SERA Toolbox1 and Toolbox2 standalone versions
This commit is contained in:
@@ -0,0 +1,701 @@
|
||||
% FUNCTION: MM_MB
|
||||
% VERSION: [Interactive Hybrid Standalone Version] V1.8
|
||||
% COMPATIBLE with Matlab version 2017b or later
|
||||
% TOOLBOX: "Magnitude Complexity Toolbox" within SERA Project
|
||||
% DOCUMENT: "READ_ME_App_2B_v1_Description_MM_MB.docx"
|
||||
%--------------------------------------------------------------------------------------------------------------
|
||||
%% EXAMPLE TO RUN:
|
||||
% x=exprnd(log10(exp(1)),1000,1);
|
||||
% [n,bval,Rmodes,hcrit_modes,Rbumps,hcrit_bumps,gau,gau_b,poch,poch2,zer1,zer2,x1,x2]...
|
||||
% =MM_MB_V1_8(x,0.2,500,500,0.01,0.001,'Efron','Silverman') % for Interactivity OFF
|
||||
% [n,bval,Rmodes,hcrit_modes,Rbumps,hcrit_bumps,gau,gau_b,poch,poch2,zer1,zer2,x1,x2]...
|
||||
% =MM_MB_V1_8(x); % for Interactivity ON
|
||||
%% ----------------------------------------------------------------------------------------------------------
|
||||
% Test performed for Magnitude Distribution of a given dataset checking
|
||||
% whether PDF demonstrates multi-modes/ multi-bumps
|
||||
% --------------------------------------------------------------------------------------------------------
|
||||
% INPUT: THE CURRENT VERSION USES AS INPUT ANY MAGNITUDE VECTOR
|
||||
% (Appropriate for standalone use - function mode)
|
||||
% --------------------------------------------------------------------------------------------------------
|
||||
% OVERVIEW: This Application is a Matlab function which performs testing
|
||||
% of hypotheses of 1) multimodality and 2) existence of multi-bumps in a given
|
||||
% magnitude distribution.
|
||||
% --------------------------------------------------------------------------------------------------------
|
||||
% AUTHORS: K. Leptokaropoulos and P. Urban,
|
||||
% last updated: 03/2019, within SERA PROJECT, EU Horizon 2020 R&I
|
||||
% programme under grant agreement No.730900
|
||||
% CURRENT VERSION: v1.8 **** [INTERACTIVE HYBRID STANDALONE VERSION!!]
|
||||
% ----- THIS IS a dual-mode version: If all input arguments are set, then the
|
||||
% ----- Application operates as a function. However, if only the input vector
|
||||
% ----- is introduced, the application switch to interactive mode.
|
||||
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||||
% PLEASE refer to the accompanying document:
|
||||
% "READ_ME_App_2B_v1_Description_MM_MB.docx"
|
||||
% for a description of the Application and its requirements.
|
||||
% --------------------------------------------------------------------------------------------------------
|
||||
% DESCRIPTION:
|
||||
% The function studies the magniutude distribution complexity by means of the
|
||||
% Mulitmodality Test (Silverman, 1986; Efron and Tibshirani, 1993). Two null
|
||||
% hypotheses (H0s) are tested:
|
||||
% H01 - multimodality: The magnitude PDF is unimodal
|
||||
% H02 - multi-bump: The magnitude PDF has one bump to the right of the
|
||||
% mode.
|
||||
% A mode is a local maximum of probability density and a bump is an interval
|
||||
% [a,b] such that the probability density is concave over [a,b] but not over any
|
||||
% larger interval (Silverman, 1986). The importance of modes and bumps relies
|
||||
% on the fact that multiple occurrences of these features in a PDF indicate, for
|
||||
% most standard densities, a mixing of components (e.g. Cox, 1966).
|
||||
% --------------------------------------------------------------------------------------------------------
|
||||
% INPUT: If the User Provides only the magnitude vector as input, then the
|
||||
% function enables a GUI allowing the User to interactivelly set the rest
|
||||
% of the input parameters by the User. Otherwise the User has to define
|
||||
% the 7 input parameters in addition to the input magnitude vector.
|
||||
% PLEASE REFER TO "MM_MB.doc" FOR A COMPREHENSIVE
|
||||
% PARAMETER DESCRIPTION
|
||||
% Input Parameters Overview:
|
||||
% --- M: A Time-Series (e.g. Magnitude) Vector. The program
|
||||
% takes as input any matlab vector. The input data can be
|
||||
% uploaded by the User from an ASCII file (e.g. the file
|
||||
% "test_vector.txt", located in the "Sample_Data"). Such file
|
||||
% should contain a vector (raw or column) of the Data the
|
||||
% User wishes to process. The User is afterwards requested
|
||||
% to enter parameters values:
|
||||
% --- Mc: Corresponds to the catalog completeness threshold.
|
||||
% --- m: number of points to divide magnitude sample, default 100,
|
||||
% recommended 100-1000.
|
||||
% % INPUTS for MODE and BUMP HUNTING
|
||||
% - n_boot: Number of bootstrap iterations for both MM and MB
|
||||
% (default: 100)
|
||||
% - delta_h: Smoothing parameter step for successive trials in defining
|
||||
% the critical h for MM and MB process (h-critical accuracy)
|
||||
% (default: 0.001)
|
||||
% - h : initial value of the smoothing factor to apply in defining the
|
||||
% critical h for the MM testing process (default:0.01)
|
||||
% - MMmeth: Method for multimodality Testing. Possible values:
|
||||
% 'Efron', 'Silverman'
|
||||
% - MBmeth: Method for multibumps Testing. Possible values:
|
||||
% 'Silverman', 'Efron'
|
||||
% NOTE: The initial value for MB process is taken equal to the
|
||||
% critical value defined in the MM process minus its
|
||||
% accuracy (i.e. hcrit_Modes-delta_h, see OUTPUT below)
|
||||
% ---------------------------------------------------------------------------------------------------------
|
||||
% OUTPUT:
|
||||
% - Output Report with data and parameters used
|
||||
% ('Output_MM_MB.txt file')
|
||||
% - Output Parameters:
|
||||
% % DOUBLES:
|
||||
% * n - Number of observations used
|
||||
% * bval- b-value of the G-R law
|
||||
% * Rmodes - The estimated significance of null hypothesis (H01)
|
||||
% * hcrit_modes - estimated critical smoothness parameter for MM test
|
||||
% * Rbumps - The estimated significance of null hypothesis (H02)
|
||||
% * hcrit_bumps - estimated critical smoothness parameter for MB test
|
||||
% * zer1 - point where 1st derivative is zero (extremum)
|
||||
% * zer2 - point(s) where 2nd derivative is zero (inflection points)
|
||||
% [NOTE: zer2 can be a vector]
|
||||
% % VECTORS:
|
||||
% * gau: Data vector PDF estimated for h critical from Multimodality
|
||||
% * gau_b: Data vector PDF estimated for h critical from Multibumps
|
||||
% * poch: 1st derivative of Data vector PDF for h critical from Multibumps
|
||||
% * poch2: 2nd derivative of Data vector PDF for h critical from Multibumps
|
||||
% * x1,x2: minimum and maximum Data points after randomization
|
||||
% (parameters needed for plotting)
|
||||
% - Output Figures:
|
||||
%
|
||||
% ---------------------------------------------------------------------------------------------------------
|
||||
% REFERENCES:
|
||||
% -- Cox, D. R., (1966), Notes on the analysis of mixed frequency distributions.
|
||||
% Br. J. Math. Stat. Psychol. 19, 39-47, doi.org/10.1111/j.2044-8317.1966.tb00353.x.
|
||||
% -- Efron, B., and Tibshirani R.J. (1993) An Introduction to the Bootstrap,
|
||||
% CRC Press, Boca Raton, Fla.
|
||||
% -- Lasocki S. and E. E, Papadimitriou (2006), "Magnitude distribution
|
||||
% complexity revealed in seismicity from Greece", J. Geophys. Res.,
|
||||
% 111, B11309, doi:10.1029/2005JB003794.
|
||||
% -- Silverman, B. W., (1986), Density estimation for statistics and data analysis,
|
||||
% CRC press, Boa Raton, Fla.
|
||||
% ---------------------------------------------------------------------------------------------------------
|
||||
% LICENSE
|
||||
% This is free software: you can redistribute it and/or modify it under
|
||||
% the terms of the GNU General Public License as published by the
|
||||
% Free Software Foundation, either version 3 of the License, or
|
||||
% (at your option) any later version.
|
||||
%
|
||||
% This program is distributed in the hope that it will be useful, but
|
||||
% WITHOUT ANY WARRANTY; without even the implied warranty
|
||||
% of MERCHANTABILITY or FITNESS FOR A PARTICULAR
|
||||
% PURPOSE. See the GNU General Public License for more details.
|
||||
% ---------------------------------------------------------------------------------------------------------
|
||||
%% EXAMPLE TO RUN:
|
||||
% x=exprnd(log10(exp(1)),1000,1);
|
||||
% [n,bval,Rmodes,hcrit_modes,Rbumps,hcrit_bumps,gau,gau_b,poch,poch2,zer1,zer2,x1,x2]...
|
||||
% =MM_MB_V1_8(x,0.2,500,500,0.01,0.001,'Efron','Silverman') % for Interactivity OFF
|
||||
% [n,bval,Rmodes,hcrit_modes,Rbumps,hcrit_bumps,gau,gau_b,poch,poch2,zer1,zer2,x1,x2]...
|
||||
% =MM_MB_V1_8(x); % for Interactivity ON
|
||||
%% ----------------------------------------------------------------------------------------------------------
|
||||
|
||||
function [n,bval,Rmodes,hcrit_modes,Rbumps,hcrit_bumps,gau,gau_b,poch,poch2,zer1,zer2,x1,x2]...
|
||||
=MM_MB_V1_8(M,Mc,m,n_boot,h,delta_h,MMmeth,MBmeth)
|
||||
|
||||
mkdir Outputs_MM_MB
|
||||
|
||||
% define round-off interval and select data above Mc
|
||||
sm=sort(M);dm=sm(2:length(sm))-sm(1:length(sm)-1);
|
||||
dm=dm(dm>0);eps_M=min(dm);
|
||||
|
||||
%% --------------------------------------- INTERACTIVE MODE ----------------------------------------
|
||||
if nargin==1
|
||||
|
||||
[Mi,Mmin]=FiltMcVector(M,eps_M);
|
||||
M=Mi(Mi>=Mmin-eps_M/2);
|
||||
|
||||
m=dialog1('number of points to divide sample',{'100'});
|
||||
|
||||
Rp=round(-log10(eps_M)); %% check the RP parameter
|
||||
[beta]=beta_AK_UT_Mbin (Mmin,M,Rp) ;
|
||||
|
||||
% Randomize magnitude
|
||||
m_corr(:,1) = korekta(M,Mmin,eps_M,beta);
|
||||
|
||||
% SETTING PARAMETERS
|
||||
n=length(m_corr);
|
||||
x1=floor(min(m_corr)*10)/10; %nieco mniej ni<EFBFBD> min(m) zaokr<EFBFBD>glone do jednej dziesi<EFBFBD>tej
|
||||
x2=ceil(max(m_corr)*10)/10; %nieco wi<EFBFBD>cej ni<EFBFBD> max(m) zaokr<EFBFBD>glone do jednej dziesi<EFBFBD>tej
|
||||
|
||||
|
||||
% MULTIMODALITY TESTING
|
||||
% Give number of bootstrap attempts and h values
|
||||
[n_boot,delta_h,h]=dialog2('Multimodality',{'100','0.001','0.01'});
|
||||
n_boot1=n_boot;
|
||||
%delta_h=0.1;%input('czynnik wygladzajacy '); %0.1
|
||||
%h=0.01; %0.001
|
||||
[hcrit,gau]=critical_smoothing(m_corr,n,delta_h,x1,x2,m,h);
|
||||
hcrit;
|
||||
|
||||
% Select Method of Multimodality testing 'Silverman' or 'Efron'
|
||||
clc;
|
||||
disp('Please Select Method for Multimodality Testing: ');
|
||||
disp('(1 - for Efron, 2 - for Silverman)');
|
||||
MM=input(' ');
|
||||
|
||||
% ---------testing plot-----------
|
||||
plot(1:m,gau);title('Data density for critical smoothing factor (h_c_r_i_t)');
|
||||
|
||||
disp('press any key ...')
|
||||
pause
|
||||
close all
|
||||
% ---------testing plot-----------
|
||||
|
||||
% Run Multimodality testing
|
||||
switch MM
|
||||
case 1
|
||||
[R] = test_multimodality_e (m_corr,n,x1,x2,m,hcrit,n_boot1);
|
||||
case 2
|
||||
[R] = test_multimodality (m_corr,n,x1,x2,m,hcrit,n_boot1);
|
||||
end
|
||||
|
||||
% ------------------------------------------------------------------------
|
||||
% [zer1]=zera_1st(m_corr,n,x1,x2,m,hcrit-delta_h);
|
||||
% ------------------------------------------------------------------------
|
||||
|
||||
% BUMP HUNTING
|
||||
% Give number of bootstrap attempts and h values
|
||||
[n_boot,delta_h,h]=dialog2('Multibumps',{'100','0.001',num2str(hcrit)});
|
||||
n_boot2=n_boot;
|
||||
%delta_h=0.1;
|
||||
|
||||
[hcrit_bumps,gau_b,poch,poch2]=critical_smoothing_bumps(m_corr,n,delta_h,x1,x2,m,hcrit-delta_h);
|
||||
hcrit_bumps;
|
||||
|
||||
|
||||
% Select Method for testing the bump size 'Silverman' or 'Efron'
|
||||
disp(' ');disp(' ');disp(' ');
|
||||
disp('Please Select Method for Bump Testing: ');
|
||||
disp('(1 - for Silverman, 2 - for Efron)');
|
||||
BM=input(' ');
|
||||
|
||||
% Run Bump hunting
|
||||
switch BM
|
||||
case 1
|
||||
[Rb] = bump_hunt (m_corr,n,x1,x2,m,hcrit_bumps,n_boot2);
|
||||
case 2
|
||||
[Rb] = bump_hunt_e (m_corr,n,x1,x2,m,hcrit_bumps,n_boot2);
|
||||
end
|
||||
|
||||
|
||||
%% -------------------------------------- FUNCTION MODE ----------------------------------------
|
||||
|
||||
elseif nargin>1
|
||||
% INPUT PARAMETERS ARE SPECIFIED AS FUNCTION ARGUMENTS
|
||||
MM=M;Mmin=Mc;M=M(M>=Mmin-eps_M/2);
|
||||
m;n_boot;h;delta_h;MMmeth;MBmeth;
|
||||
|
||||
|
||||
Rp=round(-log10(eps_M)); %% check the RP parameter
|
||||
[beta]=beta_AK_UT_Mbin (Mmin,M,Rp); % beta value
|
||||
|
||||
% Randomize magnitude
|
||||
m_corr(:,1) = korekta(M,Mmin,eps_M,beta);
|
||||
|
||||
% SETTING PARAMETERS
|
||||
n=length(m_corr);
|
||||
x1=floor(min(m_corr)*10)/10; %nieco mniej ni<EFBFBD> min(m) zaokr<EFBFBD>glone do jednej dziesi<EFBFBD>tej
|
||||
x2=ceil(max(m_corr)*10)/10; %nieco wi<EFBFBD>cej ni<EFBFBD> max(m) zaokr<EFBFBD>glone do jednej dziesi<EFBFBD>tej
|
||||
|
||||
% MULTIMODALITY TESTING
|
||||
|
||||
[hcrit,gau]=critical_smoothing(m_corr,n,delta_h,x1,x2,m,h);
|
||||
|
||||
switch MMmeth
|
||||
case 'Efron'
|
||||
[R] = test_multimodality_e (m_corr,n,x1,x2,m,hcrit,n_boot);
|
||||
case 'Silverman'
|
||||
[R] = test_multimodality (m_corr,n,x1,x2,m,hcrit,n_boot);
|
||||
end
|
||||
|
||||
% BUMP HUNTING
|
||||
|
||||
[hcrit_bumps,gau_b,poch,poch2]=critical_smoothing_bumps(m_corr,n,delta_h,x1,x2,m,hcrit-delta_h);
|
||||
|
||||
switch MBmeth
|
||||
case 'Silverman'
|
||||
[Rb] = bump_hunt (m_corr,n,x1,x2,m,hcrit_bumps,n_boot);
|
||||
case 'Efron'
|
||||
[Rb] = bump_hunt_e (m_corr,n,x1,x2,m,hcrit_bumps,n_boot);
|
||||
end
|
||||
|
||||
end
|
||||
|
||||
|
||||
bval=beta/log(10);
|
||||
% Display the Results:
|
||||
re=table(n, bval, R,hcrit,Rb,hcrit_bumps)
|
||||
|
||||
disp(['Significance of Ho(1) that input data distribution is unimodal is: ', num2str(R)])
|
||||
disp(['Significance of Ho(2) that input data distribution has no more '])
|
||||
disp(['than one bumps to the right of the global maximum is: ', num2str(Rb)])
|
||||
|
||||
[zer1]=zera_1st(m_corr,n,x1,x2,m,hcrit_bumps-delta_h); % use the same h in both cases???
|
||||
[zer2]=zera_2nd(m_corr,n,x1,x2,m,hcrit_bumps-delta_h);
|
||||
|
||||
|
||||
|
||||
%% -------------------------- PLOTTING AND SAVING RESULTS ----------------------------
|
||||
% ----- plotting magnitude density and its derivatives ------
|
||||
xp=linspace(x1,x2,m);
|
||||
%st=range([x1 x2])/(m-1);xp=x1:st:x2;
|
||||
figure('rend','painters','pos',[800 100 600 900]);hold on
|
||||
subplot(3,1,1);
|
||||
plot(xp,gau_b,'LineWidth',2);hold on;
|
||||
for i=1:length(zer1)
|
||||
Le1=plot([zer1(i) zer1(i)],[0 10],'k--','LineWidth',1);
|
||||
end
|
||||
for i=1:length(zer2)
|
||||
Le2=plot([zer2(i) zer2(i)],[0 10],'r--','LineWidth',1);
|
||||
end
|
||||
xlim([min(M)-0.1 max(M)+0.1]);ylim([0 max(gau_b)+0.01])
|
||||
title(['Data density for h_c_r_i_t ';' (critical smoothing factor) '],'FontSize',14);%axis square
|
||||
legend([Le1,Le2],{'extremum','Inflection Point(s)'});ylabel('PDF','FontSize',14)
|
||||
subplot(3,1,2);
|
||||
plot(xp,poch,'LineWidth',2);ylabel('1^s^t derivative','FontSize',14);hold on;%axis square;
|
||||
plot([xp(1) xp(length(xp))],[0 0],'--','LineWidth',1)
|
||||
for i=1:length(zer1)
|
||||
plot([zer1(i) zer1(i)],[min(poch)-0.01 max(poch)+0.01],'k--','LineWidth',1)
|
||||
end
|
||||
for i=1:length(zer2)
|
||||
plot([zer2(i) zer2(i)],[min(poch)-0.01 max(poch)+0.01],'r--','LineWidth',1)
|
||||
end
|
||||
xlim([min(M)-0.1 max(M)+0.1]);ylim([min(poch)-0.01 max(poch)+0.01])
|
||||
subplot(3,1,3);
|
||||
plot(xp,poch2,'LineWidth',2);ylabel('2^n^d derivative','FontSize',14);%axis square
|
||||
hold on; plot([xp(1) xp(length(xp))],[0 0],'--','LineWidth',1)
|
||||
for i=1:length(zer1)
|
||||
plot([zer1(i) zer1(i)],[min(poch2)-0.01 max(poch2)+0.01],'k--','LineWidth',1)
|
||||
end
|
||||
for i=1:length(zer2)
|
||||
plot([zer2(i) zer2(i)],[min(poch2)-0.01 max(poch2)+0.01],'r--','LineWidth',1)
|
||||
end
|
||||
xlim([min(M)-0.1 max(M)+0.1]);ylim([min(poch2)-0.01 max(poch2)+0.01])
|
||||
xlabel('Data','FontSize',14);
|
||||
|
||||
% Save Outputs
|
||||
cd Outputs_MM_MB
|
||||
Rmodes=R;Rbumps=Rb;hcrit_modes=hcrit;
|
||||
SaveOuts(eps_M,Mmin,m,n_boot,n_boot,n,bval,Rmodes,hcrit_modes,Rbumps,hcrit_bumps)
|
||||
saveas(gcf,'Multimodality_Output.jpg')
|
||||
cd ../
|
||||
|
||||
|
||||
%% ******************************************************************
|
||||
% *************************** FUNCTIONS ***************************
|
||||
% ****-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-****
|
||||
%% Select Mc and filter parameters for M>=Mc
|
||||
|
||||
function [Cmag,Mc]=FiltMcVector(magnitude_vector,EPS1)
|
||||
Cmag=magnitude_vector;
|
||||
|
||||
%sm=sort(Cmag); sm1=sm(2:length(sm))-sm(1:length(sm)-1); EPS1=min(sm1(sm1>0));
|
||||
%EPS=dialog1('magnitude round-off interval',{num2str(EPS1)});
|
||||
|
||||
ar=min(Cmag):0.1:max(Cmag);
|
||||
fig_Mc=figure;histogram(Cmag,length(ar));set(gca,'YScale','log')
|
||||
title('Please Select Data Cutoff','FontSize',14);xlabel('M','FontSize',14),ylabel('Log_1_0N','FontSize',14)
|
||||
% Select events above Mc
|
||||
[Mc,N]=ginput(1);Mc=floor(Mc/EPS1)*EPS1,close(fig_Mc);
|
||||
|
||||
%Cmag=Cmag(Cmag>=Mc);
|
||||
|
||||
end
|
||||
%% --------------------------------------------------------------------------------------
|
||||
%% --------------------------------------------------------------------------------------
|
||||
% finds a field defined by a certain (string) name
|
||||
function [id] = findfield( catalog,field )
|
||||
id=0;
|
||||
j=1;
|
||||
while j <= size(catalog,2) && id==0
|
||||
if (strcmp(catalog(j).field,field)==1)
|
||||
id=j;
|
||||
end
|
||||
j=j+1;
|
||||
end
|
||||
end
|
||||
%% --------------------------------------------------------------------------------------
|
||||
function [ou]=dialog1(name,defaultanswer)
|
||||
|
||||
prompt=['\fontsize{12} Please enter ',name, ':'];
|
||||
prompt={prompt};
|
||||
numlines=1; opts.Interpreter='tex';
|
||||
ou=inputdlg(prompt,'Parameter Setting',numlines,defaultanswer,opts);ou=str2num(ou{1});
|
||||
|
||||
end
|
||||
|
||||
%% --------------------------------------------------------------------------------------
|
||||
|
||||
function [ou1, ou2, ou3]=dialog2(titl,defaultanswer)
|
||||
|
||||
prompt={'\fontsize{12} Please enter number of bootstrap iterations:','\fontsize{12} Please enter \Deltah (h_c_r_i_t accuracy):','\fontsize{12} Please enter h (smoothing factor):'};
|
||||
name=['Parameters for ',titl, ':'];
|
||||
numlines=1;
|
||||
opts.Interpreter='tex';
|
||||
answer=inputdlg(prompt,name,numlines,defaultanswer,opts);
|
||||
ou1=answer(1);ou2=answer(2);ou3=answer(3);
|
||||
ou1=str2num(ou1{1});ou2=str2num(ou2{1});ou3=str2num(ou3{1});
|
||||
|
||||
end
|
||||
|
||||
%% --------------------------------------------------------------------------------------
|
||||
%
|
||||
function [beta]=beta_AK_UT_Mbin(Mmin,m,Rp)
|
||||
%
|
||||
% m - magnitude vector
|
||||
% Mmin - completeness magitude threshold
|
||||
% beta - beta value. b(G-R)=beta/log(10)
|
||||
% Rp - Rounding precision, (1 - one decimal, 2 - two decimals, etc)
|
||||
beta=1/(mean(m)-(Mmin-0.5*10^(-Rp)));
|
||||
end
|
||||
|
||||
%% --------------------------------------------------------------------------------------
|
||||
% Magnitude randomization
|
||||
%
|
||||
function [m_corr]=korekta(m,Mmin,eps,beta)
|
||||
%
|
||||
% m - magnitude vector
|
||||
% Mmin - completeness magitude threshold
|
||||
% beta - beta value. b(G-R)=beta/log(10)
|
||||
% EPS - magnitude round-off interval
|
||||
%
|
||||
% m_corr - randomized magnitude vector
|
||||
%
|
||||
F1=1-exp(-beta*(m-Mmin-0.5*eps));
|
||||
F2=1-exp(-beta*(m-Mmin+0.5*eps));
|
||||
u=rand(size(m));
|
||||
w=u.*(F2-F1)+F1;
|
||||
m_corr=Mmin-log(1-w)./beta;
|
||||
end
|
||||
%% --------------------------------------------------------------------------------------
|
||||
% Finding critical smoothing parameter value for which the non parametric
|
||||
% PDF demonstrates one mode in the selected interval
|
||||
%
|
||||
function [hcrit,gau]=critical_smoothing(mm,n,delta_h,x1,x2,m,h)
|
||||
%
|
||||
|
||||
x=sort(mm);
|
||||
p=2.0;
|
||||
c=sqrt(2*pi);
|
||||
%x1=input('Lower limit ');
|
||||
%x2=input('Upper limit ');
|
||||
%m=input('No. of points ');
|
||||
y=linspace(x1,x2,m);
|
||||
%h=input('Initial smoothing factor ');
|
||||
while p>1
|
||||
for i=1:m,
|
||||
poch(i)=-sum((y(i)-x).*exp(-0.5*((y(i)-x)./h).^2));
|
||||
end
|
||||
p=0;
|
||||
for i=2:m,
|
||||
if poch(i-1)*poch(i)<0
|
||||
p=p+1;
|
||||
end
|
||||
end
|
||||
h=h+delta_h;
|
||||
end
|
||||
hcrit=h-delta_h;
|
||||
for i=1:m,
|
||||
gau(i)=sum(exp(-0.5*((y(i)-x)./hcrit).^2))/c/n/hcrit;
|
||||
end
|
||||
end
|
||||
%% --------------------------------------------------------------------------------------
|
||||
% "SMOOTHED BOOTSTRAP"
|
||||
%
|
||||
function [R]=test_multimodality(m,n,x1,x2,n_point,h_crit,mm)
|
||||
%
|
||||
|
||||
x=sort(m);
|
||||
c=sqrt(2*pi);
|
||||
%x1=input('Lower limit ');
|
||||
%x2=input('Upper limit ');
|
||||
%m=input('No. of points ');
|
||||
y=linspace(x1,x2,n_point);
|
||||
%h_crit=input('Critical smoothing factor ');
|
||||
%mm=input('No of trials ');
|
||||
no_wielom=0;
|
||||
for j=1:mm,
|
||||
ind=unidrnd(n,n,1);
|
||||
eps=normrnd(0,1,n,1);
|
||||
z=x(ind)+h_crit.*eps;
|
||||
z=sort(z);
|
||||
poch(1)=-sum((y(1)-z).*exp(-0.5*((y(1)-z)./h_crit).^2));
|
||||
p=0;
|
||||
for i=2:n_point,
|
||||
poch(i)=-sum((y(i)-z).*exp(-0.5*((y(i)-z)./h_crit).^2));
|
||||
if poch(i-1)*poch(i)<0
|
||||
p=p+1;
|
||||
end
|
||||
end
|
||||
if p>1
|
||||
no_wielom=no_wielom+1;
|
||||
end
|
||||
end
|
||||
R=no_wielom/mm;
|
||||
end
|
||||
%% --------------------------------------------------------------------------------------
|
||||
% "SMOOTHED BOOTSTRAP"
|
||||
% EFRON
|
||||
%
|
||||
function [R]=test_multimodality_e(m,n,x1,x2,n_point,h_crit,mm)
|
||||
%
|
||||
x=sort(m);
|
||||
s2=sqrt(1+h_crit^2/var(x));
|
||||
c=sqrt(2*pi);
|
||||
%x1=input('Lower limit ');
|
||||
%x2=input('Upper limit ');
|
||||
%m=input('No. of points ');
|
||||
y=linspace(x1,x2,n_point);
|
||||
%h_crit=input('Critical smoothing factor ');
|
||||
%mm=input('No of trials ');
|
||||
no_wielom=0;
|
||||
for j=1:mm,
|
||||
ind=unidrnd(n,n,1);
|
||||
eps=normrnd(0,1,n,1);
|
||||
me=mean(x(ind));
|
||||
z=me+(x(ind)-me+h_crit.*eps)./s2;
|
||||
z=sort(z);
|
||||
poch(1)=-sum((y(1)-z).*exp(-0.5*((y(1)-z)./h_crit).^2));
|
||||
p=0;
|
||||
for i=2:n_point,
|
||||
poch(i)=-sum((y(i)-z).*exp(-0.5*((y(i)-z)./h_crit).^2));
|
||||
if poch(i-1)*poch(i)<0
|
||||
p=p+1;
|
||||
end
|
||||
end
|
||||
if p>1
|
||||
no_wielom=no_wielom+1;
|
||||
end
|
||||
end
|
||||
R=no_wielom/mm;
|
||||
end
|
||||
%% --------------------------------------------------------------------------------------
|
||||
% Finding critical smoothing parameter value for which the non parametric
|
||||
% PDF demonstrates one bump in the selected interval
|
||||
%
|
||||
function [hcrit,gau,poch,poch2]=critical_smoothing_bumps(mm,n,delta_h,x1,x2,m,h)
|
||||
%
|
||||
|
||||
x=sort(mm);
|
||||
p=2.0;
|
||||
c=sqrt(2*pi);
|
||||
%x1=input('Lower limit ');
|
||||
%x2=input('Upper limit ');
|
||||
%m=input('No. of points ');
|
||||
y=linspace(x1,x2,m);
|
||||
%h=input('Initial smoothing factor ');
|
||||
while p>1
|
||||
for i=1:m,
|
||||
% poch(i)=-sum((y(i)-x).*exp(-0.5*((y(i)-x)./h).^2));
|
||||
poch2(i)=sum((((y(i)-x)./h).^2-1).*exp(-0.5*((y(i)-x)./h).^2));
|
||||
end
|
||||
p=0;
|
||||
for i=2:m,
|
||||
if poch2(i-1)*poch2(i)<0
|
||||
p=p+1;
|
||||
end
|
||||
end
|
||||
h=h+delta_h;
|
||||
end
|
||||
hcrit=h-delta_h;
|
||||
for i=1:m,
|
||||
gau(i)=sum(exp(-0.5*((y(i)-x)/hcrit).^2))/c/n/hcrit;
|
||||
poch(i)=-sum((y(i)-x).*exp(-0.5*((y(i)-x)./hcrit).^2));
|
||||
poch2(i)=sum((((y(i)-x)./hcrit).^2-1).*exp(-0.5*((y(i)-x)./hcrit).^2));
|
||||
end
|
||||
end
|
||||
%% --------------------------------------------------------------------------------------
|
||||
% "SMOOTHED BOOTSTRAP"
|
||||
%
|
||||
function [R]=bump_hunt(m,n,x1,x2,n_point,h_crit,mm)
|
||||
%
|
||||
x=sort(m);
|
||||
c=sqrt(2*pi);
|
||||
%x1=input('Lower limit ');
|
||||
%x2=input('Upper limit ');
|
||||
%m=input('No. of points ');
|
||||
y=linspace(x1,x2,n_point);
|
||||
%h_crit=input('Critical smoothing factor ');
|
||||
%mm=input('No of trials ');
|
||||
no_bump=0;
|
||||
for j=1:mm,
|
||||
ind=unidrnd(n,n,1);
|
||||
eps=normrnd(0,1,n,1);
|
||||
z=x(ind)+h_crit.*eps;
|
||||
z=sort(z);
|
||||
% poch(1)=-sum((y(1)-z).*exp(-0.5*((y(1)-z)./h_crit).^2));
|
||||
poch2(1)=sum((((y(1)-z)./h_crit).^2-1).*exp(-0.5*((y(1)-z)./h_crit).^2));
|
||||
p=0;
|
||||
for i=2:n_point,
|
||||
% poch(i)=-sum((y(i)-z).*exp(-0.5*((y(i)-z)./h_crit).^2));
|
||||
poch2(i)=sum((((y(i)-z)./h_crit).^2-1).*exp(-0.5*((y(i)-z)./h_crit).^2));
|
||||
if poch2(i-1)*poch2(i)<0
|
||||
p=p+1;
|
||||
end
|
||||
end
|
||||
if p>1
|
||||
no_bump=no_bump+1;
|
||||
end
|
||||
end
|
||||
R=no_bump/mm;
|
||||
end
|
||||
%% --------------------------------------------------------------------------------------
|
||||
% "SMOOTHED BOOTSTRAP"
|
||||
% EFRON
|
||||
%
|
||||
function [R]=bump_hunt_e(m,n,x1,x2,n_point,h_crit,mm)
|
||||
%
|
||||
x=sort(m);
|
||||
s2=sqrt(1+h_crit^2/var(x));
|
||||
c=sqrt(2*pi);
|
||||
%x1=input('Lower limit ');
|
||||
%x2=input('Upper limit ');
|
||||
%m=input('No. of points ');
|
||||
y=linspace(x1,x2,n_point);
|
||||
%h_crit=input('Critical smoothing factor ');
|
||||
%mm=input('No of trials ');
|
||||
no_bump=0;
|
||||
for j=1:mm,
|
||||
ind=unidrnd(n,n,1);
|
||||
eps=normrnd(0,1,n,1);
|
||||
me=mean(x(ind));
|
||||
z=me+(x(ind)-me+h_crit.*eps)./s2;
|
||||
z=sort(z);
|
||||
% poch(1)=-sum((y(1)-z).*exp(-0.5*((y(1)-z)./h_crit).^2));
|
||||
poch2(1)=sum((((y(1)-z)./h_crit).^2-1).*exp(-0.5*((y(1)-z)./h_crit).^2));
|
||||
p=0;
|
||||
for i=2:n_point,
|
||||
% poch(i)=-sum((y(i)-z).*exp(-0.5*((y(i)-z)./h_crit).^2));
|
||||
poch2(i)=sum((((y(i)-z)./h_crit).^2-1).*exp(-0.5*((y(i)-z)./h_crit).^2));
|
||||
if poch2(i-1)*poch2(i)<0
|
||||
p=p+1;
|
||||
end
|
||||
end
|
||||
if p>1
|
||||
no_bump=no_bump+1;
|
||||
end
|
||||
end
|
||||
R=no_bump/mm;
|
||||
end
|
||||
|
||||
%% --------------------------------------------------------------------------------------
|
||||
% Determination of PDF first derivative zeros estimates in the selected interval
|
||||
%
|
||||
function [zer1]=zera_1st(mm,n,x1,x2,m,h)
|
||||
%
|
||||
|
||||
x=sort(mm);
|
||||
c=sqrt(2*pi);
|
||||
y=linspace(x1,x2,m);
|
||||
for i=1:m,
|
||||
poch(i)=-sum((y(i)-x).*exp(-0.5*((y(i)-x)./h).^2));
|
||||
end
|
||||
p=0;
|
||||
for i=2:m,
|
||||
if poch(i-1)*poch(i)<0
|
||||
p=p+1;
|
||||
zer1(p)=(y(i)+y(i-1))/2; %K 23JAN2019
|
||||
end
|
||||
end
|
||||
|
||||
end
|
||||
%% --------------------------------------------------------------------------------------
|
||||
% Determination of PDF second derivative zeros in the selected interval
|
||||
%
|
||||
|
||||
function [zer2]=zera_2nd(mm,n,x1,x2,m,h)
|
||||
%
|
||||
x=sort(mm);
|
||||
c=sqrt(2*pi);
|
||||
y=linspace(x1,x2,m);
|
||||
for i=1:m,
|
||||
poch2(i)=sum((((y(i)-x)./h).^2-1).*exp(-0.5*((y(i)-x)./h).^2));
|
||||
end
|
||||
p1=0;
|
||||
for i=2:m,
|
||||
if poch2(i-1)*poch2(i)<0
|
||||
p1=p1+1;
|
||||
zer2(p1)=(y(i)+y(i-1))/2; %K 23JAN2019
|
||||
end
|
||||
end
|
||||
|
||||
end
|
||||
|
||||
%% --------------------------------------------------------------------------------------------------------
|
||||
% --------------------------------------- SAVE OUTPUTS in the report file ---------------------------------------
|
||||
% Save Outputs
|
||||
function SaveOuts(EPS,Mmin,m,n_boot1,n_boot2,n,bval,Rmodes,hcrit_modes,Rbumps,hcrit_bumps)
|
||||
% ---- Save *.txt file with Parameters Report ----
|
||||
%cd Outputs/
|
||||
fid=fopen('REPORT_Multimodality.txt','w');
|
||||
fprintf(fid,['RESULTS from MULTIMODALITY/MULTIBUMP TESTING (created on ', datestr(now),')\n']);
|
||||
fprintf(fid,'------------------------------------------------------------------------------\n');
|
||||
fprintf(fid,['<Round-off interval >: ', num2str(EPS),'\n']);
|
||||
fprintf(fid,['<Number of points to divide the sample >: ', num2str(m),'\n']);
|
||||
fprintf(fid,['<Completeness Threshold >: ', num2str(Mmin),'\n']);
|
||||
fprintf(fid,['<Number of events used >: ', num2str(n),'\n']);
|
||||
fprintf(fid,['<Gutenberg-Richter b-value >: ', num2str(bval,'%5.3f'),'\n']);
|
||||
fprintf(fid,['<Number of bootstrap iterations (multimodality) >: ', num2str(n_boot1),'\n']);
|
||||
fprintf(fid,['<Number of bootstrap iterations (multibumps) >: ', num2str(n_boot2),'\n']);
|
||||
fprintf(fid,'------------------------------------------------------------------------------\n');
|
||||
fprintf(fid,['<Critical Smoothing Parameter,h (for modes) >: ', num2str(hcrit_modes,'%6.4f'),'\n']);
|
||||
fprintf(fid,['<Critical Smoothing Parameter,h (for bumps) >: ', num2str(hcrit_bumps,'%6.4f'),'\n']);
|
||||
fprintf(fid,['<Significance of H01 that input data PDF is unimodal >: ', num2str(Rmodes,'%4.3f'),'\n']);
|
||||
fprintf(fid,['<Significance of H02 that input data PDF has no more \n']);
|
||||
fprintf(fid,[' than one bump to the right of the global maximum >: ', num2str(Rbumps,'%4.3f'),'\n']);
|
||||
|
||||
|
||||
|
||||
fclose(fid);
|
||||
|
||||
end
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
end
|
Binary file not shown.
@@ -0,0 +1,880 @@
|
||||
1.7
|
||||
0.8
|
||||
1.8
|
||||
1.5
|
||||
1.7
|
||||
0.8
|
||||
1.7
|
||||
2.1
|
||||
0.9
|
||||
1.3
|
||||
1.1
|
||||
1.9
|
||||
2.3
|
||||
1.7
|
||||
1.9
|
||||
1.4
|
||||
1.5
|
||||
1.6
|
||||
1.5
|
||||
2.7
|
||||
2.9
|
||||
1.3
|
||||
1.2
|
||||
0.9
|
||||
2.7
|
||||
1.4
|
||||
1.2
|
||||
1.4
|
||||
1.7
|
||||
1.5
|
||||
1.4
|
||||
1.5
|
||||
2.4
|
||||
2.7
|
||||
1.7
|
||||
2.1
|
||||
1.0
|
||||
1.7
|
||||
2.3
|
||||
1.3
|
||||
1.7
|
||||
1.2
|
||||
1.8
|
||||
1.5
|
||||
1.7
|
||||
1.1
|
||||
1.6
|
||||
1.3
|
||||
1.1
|
||||
1.3
|
||||
1.2
|
||||
1.1
|
||||
2.1
|
||||
0.9
|
||||
1.5
|
||||
1.5
|
||||
0.9
|
||||
2.1
|
||||
1.5
|
||||
2.0
|
||||
3.4
|
||||
2.7
|
||||
2.1
|
||||
1.8
|
||||
2.1
|
||||
1.4
|
||||
2.6
|
||||
0.8
|
||||
1.5
|
||||
4.1
|
||||
1.7
|
||||
2.0
|
||||
2.1
|
||||
1.7
|
||||
2.1
|
||||
2.0
|
||||
1.7
|
||||
2.2
|
||||
1.7
|
||||
2.1
|
||||
2.2
|
||||
1.5
|
||||
3.6
|
||||
2.0
|
||||
1.5
|
||||
1.5
|
||||
2.0
|
||||
1.8
|
||||
1.3
|
||||
1.5
|
||||
2.8
|
||||
1.3
|
||||
1.5
|
||||
1.9
|
||||
1.5
|
||||
2.4
|
||||
1.6
|
||||
0.5
|
||||
1.8
|
||||
1.4
|
||||
1.6
|
||||
1.5
|
||||
2.2
|
||||
1.4
|
||||
1.5
|
||||
1.9
|
||||
2.5
|
||||
3.2
|
||||
2.9
|
||||
1.0
|
||||
1.4
|
||||
1.8
|
||||
2.0
|
||||
2.2
|
||||
1.4
|
||||
1.6
|
||||
1.8
|
||||
2.0
|
||||
1.3
|
||||
2.8
|
||||
1.4
|
||||
1.3
|
||||
1.1
|
||||
1.8
|
||||
1.6
|
||||
1.1
|
||||
0.8
|
||||
1.4
|
||||
1.0
|
||||
1.7
|
||||
1.3
|
||||
1.5
|
||||
1.7
|
||||
3.2
|
||||
1.9
|
||||
1.6
|
||||
2.1
|
||||
1.6
|
||||
1.7
|
||||
1.9
|
||||
1.6
|
||||
2.6
|
||||
1.2
|
||||
2.3
|
||||
2.1
|
||||
2.1
|
||||
1.8
|
||||
1.4
|
||||
1.1
|
||||
1.9
|
||||
3.3
|
||||
1.4
|
||||
1.6
|
||||
1.8
|
||||
1.7
|
||||
2.4
|
||||
1.6
|
||||
1.7
|
||||
2.2
|
||||
2.9
|
||||
2.7
|
||||
1.3
|
||||
2.2
|
||||
1.4
|
||||
1.9
|
||||
1.6
|
||||
1.4
|
||||
2.0
|
||||
1.5
|
||||
1.5
|
||||
2.1
|
||||
1.8
|
||||
3.3
|
||||
1.5
|
||||
1.3
|
||||
1.9
|
||||
1.3
|
||||
1.9
|
||||
3.8
|
||||
1.7
|
||||
1.2
|
||||
2.2
|
||||
1.7
|
||||
1.6
|
||||
2.3
|
||||
1.6
|
||||
1.8
|
||||
2.7
|
||||
1.5
|
||||
1.4
|
||||
1.5
|
||||
1.6
|
||||
1.3
|
||||
1.6
|
||||
1.1
|
||||
2.0
|
||||
1.8
|
||||
0.8
|
||||
2.5
|
||||
1.7
|
||||
1.9
|
||||
1.8
|
||||
3.2
|
||||
1.1
|
||||
1.9
|
||||
2.9
|
||||
1.1
|
||||
1.7
|
||||
1.8
|
||||
1.6
|
||||
1.6
|
||||
1.9
|
||||
1.4
|
||||
1.6
|
||||
1.5
|
||||
1.7
|
||||
1.6
|
||||
1.8
|
||||
1.3
|
||||
1.4
|
||||
0.6
|
||||
1.4
|
||||
1.2
|
||||
1.8
|
||||
1.7
|
||||
1.6
|
||||
1.3
|
||||
1.6
|
||||
1.5
|
||||
2.4
|
||||
2.0
|
||||
2.1
|
||||
2.5
|
||||
1.8
|
||||
1.4
|
||||
2.0
|
||||
1.1
|
||||
1.4
|
||||
2.5
|
||||
1.5
|
||||
1.9
|
||||
1.9
|
||||
1.6
|
||||
1.2
|
||||
1.3
|
||||
2.8
|
||||
2.8
|
||||
2.7
|
||||
2.4
|
||||
2.6
|
||||
2.3
|
||||
1.0
|
||||
1.6
|
||||
1.3
|
||||
2.0
|
||||
0.8
|
||||
1.7
|
||||
0.7
|
||||
1.1
|
||||
1.2
|
||||
0.6
|
||||
1.1
|
||||
0.9
|
||||
3.1
|
||||
0.9
|
||||
1.0
|
||||
2.0
|
||||
1.6
|
||||
1.1
|
||||
1.0
|
||||
1.2
|
||||
2.3
|
||||
1.5
|
||||
2.2
|
||||
1.2
|
||||
1.6
|
||||
2.6
|
||||
1.4
|
||||
1.3
|
||||
1.9
|
||||
1.6
|
||||
2.2
|
||||
1.7
|
||||
2.0
|
||||
2.4
|
||||
1.3
|
||||
1.6
|
||||
1.8
|
||||
1.7
|
||||
1.7
|
||||
2.1
|
||||
2.2
|
||||
2.3
|
||||
1.8
|
||||
2.3
|
||||
1.7
|
||||
1.4
|
||||
1.6
|
||||
2.5
|
||||
1.3
|
||||
1.1
|
||||
1.4
|
||||
3.0
|
||||
1.2
|
||||
1.7
|
||||
1.7
|
||||
1.8
|
||||
2.2
|
||||
1.7
|
||||
2.1
|
||||
2.9
|
||||
1.8
|
||||
1.8
|
||||
2.1
|
||||
1.7
|
||||
1.2
|
||||
2.3
|
||||
1.2
|
||||
1.5
|
||||
1.7
|
||||
1.8
|
||||
1.4
|
||||
1.5
|
||||
2.7
|
||||
2.4
|
||||
1.6
|
||||
1.9
|
||||
2.2
|
||||
1.6
|
||||
1.6
|
||||
1.9
|
||||
1.7
|
||||
1.8
|
||||
1.8
|
||||
2.0
|
||||
1.0
|
||||
1.2
|
||||
1.3
|
||||
1.6
|
||||
2.9
|
||||
1.5
|
||||
1.3
|
||||
1.4
|
||||
1.3
|
||||
1.7
|
||||
1.8
|
||||
1.9
|
||||
1.9
|
||||
3.7
|
||||
1.5
|
||||
2.0
|
||||
1.6
|
||||
1.6
|
||||
1.5
|
||||
2.5
|
||||
4.2
|
||||
1.6
|
||||
3.6
|
||||
1.9
|
||||
1.8
|
||||
2.0
|
||||
1.8
|
||||
3.0
|
||||
2.4
|
||||
1.2
|
||||
1.5
|
||||
2.8
|
||||
2.8
|
||||
1.7
|
||||
1.8
|
||||
2.3
|
||||
1.5
|
||||
1.5
|
||||
1.9
|
||||
1.9
|
||||
1.8
|
||||
1.2
|
||||
1.2
|
||||
1.3
|
||||
2.1
|
||||
2.0
|
||||
1.8
|
||||
1.7
|
||||
1.6
|
||||
1.9
|
||||
1.9
|
||||
2.0
|
||||
1.7
|
||||
1.8
|
||||
1.2
|
||||
2.1
|
||||
0.8
|
||||
2.2
|
||||
1.9
|
||||
1.6
|
||||
1.0
|
||||
2.1
|
||||
2.3
|
||||
1.6
|
||||
1.2
|
||||
1.9
|
||||
1.7
|
||||
2.3
|
||||
1.8
|
||||
3.3
|
||||
1.7
|
||||
2.5
|
||||
2.0
|
||||
1.2
|
||||
1.5
|
||||
2.5
|
||||
1.8
|
||||
2.7
|
||||
1.2
|
||||
3.4
|
||||
1.6
|
||||
2.4
|
||||
1.6
|
||||
2.2
|
||||
0.6
|
||||
2.0
|
||||
1.9
|
||||
1.6
|
||||
2.4
|
||||
1.4
|
||||
1.3
|
||||
1.1
|
||||
2.3
|
||||
0.5
|
||||
0.7
|
||||
0.8
|
||||
1.8
|
||||
1.5
|
||||
1.0
|
||||
2.3
|
||||
1.7
|
||||
0.5
|
||||
1.8
|
||||
2.7
|
||||
2.5
|
||||
1.5
|
||||
2.1
|
||||
5.8
|
||||
1.5
|
||||
1.1
|
||||
1.5
|
||||
2.4
|
||||
2.2
|
||||
1.2
|
||||
1.9
|
||||
1.0
|
||||
2.0
|
||||
1.2
|
||||
1.1
|
||||
1.5
|
||||
1.9
|
||||
0.5
|
||||
2.5
|
||||
1.6
|
||||
1.4
|
||||
1.9
|
||||
2.5
|
||||
1.3
|
||||
2.1
|
||||
1.6
|
||||
1.6
|
||||
1.3
|
||||
1.7
|
||||
1.5
|
||||
2.1
|
||||
1.6
|
||||
1.5
|
||||
3.2
|
||||
1.2
|
||||
2.6
|
||||
1.4
|
||||
1.3
|
||||
1.6
|
||||
1.7
|
||||
1.4
|
||||
1.6
|
||||
1.8
|
||||
1.5
|
||||
1.9
|
||||
0.9
|
||||
2.6
|
||||
1.6
|
||||
1.8
|
||||
2.1
|
||||
1.6
|
||||
1.2
|
||||
0.8
|
||||
1.6
|
||||
1.2
|
||||
0.7
|
||||
1.1
|
||||
3.1
|
||||
2.4
|
||||
2.1
|
||||
2.2
|
||||
3.0
|
||||
1.6
|
||||
1.8
|
||||
1.5
|
||||
3.2
|
||||
1.1
|
||||
1.4
|
||||
1.9
|
||||
1.2
|
||||
1.9
|
||||
1.4
|
||||
2.4
|
||||
1.8
|
||||
1.3
|
||||
1.8
|
||||
2.3
|
||||
1.9
|
||||
1.9
|
||||
1.5
|
||||
1.2
|
||||
1.6
|
||||
1.5
|
||||
2.4
|
||||
1.9
|
||||
1.5
|
||||
1.8
|
||||
1.7
|
||||
1.8
|
||||
2.2
|
||||
1.5
|
||||
1.6
|
||||
2.3
|
||||
1.8
|
||||
2.7
|
||||
1.7
|
||||
2.0
|
||||
3.0
|
||||
1.8
|
||||
2.1
|
||||
1.5
|
||||
1.0
|
||||
1.9
|
||||
1.7
|
||||
2.6
|
||||
2.7
|
||||
2.0
|
||||
1.5
|
||||
1.9
|
||||
1.7
|
||||
2.1
|
||||
1.7
|
||||
1.3
|
||||
1.6
|
||||
2.9
|
||||
3.1
|
||||
1.7
|
||||
2.4
|
||||
1.3
|
||||
2.0
|
||||
2.0
|
||||
1.7
|
||||
4.6
|
||||
2.6
|
||||
1.5
|
||||
2.0
|
||||
1.3
|
||||
1.4
|
||||
1.8
|
||||
1.4
|
||||
1.3
|
||||
1.9
|
||||
1.4
|
||||
1.7
|
||||
1.5
|
||||
1.7
|
||||
0.9
|
||||
1.9
|
||||
1.3
|
||||
1.2
|
||||
1.4
|
||||
1.4
|
||||
1.3
|
||||
1.1
|
||||
1.3
|
||||
2.1
|
||||
1.5
|
||||
1.9
|
||||
1.9
|
||||
4.6
|
||||
1.1
|
||||
1.0
|
||||
1.7
|
||||
1.2
|
||||
1.7
|
||||
0.6
|
||||
1.3
|
||||
1.7
|
||||
1.8
|
||||
1.9
|
||||
1.6
|
||||
1.6
|
||||
1.7
|
||||
1.8
|
||||
2.2
|
||||
1.7
|
||||
1.4
|
||||
1.1
|
||||
1.1
|
||||
1.5
|
||||
1.7
|
||||
1.8
|
||||
1.3
|
||||
1.1
|
||||
1.7
|
||||
1.6
|
||||
0.9
|
||||
1.8
|
||||
1.8
|
||||
1.2
|
||||
1.3
|
||||
1.6
|
||||
0.8
|
||||
1.4
|
||||
2.2
|
||||
1.8
|
||||
1.5
|
||||
1.9
|
||||
2.0
|
||||
1.7
|
||||
1.6
|
||||
1.0
|
||||
0.8
|
||||
1.5
|
||||
2.1
|
||||
1.4
|
||||
2.7
|
||||
1.5
|
||||
1.1
|
||||
1.2
|
||||
1.7
|
||||
2.2
|
||||
2.1
|
||||
1.6
|
||||
1.2
|
||||
1.6
|
||||
1.8
|
||||
1.1
|
||||
2.3
|
||||
1.2
|
||||
1.6
|
||||
1.4
|
||||
1.7
|
||||
1.6
|
||||
1.0
|
||||
1.5
|
||||
1.8
|
||||
2.0
|
||||
1.5
|
||||
3.0
|
||||
1.7
|
||||
2.0
|
||||
1.7
|
||||
2.4
|
||||
2.7
|
||||
1.5
|
||||
1.3
|
||||
2.2
|
||||
3.3
|
||||
1.4
|
||||
2.1
|
||||
2.0
|
||||
1.7
|
||||
1.4
|
||||
2.1
|
||||
1.7
|
||||
2.3
|
||||
1.2
|
||||
1.7
|
||||
1.5
|
||||
1.7
|
||||
1.7
|
||||
2.3
|
||||
1.8
|
||||
1.5
|
||||
2.7
|
||||
2.3
|
||||
3.0
|
||||
2.4
|
||||
2.4
|
||||
2.9
|
||||
1.7
|
||||
1.5
|
||||
1.0
|
||||
2.5
|
||||
1.7
|
||||
1.9
|
||||
2.0
|
||||
1.8
|
||||
1.4
|
||||
2.1
|
||||
1.6
|
||||
2.3
|
||||
1.7
|
||||
2.3
|
||||
2.7
|
||||
1.8
|
||||
1.4
|
||||
1.6
|
||||
1.7
|
||||
1.2
|
||||
2.5
|
||||
1.5
|
||||
1.9
|
||||
1.4
|
||||
1.9
|
||||
1.5
|
||||
1.9
|
||||
1.4
|
||||
1.7
|
||||
1.5
|
||||
1.5
|
||||
1.6
|
||||
2.1
|
||||
1.7
|
||||
2.3
|
||||
1.0
|
||||
1.5
|
||||
1.5
|
||||
1.4
|
||||
0.9
|
||||
2.8
|
||||
1.6
|
||||
2.1
|
||||
1.8
|
||||
1.7
|
||||
2.3
|
||||
1.8
|
||||
2.0
|
||||
1.3
|
||||
2.1
|
||||
2.0
|
||||
0.5
|
||||
1.2
|
||||
1.2
|
||||
2.2
|
||||
2.2
|
||||
0.8
|
||||
1.2
|
||||
1.8
|
||||
1.0
|
||||
1.9
|
||||
2.0
|
||||
1.7
|
||||
1.9
|
||||
2.5
|
||||
1.1
|
||||
2.2
|
||||
1.1
|
||||
1.4
|
||||
1.4
|
||||
1.7
|
||||
2.1
|
||||
1.4
|
||||
2.0
|
||||
1.9
|
||||
1.7
|
||||
2.5
|
||||
1.2
|
||||
0.9
|
||||
1.2
|
||||
2.2
|
||||
2.9
|
||||
2.5
|
||||
2.0
|
||||
2.1
|
||||
2.0
|
||||
1.8
|
||||
2.0
|
||||
2.1
|
||||
2.0
|
||||
1.5
|
||||
1.5
|
||||
2.7
|
||||
1.8
|
||||
2.6
|
||||
1.4
|
||||
1.9
|
||||
2.6
|
||||
1.5
|
||||
2.1
|
||||
1.6
|
||||
2.2
|
||||
2.0
|
||||
1.5
|
||||
2.1
|
||||
1.8
|
||||
1.9
|
||||
2.0
|
||||
1.8
|
||||
0.9
|
||||
2.0
|
||||
4.6
|
||||
3.6
|
||||
1.6
|
||||
1.4
|
||||
1.3
|
||||
2.0
|
||||
2.9
|
||||
1.3
|
||||
2.3
|
||||
1.7
|
||||
1.5
|
||||
3.1
|
||||
1.8
|
||||
1.4
|
||||
1.7
|
||||
2.9
|
||||
1.9
|
||||
1.2
|
||||
3.0
|
||||
1.7
|
||||
2.5
|
||||
1.3
|
||||
4.2
|
||||
1.4
|
||||
1.6
|
||||
2.2
|
||||
2.2
|
||||
1.5
|
||||
1.6
|
||||
1.7
|
||||
1.7
|
||||
1.3
|
||||
2.1
|
||||
3.1
|
||||
2.6
|
||||
1.6
|
||||
1.5
|
||||
1.7
|
||||
1.0
|
||||
1.0
|
||||
1.9
|
||||
1.4
|
||||
1.2
|
||||
0.9
|
||||
2.2
|
||||
1.6
|
||||
1.4
|
||||
2.2
|
||||
2.2
|
||||
1.2
|
||||
1.5
|
||||
1.2
|
||||
1.9
|
||||
1.3
|
||||
2.1
|
||||
0.9
|
||||
1.2
|
||||
1.3
|
||||
1.5
|
||||
1.5
|
||||
2.4
|
||||
2.4
|
||||
2.3
|
||||
1.9
|
||||
2.0
|
||||
2.2
|
||||
0.8
|
||||
1.8
|
||||
1.9
|
||||
1.1
|
||||
1.2
|
||||
1.5
|
||||
3.4
|
||||
1.6
|
||||
1.5
|
||||
1.4
|
||||
0.9
|
||||
1.7
|
||||
1.5
|
Reference in New Issue
Block a user