file ---------------------------------------
|
||||
% Save Outputs
|
||||
function SaveOuts(EPS,Mmin,Mmax,trials,RES,h_decision,MTdist)
|
||||
% ---- Save *.txt file with Parameters Report ----
|
||||
%cd Outputs/
|
||||
fid=fopen('REPORT_ADTestMag.txt','w');
|
||||
fprintf(fid,['PARAMETERS & RESULTS from DISTRIBUTION TESTING (created on ', datestr(now),')\n']);
|
||||
fprintf(fid,'------------------------------------------------------------------------------------\n');
|
||||
fprintf(fid,['<Round-off interval >: ', num2str(EPS),'\n']);
|
||||
fprintf(fid,['<Data Distribution tested >: ', MTdist,'\n']);
|
||||
fprintf(fid,['<Data Range for Analysis >: ', num2str(Mmin), ' to ', num2str(Mmax),'\n']);
|
||||
fprintf(fid,['<Number of randomization trials >: ', num2str(trials),'\n']);
|
||||
fprintf(fid,'------------------------------------------------------------------------------------\n');
|
||||
|
||||
fprintf(fid,['Mmin N b-value mean(p) std(p) Decision for H0 \n']);
|
||||
fprintf(fid,[' from ',num2str(trials),' trials (0.05 significance)\n']);
|
||||
for j=1:size(RES,1);
|
||||
fprintf(fid,['%5.2f %6d %5.3f %5.4f %5.3f %s \n'],RES(j,:),h_decision{j});
|
||||
end
|
||||
fclose(fid);
|
||||
|
||||
%saveas()
|
||||
|
||||
% Save Output Structure
|
||||
% prompt={'\fontsize{12} Please enter output file name:'};
|
||||
% name='Extract Output Structure';
|
||||
% numlines=1;
|
||||
% defaultanswer={'Tdata.mat'};
|
||||
% opts.Interpreter='tex';
|
||||
% answer=inputdlg(prompt,name,numlines,defaultanswer,opts);
|
||||
% save(char(answer),'Tdata')
|
||||
% cd ../
|
||||
|
||||
end
|
||||
|
||||
|
||||
|
||||
|
Binary file not shown.
@@ -0,0 +1,880 @@
|
||||
1.7
|
||||
0.8
|
||||
1.8
|
||||
1.5
|
||||
1.7
|
||||
0.8
|
||||
1.7
|
||||
2.1
|
||||
0.9
|
||||
1.3
|
||||
1.1
|
||||
1.9
|
||||
2.3
|
||||
1.7
|
||||
1.9
|
||||
1.4
|
||||
1.5
|
||||
1.6
|
||||
1.5
|
||||
2.7
|
||||
2.9
|
||||
1.3
|
||||
1.2
|
||||
0.9
|
||||
2.7
|
||||
1.4
|
||||
1.2
|
||||
1.4
|
||||
1.7
|
||||
1.5
|
||||
1.4
|
||||
1.5
|
||||
2.4
|
||||
2.7
|
||||
1.7
|
||||
2.1
|
||||
1.0
|
||||
1.7
|
||||
2.3
|
||||
1.3
|
||||
1.7
|
||||
1.2
|
||||
1.8
|
||||
1.5
|
||||
1.7
|
||||
1.1
|
||||
1.6
|
||||
1.3
|
||||
1.1
|
||||
1.3
|
||||
1.2
|
||||
1.1
|
||||
2.1
|
||||
0.9
|
||||
1.5
|
||||
1.5
|
||||
0.9
|
||||
2.1
|
||||
1.5
|
||||
2.0
|
||||
3.4
|
||||
2.7
|
||||
2.1
|
||||
1.8
|
||||
2.1
|
||||
1.4
|
||||
2.6
|
||||
0.8
|
||||
1.5
|
||||
4.1
|
||||
1.7
|
||||
2.0
|
||||
2.1
|
||||
1.7
|
||||
2.1
|
||||
2.0
|
||||
1.7
|
||||
2.2
|
||||
1.7
|
||||
2.1
|
||||
2.2
|
||||
1.5
|
||||
3.6
|
||||
2.0
|
||||
1.5
|
||||
1.5
|
||||
2.0
|
||||
1.8
|
||||
1.3
|
||||
1.5
|
||||
2.8
|
||||
1.3
|
||||
1.5
|
||||
1.9
|
||||
1.5
|
||||
2.4
|
||||
1.6
|
||||
0.5
|
||||
1.8
|
||||
1.4
|
||||
1.6
|
||||
1.5
|
||||
2.2
|
||||
1.4
|
||||
1.5
|
||||
1.9
|
||||
2.5
|
||||
3.2
|
||||
2.9
|
||||
1.0
|
||||
1.4
|
||||
1.8
|
||||
2.0
|
||||
2.2
|
||||
1.4
|
||||
1.6
|
||||
1.8
|
||||
2.0
|
||||
1.3
|
||||
2.8
|
||||
1.4
|
||||
1.3
|
||||
1.1
|
||||
1.8
|
||||
1.6
|
||||
1.1
|
||||
0.8
|
||||
1.4
|
||||
1.0
|
||||
1.7
|
||||
1.3
|
||||
1.5
|
||||
1.7
|
||||
3.2
|
||||
1.9
|
||||
1.6
|
||||
2.1
|
||||
1.6
|
||||
1.7
|
||||
1.9
|
||||
1.6
|
||||
2.6
|
||||
1.2
|
||||
2.3
|
||||
2.1
|
||||
2.1
|
||||
1.8
|
||||
1.4
|
||||
1.1
|
||||
1.9
|
||||
3.3
|
||||
1.4
|
||||
1.6
|
||||
1.8
|
||||
1.7
|
||||
2.4
|
||||
1.6
|
||||
1.7
|
||||
2.2
|
||||
2.9
|
||||
2.7
|
||||
1.3
|
||||
2.2
|
||||
1.4
|
||||
1.9
|
||||
1.6
|
||||
1.4
|
||||
2.0
|
||||
1.5
|
||||
1.5
|
||||
2.1
|
||||
1.8
|
||||
3.3
|
||||
1.5
|
||||
1.3
|
||||
1.9
|
||||
1.3
|
||||
1.9
|
||||
3.8
|
||||
1.7
|
||||
1.2
|
||||
2.2
|
||||
1.7
|
||||
1.6
|
||||
2.3
|
||||
1.6
|
||||
1.8
|
||||
2.7
|
||||
1.5
|
||||
1.4
|
||||
1.5
|
||||
1.6
|
||||
1.3
|
||||
1.6
|
||||
1.1
|
||||
2.0
|
||||
1.8
|
||||
0.8
|
||||
2.5
|
||||
1.7
|
||||
1.9
|
||||
1.8
|
||||
3.2
|
||||
1.1
|
||||
1.9
|
||||
2.9
|
||||
1.1
|
||||
1.7
|
||||
1.8
|
||||
1.6
|
||||
1.6
|
||||
1.9
|
||||
1.4
|
||||
1.6
|
||||
1.5
|
||||
1.7
|
||||
1.6
|
||||
1.8
|
||||
1.3
|
||||
1.4
|
||||
0.6
|
||||
1.4
|
||||
1.2
|
||||
1.8
|
||||
1.7
|
||||
1.6
|
||||
1.3
|
||||
1.6
|
||||
1.5
|
||||
2.4
|
||||
2.0
|
||||
2.1
|
||||
2.5
|
||||
1.8
|
||||
1.4
|
||||
2.0
|
||||
1.1
|
||||
1.4
|
||||
2.5
|
||||
1.5
|
||||
1.9
|
||||
1.9
|
||||
1.6
|
||||
1.2
|
||||
1.3
|
||||
2.8
|
||||
2.8
|
||||
2.7
|
||||
2.4
|
||||
2.6
|
||||
2.3
|
||||
1.0
|
||||
1.6
|
||||
1.3
|
||||
2.0
|
||||
0.8
|
||||
1.7
|
||||
0.7
|
||||
1.1
|
||||
1.2
|
||||
0.6
|
||||
1.1
|
||||
0.9
|
||||
3.1
|
||||
0.9
|
||||
1.0
|
||||
2.0
|
||||
1.6
|
||||
1.1
|
||||
1.0
|
||||
1.2
|
||||
2.3
|
||||
1.5
|
||||
2.2
|
||||
1.2
|
||||
1.6
|
||||
2.6
|
||||
1.4
|
||||
1.3
|
||||
1.9
|
||||
1.6
|
||||
2.2
|
||||
1.7
|
||||
2.0
|
||||
2.4
|
||||
1.3
|
||||
1.6
|
||||
1.8
|
||||
1.7
|
||||
1.7
|
||||
2.1
|
||||
2.2
|
||||
2.3
|
||||
1.8
|
||||
2.3
|
||||
1.7
|
||||
1.4
|
||||
1.6
|
||||
2.5
|
||||
1.3
|
||||
1.1
|
||||
1.4
|
||||
3.0
|
||||
1.2
|
||||
1.7
|
||||
1.7
|
||||
1.8
|
||||
2.2
|
||||
1.7
|
||||
2.1
|
||||
2.9
|
||||
1.8
|
||||
1.8
|
||||
2.1
|
||||
1.7
|
||||
1.2
|
||||
2.3
|
||||
1.2
|
||||
1.5
|
||||
1.7
|
||||
1.8
|
||||
1.4
|
||||
1.5
|
||||
2.7
|
||||
2.4
|
||||
1.6
|
||||
1.9
|
||||
2.2
|
||||
1.6
|
||||
1.6
|
||||
1.9
|
||||
1.7
|
||||
1.8
|
||||
1.8
|
||||
2.0
|
||||
1.0
|
||||
1.2
|
||||
1.3
|
||||
1.6
|
||||
2.9
|
||||
1.5
|
||||
1.3
|
||||
1.4
|
||||
1.3
|
||||
1.7
|
||||
1.8
|
||||
1.9
|
||||
1.9
|
||||
3.7
|
||||
1.5
|
||||
2.0
|
||||
1.6
|
||||
1.6
|
||||
1.5
|
||||
2.5
|
||||
4.2
|
||||
1.6
|
||||
3.6
|
||||
1.9
|
||||
1.8
|
||||
2.0
|
||||
1.8
|
||||
3.0
|
||||
2.4
|
||||
1.2
|
||||
1.5
|
||||
2.8
|
||||
2.8
|
||||
1.7
|
||||
1.8
|
||||
2.3
|
||||
1.5
|
||||
1.5
|
||||
1.9
|
||||
1.9
|
||||
1.8
|
||||
1.2
|
||||
1.2
|
||||
1.3
|
||||
2.1
|
||||
2.0
|
||||
1.8
|
||||
1.7
|
||||
1.6
|
||||
1.9
|
||||
1.9
|
||||
2.0
|
||||
1.7
|
||||
1.8
|
||||
1.2
|
||||
2.1
|
||||
0.8
|
||||
2.2
|
||||
1.9
|
||||
1.6
|
||||
1.0
|
||||
2.1
|
||||
2.3
|
||||
1.6
|
||||
1.2
|
||||
1.9
|
||||
1.7
|
||||
2.3
|
||||
1.8
|
||||
3.3
|
||||
1.7
|
||||
2.5
|
||||
2.0
|
||||
1.2
|
||||
1.5
|
||||
2.5
|
||||
1.8
|
||||
2.7
|
||||
1.2
|
||||
3.4
|
||||
1.6
|
||||
2.4
|
||||
1.6
|
||||
2.2
|
||||
0.6
|
||||
2.0
|
||||
1.9
|
||||
1.6
|
||||
2.4
|
||||
1.4
|
||||
1.3
|
||||
1.1
|
||||
2.3
|
||||
0.5
|
||||
0.7
|
||||
0.8
|
||||
1.8
|
||||
1.5
|
||||
1.0
|
||||
2.3
|
||||
1.7
|
||||
0.5
|
||||
1.8
|
||||
2.7
|
||||
2.5
|
||||
1.5
|
||||
2.1
|
||||
5.8
|
||||
1.5
|
||||
1.1
|
||||
1.5
|
||||
2.4
|
||||
2.2
|
||||
1.2
|
||||
1.9
|
||||
1.0
|
||||
2.0
|
||||
1.2
|
||||
1.1
|
||||
1.5
|
||||
1.9
|
||||
0.5
|
||||
2.5
|
||||
1.6
|
||||
1.4
|
||||
1.9
|
||||
2.5
|
||||
1.3
|
||||
2.1
|
||||
1.6
|
||||
1.6
|
||||
1.3
|
||||
1.7
|
||||
1.5
|
||||
2.1
|
||||
1.6
|
||||
1.5
|
||||
3.2
|
||||
1.2
|
||||
2.6
|
||||
1.4
|
||||
1.3
|
||||
1.6
|
||||
1.7
|
||||
1.4
|
||||
1.6
|
||||
1.8
|
||||
1.5
|
||||
1.9
|
||||
0.9
|
||||
2.6
|
||||
1.6
|
||||
1.8
|
||||
2.1
|
||||
1.6
|
||||
1.2
|
||||
0.8
|
||||
1.6
|
||||
1.2
|
||||
0.7
|
||||
1.1
|
||||
3.1
|
||||
2.4
|
||||
2.1
|
||||
2.2
|
||||
3.0
|
||||
1.6
|
||||
1.8
|
||||
1.5
|
||||
3.2
|
||||
1.1
|
||||
1.4
|
||||
1.9
|
||||
1.2
|
||||
1.9
|
||||
1.4
|
||||
2.4
|
||||
1.8
|
||||
1.3
|
||||
1.8
|
||||
2.3
|
||||
1.9
|
||||
1.9
|
||||
1.5
|
||||
1.2
|
||||
1.6
|
||||
1.5
|
||||
2.4
|
||||
1.9
|
||||
1.5
|
||||
1.8
|
||||
1.7
|
||||
1.8
|
||||
2.2
|
||||
1.5
|
||||
1.6
|
||||
2.3
|
||||
1.8
|
||||
2.7
|
||||
1.7
|
||||
2.0
|
||||
3.0
|
||||
1.8
|
||||
2.1
|
||||
1.5
|
||||
1.0
|
||||
1.9
|
||||
1.7
|
||||
2.6
|
||||
2.7
|
||||
2.0
|
||||
1.5
|
||||
1.9
|
||||
1.7
|
||||
2.1
|
||||
1.7
|
||||
1.3
|
||||
1.6
|
||||
2.9
|
||||
3.1
|
||||
1.7
|
||||
2.4
|
||||
1.3
|
||||
2.0
|
||||
2.0
|
||||
1.7
|
||||
4.6
|
||||
2.6
|
||||
1.5
|
||||
2.0
|
||||
1.3
|
||||
1.4
|
||||
1.8
|
||||
1.4
|
||||
1.3
|
||||
1.9
|
||||
1.4
|
||||
1.7
|
||||
1.5
|
||||
1.7
|
||||
0.9
|
||||
1.9
|
||||
1.3
|
||||
1.2
|
||||
1.4
|
||||
1.4
|
||||
1.3
|
||||
1.1
|
||||
1.3
|
||||
2.1
|
||||
1.5
|
||||
1.9
|
||||
1.9
|
||||
4.6
|
||||
1.1
|
||||
1.0
|
||||
1.7
|
||||
1.2
|
||||
1.7
|
||||
0.6
|
||||
1.3
|
||||
1.7
|
||||
1.8
|
||||
1.9
|
||||
1.6
|
||||
1.6
|
||||
1.7
|
||||
1.8
|
||||
2.2
|
||||
1.7
|
||||
1.4
|
||||
1.1
|
||||
1.1
|
||||
1.5
|
||||
1.7
|
||||
1.8
|
||||
1.3
|
||||
1.1
|
||||
1.7
|
||||
1.6
|
||||
0.9
|
||||
1.8
|
||||
1.8
|
||||
1.2
|
||||
1.3
|
||||
1.6
|
||||
0.8
|
||||
1.4
|
||||
2.2
|
||||
1.8
|
||||
1.5
|
||||
1.9
|
||||
2.0
|
||||
1.7
|
||||
1.6
|
||||
1.0
|
||||
0.8
|
||||
1.5
|
||||
2.1
|
||||
1.4
|
||||
2.7
|
||||
1.5
|
||||
1.1
|
||||
1.2
|
||||
1.7
|
||||
2.2
|
||||
2.1
|
||||
1.6
|
||||
1.2
|
||||
1.6
|
||||
1.8
|
||||
1.1
|
||||
2.3
|
||||
1.2
|
||||
1.6
|
||||
1.4
|
||||
1.7
|
||||
1.6
|
||||
1.0
|
||||
1.5
|
||||
1.8
|
||||
2.0
|
||||
1.5
|
||||
3.0
|
||||
1.7
|
||||
2.0
|
||||
1.7
|
||||
2.4
|
||||
2.7
|
||||
1.5
|
||||
1.3
|
||||
2.2
|
||||
3.3
|
||||
1.4
|
||||
2.1
|
||||
2.0
|
||||
1.7
|
||||
1.4
|
||||
2.1
|
||||
1.7
|
||||
2.3
|
||||
1.2
|
||||
1.7
|
||||
1.5
|
||||
1.7
|
||||
1.7
|
||||
2.3
|
||||
1.8
|
||||
1.5
|
||||
2.7
|
||||
2.3
|
||||
3.0
|
||||
2.4
|
||||
2.4
|
||||
2.9
|
||||
1.7
|
||||
1.5
|
||||
1.0
|
||||
2.5
|
||||
1.7
|
||||
1.9
|
||||
2.0
|
||||
1.8
|
||||
1.4
|
||||
2.1
|
||||
1.6
|
||||
2.3
|
||||
1.7
|
||||
2.3
|
||||
2.7
|
||||
1.8
|
||||
1.4
|
||||
1.6
|
||||
1.7
|
||||
1.2
|
||||
2.5
|
||||
1.5
|
||||
1.9
|
||||
1.4
|
||||
1.9
|
||||
1.5
|
||||
1.9
|
||||
1.4
|
||||
1.7
|
||||
1.5
|
||||
1.5
|
||||
1.6
|
||||
2.1
|
||||
1.7
|
||||
2.3
|
||||
1.0
|
||||
1.5
|
||||
1.5
|
||||
1.4
|
||||
0.9
|
||||
2.8
|
||||
1.6
|
||||
2.1
|
||||
1.8
|
||||
1.7
|
||||
2.3
|
||||
1.8
|
||||
2.0
|
||||
1.3
|
||||
2.1
|
||||
2.0
|
||||
0.5
|
||||
1.2
|
||||
1.2
|
||||
2.2
|
||||
2.2
|
||||
0.8
|
||||
1.2
|
||||
1.8
|
||||
1.0
|
||||
1.9
|
||||
2.0
|
||||
1.7
|
||||
1.9
|
||||
2.5
|
||||
1.1
|
||||
2.2
|
||||
1.1
|
||||
1.4
|
||||
1.4
|
||||
1.7
|
||||
2.1
|
||||
1.4
|
||||
2.0
|
||||
1.9
|
||||
1.7
|
||||
2.5
|
||||
1.2
|
||||
0.9
|
||||
1.2
|
||||
2.2
|
||||
2.9
|
||||
2.5
|
||||
2.0
|
||||
2.1
|
||||
2.0
|
||||
1.8
|
||||
2.0
|
||||
2.1
|
||||
2.0
|
||||
1.5
|
||||
1.5
|
||||
2.7
|
||||
1.8
|
||||
2.6
|
||||
1.4
|
||||
1.9
|
||||
2.6
|
||||
1.5
|
||||
2.1
|
||||
1.6
|
||||
2.2
|
||||
2.0
|
||||
1.5
|
||||
2.1
|
||||
1.8
|
||||
1.9
|
||||
2.0
|
||||
1.8
|
||||
0.9
|
||||
2.0
|
||||
4.6
|
||||
3.6
|
||||
1.6
|
||||
1.4
|
||||
1.3
|
||||
2.0
|
||||
2.9
|
||||
1.3
|
||||
2.3
|
||||
1.7
|
||||
1.5
|
||||
3.1
|
||||
1.8
|
||||
1.4
|
||||
1.7
|
||||
2.9
|
||||
1.9
|
||||
1.2
|
||||
3.0
|
||||
1.7
|
||||
2.5
|
||||
1.3
|
||||
4.2
|
||||
1.4
|
||||
1.6
|
||||
2.2
|
||||
2.2
|
||||
1.5
|
||||
1.6
|
||||
1.7
|
||||
1.7
|
||||
1.3
|
||||
2.1
|
||||
3.1
|
||||
2.6
|
||||
1.6
|
||||
1.5
|
||||
1.7
|
||||
1.0
|
||||
1.0
|
||||
1.9
|
||||
1.4
|
||||
1.2
|
||||
0.9
|
||||
2.2
|
||||
1.6
|
||||
1.4
|
||||
2.2
|
||||
2.2
|
||||
1.2
|
||||
1.5
|
||||
1.2
|
||||
1.9
|
||||
1.3
|
||||
2.1
|
||||
0.9
|
||||
1.2
|
||||
1.3
|
||||
1.5
|
||||
1.5
|
||||
2.4
|
||||
2.4
|
||||
2.3
|
||||
1.9
|
||||
2.0
|
||||
2.2
|
||||
0.8
|
||||
1.8
|
||||
1.9
|
||||
1.1
|
||||
1.2
|
||||
1.5
|
||||
3.4
|
||||
1.6
|
||||
1.5
|
||||
1.4
|
||||
0.9
|
||||
1.7
|
||||
1.5
|
Reference in New Issue
Block a user