SERA Toolbox1 and Toolbox2 standalone versions
This commit is contained in:
@@ -0,0 +1,22 @@
|
||||
function ADTestMag_Plot(M,mmin,P,EPS,MTdistribution)
|
||||
|
||||
clf
|
||||
EPS2=0.1;
|
||||
xa=min(M):EPS2:max(M);xa1=[min(mmin) max(mmin)];
|
||||
|
||||
subplot(2,1,1);plot(mmin,P,'ro-','MarkerSize',12,'LineWidth',1,'MarkerFaceColor',[0.33 0.66 0.99]);
|
||||
hold on;plot([min(M)-EPS max(M)],[0.05 0.05],'k--','Linewidth',2);xlim([min(M)-EPS max(M)]);
|
||||
ylabel('p-value','FontSize',16);legend('p-value','0.05 line','Location','best');
|
||||
if strcmp(MTdistribution,'exp');title('AD Test for Exponential Distribution','FontSize',16)
|
||||
elseif strcmp(MTdistribution,'weibul');title('AD Test for Weibull Distribution','FontSize',16)
|
||||
end
|
||||
subplot(2,1,2);histogram(M,numel(xa),'FaceColor',[0.7 0.7 0.8]);set(gca,'YScale','log');hold on
|
||||
xlim([min(M)-EPS max(M)]);xlabel('Data','FontSize',16);ylabel('N','FontSize',16);
|
||||
title('Event Counts','FontSize',16)
|
||||
|
||||
cd Outputs_ADTestMag\;saveas(gcf,'ADTestMag_output.jpg');cd ../
|
||||
|
||||
end
|
||||
|
||||
|
||||
|
@@ -0,0 +1,266 @@
|
||||
% FUNCTION: ADTestMag
|
||||
% VERSION: [Wrapper Standalone Version] V2.8
|
||||
% COMPATIBLE with Matlab version 2017b or later
|
||||
% TOOLBOX: "Magnitude Complexity Toolbox" within SERA Project
|
||||
% DOCUMENT: "READ_ME_App_2A_v2_Description_ADTestMag.docx"
|
||||
% --------------------------------------------------------------------------------------------------------
|
||||
% Test performed for the distribution of a given dataset (time-series)
|
||||
% the distributions to be tested are Exponential and Weibull
|
||||
% ------------------------------------------------------------------------------------------------------
|
||||
% OVERVIEW: This Application is a Matlab function which performs the
|
||||
% Anderson-Darling (AD) test for testing the null hypothesis whether a given
|
||||
% set of magnitudes, follows the Exponential or Weibull distribution. Please
|
||||
% check also to the "ADTestMag_wrapper" and "ADTestMag_Plot" scripts
|
||||
% for a specific application (scenario) and plotting results.
|
||||
% -----------------------------------------------------------------------------------------------------
|
||||
% AUTHORS: K. Leptokaropoulos, and P. Urban
|
||||
% last updated: 01/2019, within SERA PROJECT, EU Horizon 2020 R&I
|
||||
% programme under grant agreement No.730900
|
||||
% CURRENT VERSION: v2.8 **** [Wrapper Standalone Version]
|
||||
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||||
% PLEASE refer to the accompanying document:
|
||||
% "READ_ME_App_2A_v2_Description_ADTestMag.docx"
|
||||
% for description of the Application and its requirements.
|
||||
% ------------------------------------------------------------------------------------------------------
|
||||
% DESCRIPTION:
|
||||
% This function performs the Anderson-Darling test (e.g. Anderson & Darling,
|
||||
% 1954; Marsaglia & Marsaglia, 2004) for testing the Null Hypothesis, H0, that
|
||||
% a given set of magnitudes, follows the exponential or the weibull distribution
|
||||
% This is accomplished as a function on minimum magnitude, therefore, multiple
|
||||
% results are produced (iteration process). The corresponing p-values for the H0
|
||||
% is the main output of the program. Before applying the AD test, the magnitude
|
||||
% values are randomized within their round-off interval, following the formula
|
||||
% introduced by Lasocki and Papadimitriou, 2006.
|
||||
% -----------------------------------------------------------------------------------------------------
|
||||
% ITERATION PROCESS:
|
||||
% The AD test is perform with an iteration process for a variety of magnitude
|
||||
% ranges. First the funstion is executed for magnitudes M, with Mmin<M<M1
|
||||
% where M1 is the higher Magnitude in the selected Catalog. Then, the process
|
||||
% is repeated for Mmin+EPS<M<M1, then for Mmin+2*EPS<M<M1, etc till
|
||||
% Mmax<M<M1. Please see INPUT section for reference to the symbols.
|
||||
% -----------------------------------------------------------------------------------------------------
|
||||
% INPUT: The function takes as input any matlab vector (input parameter "M").
|
||||
% The input data can be uploaded by the use of "ADTestMag_wrapper"
|
||||
% script, from an ASCII file (e.g. *.txt). Such file should contain a vector
|
||||
% (raw or column) of the Data that the User wishes to process. The User
|
||||
% is afterwards requested to enter values for some additional parameters.
|
||||
% Input Parameters Overview:
|
||||
% --- M: Time-Series (e.g. Magnitude) vector, read i.e. from an ASCII
|
||||
% file.
|
||||
% --- EPS: Round-off interval, i.e. minimum non-zero difference of
|
||||
% the input data. It also corresponds to step for calculations
|
||||
% (AD test iterations process)
|
||||
% --- MTdistribution: The User is requested to define the selected
|
||||
% parameter distribution for which the null hypothesis is to be
|
||||
% tested. Possible values: 'exp' for 'Exponential' and 'weibul' for
|
||||
% 'Weibull' distribution.
|
||||
% --- Mmin: Corresponds to the minumum input vector value (e.g.
|
||||
% magnitude) for which the AD test is performed (cut-off value).
|
||||
% For the magnitude case, it is recommended (yet, not restricted)
|
||||
% to be equal to the catalog completeness threshold, Mc (if known).
|
||||
% --- Mmax: Corresponds to the maximum input vector value (e.g.
|
||||
% magnitude) to be considered as minimum thresohold for the
|
||||
% AD test to be performed. The maximum value is the one for
|
||||
% which the number of events with M>=Mmax is greater than
|
||||
% 4 (i. e. the minimum possible sample for ADTestMag function
|
||||
% exectution). The function automatically finds this value when the
|
||||
% User sets a higher one.
|
||||
% --- trials: Number of randomization realizations (trials) perfomed
|
||||
% in order to diminish the influence of magnitude randomization
|
||||
% on the resulting p-value. Recommended value: 100.
|
||||
% ------------------------------------------------------------------------------------------------------
|
||||
% OUTPUT:
|
||||
% --- Output Report with parameters used and results
|
||||
% ('Output_ADTestMag.txt file')
|
||||
% --- Output Parameters:
|
||||
% * P - The average of the p-values obtained by the defined
|
||||
% number of trials performed (also exists within the
|
||||
% output structure 'pval')
|
||||
% * S - The corresponding standard deviation of the
|
||||
% p-values obtained by the defined number of trials
|
||||
% * pval - Structure with the vectors of p-values obtained by the
|
||||
% defined number of trials for each minimum magnitude.
|
||||
% The structure also contais parameters 'P' and 'mmin'.
|
||||
% [NOTE: histograms of such p-values indicate that their
|
||||
% distribution is not normal, neither even symmetric
|
||||
% for a large number of cases]
|
||||
% * mmin - vector with the minimum magnitudes to which
|
||||
% the aforementioned output parameters correspond
|
||||
% (also exists within the output structure 'pval')
|
||||
% * NN - vector with number of events corresponding to
|
||||
% each mmin value.
|
||||
% * bval - b-value corresponding to each set defined by the
|
||||
% aforementioned mmin values
|
||||
% --- Output Figures:
|
||||
% ____ [after running the auxiliary "ADTestMag_Plot" script] _____
|
||||
% - Figure with average p-value (P parameter) as a function of
|
||||
% mmin, together with a histogram of the events count per
|
||||
% magnitude bin. The 0.05 significance level is plotted as well
|
||||
% -------------------------------------------------------------------------------------------------------
|
||||
% REFERENCES:
|
||||
% -- Lasocki S. and E. E, Papadimitriou (2006), "Magnitude distribution
|
||||
% complexity revealed in seismicity from Greece", J. Geophys. Res.,
|
||||
% 111, B11309, doi:10.1029/2005JB003794.
|
||||
% -- Anderson T. W., and D. A. Darling, (1954), "A test of goodness of fit",
|
||||
% J. Amer. Stat. Assoc., 49, 765-769.
|
||||
% -- Marsaglia, G., and J. Marsaglia (2004), "Evaluating the Anderson-Darling
|
||||
% distribution", J. Stat. Soft., 9, 1-5.
|
||||
% ------------------------------------------------------------------------------------------------------
|
||||
% LICENSE
|
||||
% This is free software: you can redistribute it and/or modify it under
|
||||
% the terms of the GNU General Public License as published by the
|
||||
% Free Software Foundation, either version 3 of the License, or
|
||||
% (at your option) any later version.
|
||||
%
|
||||
% This program is distributed in the hope that it will be useful, but
|
||||
% WITHOUT ANY WARRANTY; without even the implied warranty
|
||||
% of MERCHANTABILITY or FITNESS FOR A PARTICULAR
|
||||
% PURPOSE. See the GNU General Public License for more details.
|
||||
% ----------------------------------------------------------------------------------
|
||||
|
||||
function [pval,mmin,NN,P,S,bval]=ADTestMag_V2_8(M,EPS,MTdistribution,Mmin,Mmax,trials)
|
||||
mkdir Outputs_ADTestMag
|
||||
|
||||
% Constrain mangitude limits within data range
|
||||
if Mmin<min(M);Mmin=min(M);end
|
||||
if Mmax>max(M);Mmax=max(M);end
|
||||
|
||||
% INPUT PARAMETERS ARE SPECIFIED AS FUNCTION ARGUMENTS
|
||||
M=round(M/EPS)*EPS;
|
||||
Mmin=floor(Mmin/EPS)*EPS;MMax=ceil(max(M)/EPS)*EPS;
|
||||
Rp=round(-log10(EPS));
|
||||
mags=Mmin:EPS:MMax;mags=round(mags/EPS)*EPS;
|
||||
N=find(abs(mags-Mmax)<EPS/2);
|
||||
|
||||
% magnitude distribution to be tested
|
||||
if strcmp(MTdistribution,'exp')==1;MTdist='Exponential';
|
||||
elseif strcmp(MTdistribution,'weibul')==1;MTdist='Weibull';
|
||||
end
|
||||
|
||||
% Anderson-Darling Test for exponentiality
|
||||
% Loop for different magnitudes
|
||||
for j=1:N
|
||||
|
||||
mmin(j)=Mmin+(j-1)*EPS;%mmin=round(mmin/EPS)*EPS;
|
||||
m=M(M>=mmin(j)-EPS/2); % numel(m)
|
||||
if numel(m)<4;warning(['insufficient events number for M>',num2str(mmin(j)-EPS)]);
|
||||
N=j-1;mmin=mmin(1:N);Merr=1;break
|
||||
else
|
||||
Merr=0;cou=0;
|
||||
for i=1:trials
|
||||
[beta]=beta_AK_UT_Mbin(mmin(j),m,Rp);
|
||||
[m_corr]=korekta(m,mmin(j),EPS,beta);
|
||||
|
||||
Mag=m_corr-min(m)+EPS/2;
|
||||
|
||||
[h1 p1]=adtest(Mag,'Distribution',MTdistribution);
|
||||
h(i)=h1;p(i,j)=p1;
|
||||
|
||||
if p1<=0.0005+eps;cou=cou+1;else, cou=0;end
|
||||
if cou==2;p(i:trials,j)=0.0005;break;end
|
||||
|
||||
end
|
||||
|
||||
end
|
||||
NN(j)=numel(m);bval(j)=beta/log(10);sb(j)=bval(j)/sqrt(NN(j));
|
||||
P(j)=mean(p(:,j));
|
||||
S(j)=std(p(:,j)); % p-values are not normally distributed!!
|
||||
clear b
|
||||
end
|
||||
|
||||
% creating results for the report
|
||||
for j=1:N
|
||||
pval(j).p=p(:,j);
|
||||
pval(j).mmin=mmin(j);
|
||||
pval(j).P=P(j);
|
||||
end
|
||||
|
||||
for i=1:length(P);
|
||||
if P(i)<0.05;h_decision{i,1}='rejected';
|
||||
else h_decision{i,1}='not_rejected';
|
||||
end
|
||||
end
|
||||
%h_decision=h_decision';
|
||||
|
||||
RES=[mmin' NN' bval' P' S']
|
||||
%SAVE OUTPUTS
|
||||
cd Outputs_ADTestMag
|
||||
SaveOuts(EPS,Mmin,Mmax,trials,RES,h_decision,MTdist,Merr)
|
||||
%saveas(gcf,'Exponentiality_Output.jpg')
|
||||
%print(gcf,'Exponentiality_Output.jpeg','-djpeg','-r300')
|
||||
cd ../
|
||||
|
||||
end
|
||||
|
||||
%% ******************************************************************
|
||||
% *************************** FUNCTIONS ***************************
|
||||
% ****-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-****
|
||||
%% --------------------------------------------------------------------------------------
|
||||
function [beta]=beta_AK_UT_Mbin(Mmin,m,Rp)
|
||||
%
|
||||
% m - magnitude vector
|
||||
% Mmin - completeness magitude threshold
|
||||
% beta - beta value. b(G-R)=beta/log(10)
|
||||
% Rp - Rounding precision, (1 - one decimal, 2 - two decimals, etc)
|
||||
beta=1/(mean(m)-(Mmin-0.5*10^(-Rp)));
|
||||
end
|
||||
|
||||
%% --------------------------------------------------------------------------------------
|
||||
% % Magnitude randomization
|
||||
%
|
||||
function [m_corr]=korekta(m,Mmin,EPS,beta)
|
||||
%
|
||||
% m - magnitude vector
|
||||
% Mmin - completeness magitude threshold
|
||||
% beta - beta value. b(G-R)=beta/log(10)
|
||||
% EPS - magnitude round-off interval
|
||||
%
|
||||
% m_corr - randomized magnitude vector
|
||||
%
|
||||
F1=1-exp(-beta*(m-Mmin-0.5*EPS));
|
||||
F2=1-exp(-beta*(m-Mmin+0.5*EPS));
|
||||
u=rand(size(m));
|
||||
w=u.*(F2-F1)+F1;
|
||||
m_corr=Mmin-log(1-w)./beta;
|
||||
end
|
||||
%% --------------------------------------------------------------------------------------------------------
|
||||
% --------------------------------------- SAVE OUTPUTS in the report file ---------------------------------------
|
||||
% Save Outputs
|
||||
function SaveOuts(EPS,Mmin,Mmax,trials,RES,h_decision,MTdist,Merr)
|
||||
% ---- Save *.txt file with Parameters Report ----
|
||||
%cd Outputs/
|
||||
fid=fopen('REPORT_ADTestMag.txt','w');
|
||||
fprintf(fid,['PARAMETERS & RESULTS from DISTRIBUTION TESTING (created on ', datestr(now),')\n']);
|
||||
fprintf(fid,'------------------------------------------------------------------------------------\n');
|
||||
fprintf(fid,['<Round-off interval >: ', num2str(EPS),'\n']);
|
||||
fprintf(fid,['<Data Distribution tested >: ', MTdist,'\n']);
|
||||
fprintf(fid,['<Data Range for Analysis >: ', num2str(Mmin), ' to ', num2str(Mmax),'\n']);
|
||||
fprintf(fid,['<Number of randomization trials >: ', num2str(trials),'\n']);
|
||||
fprintf(fid,'------------------------------------------------------------------------------------\n');
|
||||
|
||||
fprintf(fid,['Mmin N b-value mean(p) std(p) Decision for H0 \n']);
|
||||
fprintf(fid,[' from ',num2str(trials),' trials (0.05 significance)\n']);
|
||||
for j=1:size(RES,1);
|
||||
fprintf(fid,['%5.2f %6d %5.3f %5.4f %5.3f %s \n'],RES(j,:),h_decision{j});
|
||||
end
|
||||
if Merr==1;fprintf(fid,['insufficient events number for M>',num2str(RES(j,1))]);end
|
||||
|
||||
fclose(fid);
|
||||
|
||||
%saveas()
|
||||
|
||||
% Save Output Structure
|
||||
% prompt={'\fontsize{12} Please enter output file name:'};
|
||||
% name='Extract Output Structure';
|
||||
% numlines=1;
|
||||
% defaultanswer={'Tdata.mat'};
|
||||
% opts.Interpreter='tex';
|
||||
% answer=inputdlg(prompt,name,numlines,defaultanswer,opts);
|
||||
% save(char(answer),'Tdata')
|
||||
% cd ../
|
||||
|
||||
end
|
||||
|
||||
|
||||
|
||||
|
@@ -0,0 +1,39 @@
|
||||
% This is a Wrapper Script for Performing the Anderson-Darling Test for testing
|
||||
% the hypothesis that a given time-series (e.g. magnitude) follows the exponential
|
||||
% or weibull distribution. The Matlab function "ADTestMag_v2_*.m" is executed for
|
||||
% this purpose.The description of the function can be found in the comments within
|
||||
% 'ADTestMag_V2_*.m' code. Here, the input data and parameters (i.e. arguments
|
||||
% of the Function) are defined by the User. Please modify parameters in the script
|
||||
% accordingly, the lines that can be modified are followed by a comment "- PLEASE SET".
|
||||
% PLEASE REFER ALSO TO APPLCATION DOCUMENTATION:
|
||||
% "READ_ME_App_2B_v2_Description_MM_MB.docx"
|
||||
|
||||
clc;clear
|
||||
% STEP 1. DATA Upload:
|
||||
cd Sample_Data % PLEASE Specify data directory path
|
||||
vector=dlmread('test_vector.txt'); % PLEASE SET data (magnitude) vector input file
|
||||
cd ../
|
||||
|
||||
% STEP 2. Minimum Vector Value Selection:
|
||||
Mmin=0.0; % PLEASE SET
|
||||
|
||||
% STEP 3. Maximum Vector Value Selection:
|
||||
Mmax=5.0; % PLEASE SET
|
||||
|
||||
% STEP 4. Parameter Round-off Interval:
|
||||
EPS=0.1; % PLEASE SET
|
||||
|
||||
% STEP 5. Define number of Trials:
|
||||
trials=100; % PLEASE SET (interger)
|
||||
|
||||
% STEP 6. Distribution Selection:
|
||||
MTdistribution='exp'; % PLEASE SET ('exp' or 'weibul')
|
||||
|
||||
% STEP 7. RUN Function ['ADTestMag']
|
||||
[pval, mmin, NN ,P ,S, bval]=ADTestMag_V2_8(vector,EPS,MTdistribution,Mmin,Mmax,trials);
|
||||
|
||||
% STEP 8. Optional: plotting results %PLEASE Comment next line to deactivate plotting
|
||||
ADTestMag_Plot(vector,mmin,P,EPS,MTdistribution)
|
||||
|
||||
|
||||
|
Binary file not shown.
@@ -0,0 +1,880 @@
|
||||
1.7
|
||||
0.8
|
||||
1.8
|
||||
1.5
|
||||
1.7
|
||||
0.8
|
||||
1.7
|
||||
2.1
|
||||
0.9
|
||||
1.3
|
||||
1.1
|
||||
1.9
|
||||
2.3
|
||||
1.7
|
||||
1.9
|
||||
1.4
|
||||
1.5
|
||||
1.6
|
||||
1.5
|
||||
2.7
|
||||
2.9
|
||||
1.3
|
||||
1.2
|
||||
0.9
|
||||
2.7
|
||||
1.4
|
||||
1.2
|
||||
1.4
|
||||
1.7
|
||||
1.5
|
||||
1.4
|
||||
1.5
|
||||
2.4
|
||||
2.7
|
||||
1.7
|
||||
2.1
|
||||
1.0
|
||||
1.7
|
||||
2.3
|
||||
1.3
|
||||
1.7
|
||||
1.2
|
||||
1.8
|
||||
1.5
|
||||
1.7
|
||||
1.1
|
||||
1.6
|
||||
1.3
|
||||
1.1
|
||||
1.3
|
||||
1.2
|
||||
1.1
|
||||
2.1
|
||||
0.9
|
||||
1.5
|
||||
1.5
|
||||
0.9
|
||||
2.1
|
||||
1.5
|
||||
2.0
|
||||
3.4
|
||||
2.7
|
||||
2.1
|
||||
1.8
|
||||
2.1
|
||||
1.4
|
||||
2.6
|
||||
0.8
|
||||
1.5
|
||||
4.1
|
||||
1.7
|
||||
2.0
|
||||
2.1
|
||||
1.7
|
||||
2.1
|
||||
2.0
|
||||
1.7
|
||||
2.2
|
||||
1.7
|
||||
2.1
|
||||
2.2
|
||||
1.5
|
||||
3.6
|
||||
2.0
|
||||
1.5
|
||||
1.5
|
||||
2.0
|
||||
1.8
|
||||
1.3
|
||||
1.5
|
||||
2.8
|
||||
1.3
|
||||
1.5
|
||||
1.9
|
||||
1.5
|
||||
2.4
|
||||
1.6
|
||||
0.5
|
||||
1.8
|
||||
1.4
|
||||
1.6
|
||||
1.5
|
||||
2.2
|
||||
1.4
|
||||
1.5
|
||||
1.9
|
||||
2.5
|
||||
3.2
|
||||
2.9
|
||||
1.0
|
||||
1.4
|
||||
1.8
|
||||
2.0
|
||||
2.2
|
||||
1.4
|
||||
1.6
|
||||
1.8
|
||||
2.0
|
||||
1.3
|
||||
2.8
|
||||
1.4
|
||||
1.3
|
||||
1.1
|
||||
1.8
|
||||
1.6
|
||||
1.1
|
||||
0.8
|
||||
1.4
|
||||
1.0
|
||||
1.7
|
||||
1.3
|
||||
1.5
|
||||
1.7
|
||||
3.2
|
||||
1.9
|
||||
1.6
|
||||
2.1
|
||||
1.6
|
||||
1.7
|
||||
1.9
|
||||
1.6
|
||||
2.6
|
||||
1.2
|
||||
2.3
|
||||
2.1
|
||||
2.1
|
||||
1.8
|
||||
1.4
|
||||
1.1
|
||||
1.9
|
||||
3.3
|
||||
1.4
|
||||
1.6
|
||||
1.8
|
||||
1.7
|
||||
2.4
|
||||
1.6
|
||||
1.7
|
||||
2.2
|
||||
2.9
|
||||
2.7
|
||||
1.3
|
||||
2.2
|
||||
1.4
|
||||
1.9
|
||||
1.6
|
||||
1.4
|
||||
2.0
|
||||
1.5
|
||||
1.5
|
||||
2.1
|
||||
1.8
|
||||
3.3
|
||||
1.5
|
||||
1.3
|
||||
1.9
|
||||
1.3
|
||||
1.9
|
||||
3.8
|
||||
1.7
|
||||
1.2
|
||||
2.2
|
||||
1.7
|
||||
1.6
|
||||
2.3
|
||||
1.6
|
||||
1.8
|
||||
2.7
|
||||
1.5
|
||||
1.4
|
||||
1.5
|
||||
1.6
|
||||
1.3
|
||||
1.6
|
||||
1.1
|
||||
2.0
|
||||
1.8
|
||||
0.8
|
||||
2.5
|
||||
1.7
|
||||
1.9
|
||||
1.8
|
||||
3.2
|
||||
1.1
|
||||
1.9
|
||||
2.9
|
||||
1.1
|
||||
1.7
|
||||
1.8
|
||||
1.6
|
||||
1.6
|
||||
1.9
|
||||
1.4
|
||||
1.6
|
||||
1.5
|
||||
1.7
|
||||
1.6
|
||||
1.8
|
||||
1.3
|
||||
1.4
|
||||
0.6
|
||||
1.4
|
||||
1.2
|
||||
1.8
|
||||
1.7
|
||||
1.6
|
||||
1.3
|
||||
1.6
|
||||
1.5
|
||||
2.4
|
||||
2.0
|
||||
2.1
|
||||
2.5
|
||||
1.8
|
||||
1.4
|
||||
2.0
|
||||
1.1
|
||||
1.4
|
||||
2.5
|
||||
1.5
|
||||
1.9
|
||||
1.9
|
||||
1.6
|
||||
1.2
|
||||
1.3
|
||||
2.8
|
||||
2.8
|
||||
2.7
|
||||
2.4
|
||||
2.6
|
||||
2.3
|
||||
1.0
|
||||
1.6
|
||||
1.3
|
||||
2.0
|
||||
0.8
|
||||
1.7
|
||||
0.7
|
||||
1.1
|
||||
1.2
|
||||
0.6
|
||||
1.1
|
||||
0.9
|
||||
3.1
|
||||
0.9
|
||||
1.0
|
||||
2.0
|
||||
1.6
|
||||
1.1
|
||||
1.0
|
||||
1.2
|
||||
2.3
|
||||
1.5
|
||||
2.2
|
||||
1.2
|
||||
1.6
|
||||
2.6
|
||||
1.4
|
||||
1.3
|
||||
1.9
|
||||
1.6
|
||||
2.2
|
||||
1.7
|
||||
2.0
|
||||
2.4
|
||||
1.3
|
||||
1.6
|
||||
1.8
|
||||
1.7
|
||||
1.7
|
||||
2.1
|
||||
2.2
|
||||
2.3
|
||||
1.8
|
||||
2.3
|
||||
1.7
|
||||
1.4
|
||||
1.6
|
||||
2.5
|
||||
1.3
|
||||
1.1
|
||||
1.4
|
||||
3.0
|
||||
1.2
|
||||
1.7
|
||||
1.7
|
||||
1.8
|
||||
2.2
|
||||
1.7
|
||||
2.1
|
||||
2.9
|
||||
1.8
|
||||
1.8
|
||||
2.1
|
||||
1.7
|
||||
1.2
|
||||
2.3
|
||||
1.2
|
||||
1.5
|
||||
1.7
|
||||
1.8
|
||||
1.4
|
||||
1.5
|
||||
2.7
|
||||
2.4
|
||||
1.6
|
||||
1.9
|
||||
2.2
|
||||
1.6
|
||||
1.6
|
||||
1.9
|
||||
1.7
|
||||
1.8
|
||||
1.8
|
||||
2.0
|
||||
1.0
|
||||
1.2
|
||||
1.3
|
||||
1.6
|
||||
2.9
|
||||
1.5
|
||||
1.3
|
||||
1.4
|
||||
1.3
|
||||
1.7
|
||||
1.8
|
||||
1.9
|
||||
1.9
|
||||
3.7
|
||||
1.5
|
||||
2.0
|
||||
1.6
|
||||
1.6
|
||||
1.5
|
||||
2.5
|
||||
4.2
|
||||
1.6
|
||||
3.6
|
||||
1.9
|
||||
1.8
|
||||
2.0
|
||||
1.8
|
||||
3.0
|
||||
2.4
|
||||
1.2
|
||||
1.5
|
||||
2.8
|
||||
2.8
|
||||
1.7
|
||||
1.8
|
||||
2.3
|
||||
1.5
|
||||
1.5
|
||||
1.9
|
||||
1.9
|
||||
1.8
|
||||
1.2
|
||||
1.2
|
||||
1.3
|
||||
2.1
|
||||
2.0
|
||||
1.8
|
||||
1.7
|
||||
1.6
|
||||
1.9
|
||||
1.9
|
||||
2.0
|
||||
1.7
|
||||
1.8
|
||||
1.2
|
||||
2.1
|
||||
0.8
|
||||
2.2
|
||||
1.9
|
||||
1.6
|
||||
1.0
|
||||
2.1
|
||||
2.3
|
||||
1.6
|
||||
1.2
|
||||
1.9
|
||||
1.7
|
||||
2.3
|
||||
1.8
|
||||
3.3
|
||||
1.7
|
||||
2.5
|
||||
2.0
|
||||
1.2
|
||||
1.5
|
||||
2.5
|
||||
1.8
|
||||
2.7
|
||||
1.2
|
||||
3.4
|
||||
1.6
|
||||
2.4
|
||||
1.6
|
||||
2.2
|
||||
0.6
|
||||
2.0
|
||||
1.9
|
||||
1.6
|
||||
2.4
|
||||
1.4
|
||||
1.3
|
||||
1.1
|
||||
2.3
|
||||
0.5
|
||||
0.7
|
||||
0.8
|
||||
1.8
|
||||
1.5
|
||||
1.0
|
||||
2.3
|
||||
1.7
|
||||
0.5
|
||||
1.8
|
||||
2.7
|
||||
2.5
|
||||
1.5
|
||||
2.1
|
||||
5.8
|
||||
1.5
|
||||
1.1
|
||||
1.5
|
||||
2.4
|
||||
2.2
|
||||
1.2
|
||||
1.9
|
||||
1.0
|
||||
2.0
|
||||
1.2
|
||||
1.1
|
||||
1.5
|
||||
1.9
|
||||
0.5
|
||||
2.5
|
||||
1.6
|
||||
1.4
|
||||
1.9
|
||||
2.5
|
||||
1.3
|
||||
2.1
|
||||
1.6
|
||||
1.6
|
||||
1.3
|
||||
1.7
|
||||
1.5
|
||||
2.1
|
||||
1.6
|
||||
1.5
|
||||
3.2
|
||||
1.2
|
||||
2.6
|
||||
1.4
|
||||
1.3
|
||||
1.6
|
||||
1.7
|
||||
1.4
|
||||
1.6
|
||||
1.8
|
||||
1.5
|
||||
1.9
|
||||
0.9
|
||||
2.6
|
||||
1.6
|
||||
1.8
|
||||
2.1
|
||||
1.6
|
||||
1.2
|
||||
0.8
|
||||
1.6
|
||||
1.2
|
||||
0.7
|
||||
1.1
|
||||
3.1
|
||||
2.4
|
||||
2.1
|
||||
2.2
|
||||
3.0
|
||||
1.6
|
||||
1.8
|
||||
1.5
|
||||
3.2
|
||||
1.1
|
||||
1.4
|
||||
1.9
|
||||
1.2
|
||||
1.9
|
||||
1.4
|
||||
2.4
|
||||
1.8
|
||||
1.3
|
||||
1.8
|
||||
2.3
|
||||
1.9
|
||||
1.9
|
||||
1.5
|
||||
1.2
|
||||
1.6
|
||||
1.5
|
||||
2.4
|
||||
1.9
|
||||
1.5
|
||||
1.8
|
||||
1.7
|
||||
1.8
|
||||
2.2
|
||||
1.5
|
||||
1.6
|
||||
2.3
|
||||
1.8
|
||||
2.7
|
||||
1.7
|
||||
2.0
|
||||
3.0
|
||||
1.8
|
||||
2.1
|
||||
1.5
|
||||
1.0
|
||||
1.9
|
||||
1.7
|
||||
2.6
|
||||
2.7
|
||||
2.0
|
||||
1.5
|
||||
1.9
|
||||
1.7
|
||||
2.1
|
||||
1.7
|
||||
1.3
|
||||
1.6
|
||||
2.9
|
||||
3.1
|
||||
1.7
|
||||
2.4
|
||||
1.3
|
||||
2.0
|
||||
2.0
|
||||
1.7
|
||||
4.6
|
||||
2.6
|
||||
1.5
|
||||
2.0
|
||||
1.3
|
||||
1.4
|
||||
1.8
|
||||
1.4
|
||||
1.3
|
||||
1.9
|
||||
1.4
|
||||
1.7
|
||||
1.5
|
||||
1.7
|
||||
0.9
|
||||
1.9
|
||||
1.3
|
||||
1.2
|
||||
1.4
|
||||
1.4
|
||||
1.3
|
||||
1.1
|
||||
1.3
|
||||
2.1
|
||||
1.5
|
||||
1.9
|
||||
1.9
|
||||
4.6
|
||||
1.1
|
||||
1.0
|
||||
1.7
|
||||
1.2
|
||||
1.7
|
||||
0.6
|
||||
1.3
|
||||
1.7
|
||||
1.8
|
||||
1.9
|
||||
1.6
|
||||
1.6
|
||||
1.7
|
||||
1.8
|
||||
2.2
|
||||
1.7
|
||||
1.4
|
||||
1.1
|
||||
1.1
|
||||
1.5
|
||||
1.7
|
||||
1.8
|
||||
1.3
|
||||
1.1
|
||||
1.7
|
||||
1.6
|
||||
0.9
|
||||
1.8
|
||||
1.8
|
||||
1.2
|
||||
1.3
|
||||
1.6
|
||||
0.8
|
||||
1.4
|
||||
2.2
|
||||
1.8
|
||||
1.5
|
||||
1.9
|
||||
2.0
|
||||
1.7
|
||||
1.6
|
||||
1.0
|
||||
0.8
|
||||
1.5
|
||||
2.1
|
||||
1.4
|
||||
2.7
|
||||
1.5
|
||||
1.1
|
||||
1.2
|
||||
1.7
|
||||
2.2
|
||||
2.1
|
||||
1.6
|
||||
1.2
|
||||
1.6
|
||||
1.8
|
||||
1.1
|
||||
2.3
|
||||
1.2
|
||||
1.6
|
||||
1.4
|
||||
1.7
|
||||
1.6
|
||||
1.0
|
||||
1.5
|
||||
1.8
|
||||
2.0
|
||||
1.5
|
||||
3.0
|
||||
1.7
|
||||
2.0
|
||||
1.7
|
||||
2.4
|
||||
2.7
|
||||
1.5
|
||||
1.3
|
||||
2.2
|
||||
3.3
|
||||
1.4
|
||||
2.1
|
||||
2.0
|
||||
1.7
|
||||
1.4
|
||||
2.1
|
||||
1.7
|
||||
2.3
|
||||
1.2
|
||||
1.7
|
||||
1.5
|
||||
1.7
|
||||
1.7
|
||||
2.3
|
||||
1.8
|
||||
1.5
|
||||
2.7
|
||||
2.3
|
||||
3.0
|
||||
2.4
|
||||
2.4
|
||||
2.9
|
||||
1.7
|
||||
1.5
|
||||
1.0
|
||||
2.5
|
||||
1.7
|
||||
1.9
|
||||
2.0
|
||||
1.8
|
||||
1.4
|
||||
2.1
|
||||
1.6
|
||||
2.3
|
||||
1.7
|
||||
2.3
|
||||
2.7
|
||||
1.8
|
||||
1.4
|
||||
1.6
|
||||
1.7
|
||||
1.2
|
||||
2.5
|
||||
1.5
|
||||
1.9
|
||||
1.4
|
||||
1.9
|
||||
1.5
|
||||
1.9
|
||||
1.4
|
||||
1.7
|
||||
1.5
|
||||
1.5
|
||||
1.6
|
||||
2.1
|
||||
1.7
|
||||
2.3
|
||||
1.0
|
||||
1.5
|
||||
1.5
|
||||
1.4
|
||||
0.9
|
||||
2.8
|
||||
1.6
|
||||
2.1
|
||||
1.8
|
||||
1.7
|
||||
2.3
|
||||
1.8
|
||||
2.0
|
||||
1.3
|
||||
2.1
|
||||
2.0
|
||||
0.5
|
||||
1.2
|
||||
1.2
|
||||
2.2
|
||||
2.2
|
||||
0.8
|
||||
1.2
|
||||
1.8
|
||||
1.0
|
||||
1.9
|
||||
2.0
|
||||
1.7
|
||||
1.9
|
||||
2.5
|
||||
1.1
|
||||
2.2
|
||||
1.1
|
||||
1.4
|
||||
1.4
|
||||
1.7
|
||||
2.1
|
||||
1.4
|
||||
2.0
|
||||
1.9
|
||||
1.7
|
||||
2.5
|
||||
1.2
|
||||
0.9
|
||||
1.2
|
||||
2.2
|
||||
2.9
|
||||
2.5
|
||||
2.0
|
||||
2.1
|
||||
2.0
|
||||
1.8
|
||||
2.0
|
||||
2.1
|
||||
2.0
|
||||
1.5
|
||||
1.5
|
||||
2.7
|
||||
1.8
|
||||
2.6
|
||||
1.4
|
||||
1.9
|
||||
2.6
|
||||
1.5
|
||||
2.1
|
||||
1.6
|
||||
2.2
|
||||
2.0
|
||||
1.5
|
||||
2.1
|
||||
1.8
|
||||
1.9
|
||||
2.0
|
||||
1.8
|
||||
0.9
|
||||
2.0
|
||||
4.6
|
||||
3.6
|
||||
1.6
|
||||
1.4
|
||||
1.3
|
||||
2.0
|
||||
2.9
|
||||
1.3
|
||||
2.3
|
||||
1.7
|
||||
1.5
|
||||
3.1
|
||||
1.8
|
||||
1.4
|
||||
1.7
|
||||
2.9
|
||||
1.9
|
||||
1.2
|
||||
3.0
|
||||
1.7
|
||||
2.5
|
||||
1.3
|
||||
4.2
|
||||
1.4
|
||||
1.6
|
||||
2.2
|
||||
2.2
|
||||
1.5
|
||||
1.6
|
||||
1.7
|
||||
1.7
|
||||
1.3
|
||||
2.1
|
||||
3.1
|
||||
2.6
|
||||
1.6
|
||||
1.5
|
||||
1.7
|
||||
1.0
|
||||
1.0
|
||||
1.9
|
||||
1.4
|
||||
1.2
|
||||
0.9
|
||||
2.2
|
||||
1.6
|
||||
1.4
|
||||
2.2
|
||||
2.2
|
||||
1.2
|
||||
1.5
|
||||
1.2
|
||||
1.9
|
||||
1.3
|
||||
2.1
|
||||
0.9
|
||||
1.2
|
||||
1.3
|
||||
1.5
|
||||
1.5
|
||||
2.4
|
||||
2.4
|
||||
2.3
|
||||
1.9
|
||||
2.0
|
||||
2.2
|
||||
0.8
|
||||
1.8
|
||||
1.9
|
||||
1.1
|
||||
1.2
|
||||
1.5
|
||||
3.4
|
||||
1.6
|
||||
1.5
|
||||
1.4
|
||||
0.9
|
||||
1.7
|
||||
1.5
|
Reference in New Issue
Block a user