SERA Toolbox1 and Toolbox2 standalone versions
This commit is contained in:
@@ -0,0 +1,45 @@
|
||||
|
||||
function MM_MB_Plot(M,Mc,x1,x2,m,zer1,zer2,gau_b,poch,poch2)
|
||||
M=M(M>=Mc);
|
||||
|
||||
% ----- plotting magnitude density and its derivatives ------
|
||||
xp=linspace(x1,x2,m)';
|
||||
%st=range([x1 x2])/(m-1);xp=x1:st:x2;
|
||||
figure('rend','painters','pos',[800 100 600 900]);hold on
|
||||
subplot(3,1,1);
|
||||
plot(xp,gau_b,'LineWidth',2);hold on;
|
||||
for i=1:length(zer1)
|
||||
Le1=plot([zer1(i) zer1(i)],[0 10],'k--','LineWidth',1);
|
||||
end
|
||||
for i=1:length(zer2)
|
||||
Le2=plot([zer2(i) zer2(i)],[0 10],'r--','LineWidth',1);
|
||||
end
|
||||
xlim([min(M)-0.1 max(M)+0.1]);ylim([0 max(gau_b)+0.01])
|
||||
title(['Data density for h_c_r_i_t ';' (critical smoothing factor) '],'FontSize',14);%axis square
|
||||
legend([Le1,Le2],{'extremum','Inflection Point(s)'});ylabel('PDF','FontSize',14)
|
||||
subplot(3,1,2);
|
||||
plot(xp,poch,'LineWidth',2);ylabel('1^s^t derivative','FontSize',14);hold on;%axis square;
|
||||
plot([xp(1) xp(length(xp))],[0 0],'--','LineWidth',1)
|
||||
for i=1:length(zer1)
|
||||
plot([zer1(i) zer1(i)],[min(poch)-0.01 max(poch)+0.01],'k--','LineWidth',1)
|
||||
end
|
||||
for i=1:length(zer2)
|
||||
plot([zer2(i) zer2(i)],[min(poch)-0.01 max(poch)+0.01],'r--','LineWidth',1)
|
||||
end
|
||||
xlim([min(M)-0.1 max(M)+0.1]);ylim([min(poch)-0.01 max(poch)+0.01])
|
||||
subplot(3,1,3);
|
||||
plot(xp,poch2,'LineWidth',2);ylabel('2^n^d derivative','FontSize',14);%axis square
|
||||
hold on; plot([xp(1) xp(length(xp))],[0 0],'--','LineWidth',1)
|
||||
for i=1:length(zer1)
|
||||
plot([zer1(i) zer1(i)],[min(poch2)-0.01 max(poch2)+0.01],'k--','LineWidth',1)
|
||||
end
|
||||
for i=1:length(zer2)
|
||||
plot([zer2(i) zer2(i)],[min(poch2)-0.01 max(poch2)+0.01],'r--','LineWidth',1)
|
||||
end
|
||||
xlim([min(M)-0.1 max(M)+0.1]);ylim([min(poch2)-0.01 max(poch2)+0.01])
|
||||
xlabel('Data','FontSize',14);
|
||||
|
||||
cd Outputs_MM_MB\;saveas(gcf,'Mulitimodality_output.jpg');cd ../
|
||||
|
||||
end
|
||||
|
@@ -0,0 +1,489 @@
|
||||
% FUNCTION: MM_MB
|
||||
% VERSION: [Wrapper Standalone Version] V2.8
|
||||
% COMPATIBLE with Matlab version 2017b or later
|
||||
% TOOLBOX: "Magnitude Complexity Toolbox" within SERA Project
|
||||
% DOCUMENT: "READ_ME_App_2B_v2_Description_MM_MB.docx"
|
||||
% --------------------------------------------------------------------------------------------------------
|
||||
% Test performed for the Distribution of a given dataset (time-series)
|
||||
% checking whether PDF demonstrates multi-modes/ multi-bumps
|
||||
% --------------------------------------------------------------------------------------------------------
|
||||
% OVERVIEW: This Application is a Matlab function which performs testing
|
||||
% of hypotheses of 1) multimodality and 2) existence of multi-bumps in a given
|
||||
% magnitude distribution. Please check also the accompanying auxiliary scripts
|
||||
% 'MM_MB_wrapper' and 'MM_MB_Plot' for a specific application (scenario)
|
||||
% and plotting results.
|
||||
% --------------------------------------------------------------------------------------------------------
|
||||
% AUTHORS: K. Leptokaropoulos and P. Urban
|
||||
% last updated: 03/2019, within SERA PROJECT, EU Horizon 2020 R&I
|
||||
% programme under grant agreement No.730900
|
||||
% CURRENT VERSION: v2.8 **** [Wrapper Standalone Version]
|
||||
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||||
% PLEASE refer to the accompanying document:
|
||||
% "READ_ME_App_2B_v2_Description_MM_MB.docx"
|
||||
% for description of the Application and its requirements.
|
||||
% --------------------------------------------------------------------------------------------------------
|
||||
% DESCRIPTION:
|
||||
% The function studies the magniutude distribution complexity by means of the
|
||||
% Mulitmodality Test (Silverman, 1986; Efron and Tibshirani, 1993). Two null
|
||||
% hypotheses (H0s) are tested:
|
||||
% H01 - multimodality: The magnitude PDF is unimodal
|
||||
% H02 - multi-bump: The magnitude PDF has one bump to the right of the
|
||||
% mode.
|
||||
% A mode is a local maximum of probability density and a bump is an interval
|
||||
% [a,b] such that the probability density is concave over [a,b] but not over any
|
||||
% larger interval (Silverman, 1986). The importance of modes and bumps relies
|
||||
% on the fact that multiple occurrences of these features in a PDF indicate, for
|
||||
% most standard densities, a mixing of components (e.g. Cox, 1966).
|
||||
% --------------------------------------------------------------------------------------------------------
|
||||
% INPUT: The function takes as input any matlab vector (input parameter "M").
|
||||
% The input data can be uploaded by the use of "ADTestMag_wrapper"
|
||||
% script, from an ASCII file (e.g. *.txt). Such file should contain a vector
|
||||
% (raw or column) of the Data that the User wishes to process. The User
|
||||
% is afterwards requested to enter values for some additional parameters.
|
||||
% Input Parameters Overview:
|
||||
% --- M: Time-Series (e.g. Magnitude) vector, read i.e. from an ASCII
|
||||
% file.
|
||||
% --- Mc: Corresponds to the input data completeness threshold.
|
||||
% --- m: number of points to divide the data sample, default 100,
|
||||
% recommended 100-1000.
|
||||
% % INPUTS for MODE and BUMP HUNTING
|
||||
% - n_boot: Number of bootstrap iterations for both MM and MB
|
||||
% (default: 100)
|
||||
% - delta_h: Smoothing parameter step for successive trials in defining
|
||||
% the critical h for MM and MB process (h-critical accuracy)
|
||||
% (default: 0.001)
|
||||
% - h : initial value of the smoothing factor to apply in defining the
|
||||
% critical h for the MM testing process (default:0.01)
|
||||
% - MMmeth: Method for multimodality Testing. Possible values:
|
||||
% 'Efron', 'Silverman'
|
||||
% - MBmeth: Method for multibumps Testing. Possible values:
|
||||
% 'Silverman', 'Efron'
|
||||
% NOTE: The initial value for MB process is taken equal to the
|
||||
% critical value defined in the MM process minus its
|
||||
% accuracy (i.e. hcrit_Modes-delta_h, see OUTPUT below)
|
||||
% ---------------------------------------------------------------------------------------------------------
|
||||
% OUTPUT:
|
||||
% - Output Report with data and parameters used
|
||||
% ('Output_MM_MB.txt file')
|
||||
% - Output Parameters:
|
||||
% % DOUBLES:
|
||||
% * n - Number of observations used
|
||||
% * bval- b-value of the G-R law
|
||||
% * Rmodes - The estimated significance of null hypothesis (H01)
|
||||
% * hcrit_modes - estimated critical smoothness parameter for MM test
|
||||
% * Rbumps - The estimated significance of null hypothesis (H02)
|
||||
% * hcrit_bumps - estimated critical smoothness parameter for MB test
|
||||
% * zer1 - point where 1st derivative is zero (extremum)
|
||||
% * zer2 - point(s) where 2nd derivative is zero (inflection points)
|
||||
% [NOTE: zer2 can be a vector]
|
||||
% % VECTORS:
|
||||
% * gau: Data vector PDF estimated for h critical from Multimodality
|
||||
% * gau_b: Data vector PDF estimated for h critical from Multibumps
|
||||
% * poch: 1st derivative of Data vector PDF for h critical from Multibumps
|
||||
% * poch2: 2nd derivative of Data vector PDF for h critical from Multibumps
|
||||
% * x1,x2: minimum and maximum data points after randomization
|
||||
% (parameters needed for plotting)
|
||||
% - Output Figures: Please refer to the Auxiliary Function: "MM_MB_Plot"
|
||||
%
|
||||
% ---------------------------------------------------------------------------------------------------------
|
||||
% REFERENCES:
|
||||
% -- Cox, D. R., (1966), Notes on the analysis of mixed frequency distributions.
|
||||
% Br. J. Math. Stat. Psychol. 19, 39-47, doi.org/10.1111/j.2044-8317.1966.tb00353.x.
|
||||
% -- Efron, B., and Tibshirani R.J. (1993) An Introduction to the Bootstrap,
|
||||
% CRC Press, Boca Raton, Fla.
|
||||
% -- Lasocki S. and E. E, Papadimitriou (2006), "Magnitude distribution
|
||||
% complexity revealed in seismicity from Greece", J. Geophys. Res.,
|
||||
% 111, B11309, doi:10.1029/2005JB003794.
|
||||
% -- Silverman, B. W., (1986), Density estimation for statistics and data analysis,
|
||||
% CRC press, Boa Raton, Fla.
|
||||
% ---------------------------------------------------------------------------------------------------------
|
||||
% LICENSE
|
||||
% This is free software: you can redistribute it and/or modify it under
|
||||
% the terms of the GNU General Public License as published by the
|
||||
% Free Software Foundation, either version 3 of the License, or
|
||||
% (at your option) any later version.
|
||||
%
|
||||
% This program is distributed in the hope that it will be useful, but
|
||||
% WITHOUT ANY WARRANTY; without even the implied warranty
|
||||
% of MERCHANTABILITY or FITNESS FOR A PARTICULAR
|
||||
% PURPOSE. See the GNU General Public License for more details.
|
||||
% ---------------------------------------------------------------------------------------------------------
|
||||
|
||||
function [n,bval,Rmodes,hcrit_modes,Rbumps,hcrit_bumps,gau,gau_b,poch,poch2,zer1,zer2,x1,x2]...
|
||||
=MM_MB_V2_8(M,Mc,m,n_boot,h,delta_h,MMmeth,MBmeth)
|
||||
tic
|
||||
mkdir Outputs_MM_MB
|
||||
% define round-off interval and select data above Mc
|
||||
sm=sort(M);dm=sm(2:length(sm))-sm(1:length(sm)-1);
|
||||
dm=dm(dm>0);eps=min(dm);
|
||||
M=M(M>=Mc);
|
||||
|
||||
% calculate beta
|
||||
Rp=round(-log10(eps)); %% check the RP parameter
|
||||
[beta]=beta_AK_UT_Mbin (Mc,M,Rp);
|
||||
|
||||
% Randomize magnitude
|
||||
m_corr(:,1) = korekta(M,Mc,eps,beta);
|
||||
|
||||
% SETTING PARAMETERS
|
||||
n=length(m_corr);
|
||||
x1=min(m_corr)-0.001; %a bit lower than Mmin
|
||||
x2=max(m_corr)+0.001; %a bit higher than Mmax
|
||||
|
||||
|
||||
|
||||
% MULTIMODALITY TESTING
|
||||
[hcrit_modes,gau]=critical_smoothing(m_corr,n,delta_h,x1,x2,m,h);
|
||||
|
||||
% Run Multimodality testing
|
||||
switch MMmeth
|
||||
case 'Efron'
|
||||
[Rmodes] = test_multimodality_e (m_corr,n,x1,x2,m,hcrit_modes,n_boot);
|
||||
case 'Silverman'
|
||||
[Rmodes] = test_multimodality (m_corr,n,x1,x2,m,hcrit_modes,n_boot);
|
||||
end
|
||||
|
||||
% ------------------------------------------------------------------------
|
||||
% [zer1]=zera_1st(m_corr,n,x1,x2,m,hcrit-delta_h);
|
||||
% ------------------------------------------------------------------------
|
||||
|
||||
% BUMP HUNTING
|
||||
[hcrit_bumps,gau_b,poch,poch2]=critical_smoothing_bumps(m_corr,n,delta_h,x1,x2,m,hcrit_modes-delta_h);
|
||||
|
||||
% Run Bump hunting
|
||||
switch MBmeth
|
||||
case 'Silverman'
|
||||
[Rbumps] = bump_hunt (m_corr,n,x1,x2,m,hcrit_bumps,n_boot);
|
||||
case 'Efron'
|
||||
[Rbumps] = bump_hunt_e (m_corr,n,x1,x2,m,hcrit_bumps,n_boot);
|
||||
end
|
||||
|
||||
bval=beta/log(10);
|
||||
% Display and Save the Results:
|
||||
re=table(n,bval,Rmodes,hcrit_modes,Rbumps,hcrit_bumps)
|
||||
|
||||
[zer1]=zera_1st(m_corr,n,x1,x2,m,hcrit_bumps-delta_h); % use the same h in both cases
|
||||
[zer2]=zera_2nd(m_corr,n,x1,x2,m,hcrit_bumps-delta_h);
|
||||
|
||||
|
||||
toc
|
||||
|
||||
% Save Outputs
|
||||
cd Outputs_MM_MB\
|
||||
SaveOuts(eps,Mc,m,n_boot,n_boot,n,bval,Rmodes,hcrit_modes,Rbumps,hcrit_bumps)
|
||||
cd ../
|
||||
end
|
||||
|
||||
% ----- plotting magnitude density and its derivatives ------
|
||||
% ****************************************************
|
||||
|
||||
%% ******************************************************************
|
||||
% *************************** FUNCTIONS ***************************
|
||||
% ****-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-****
|
||||
%% --------------------------------------------------------------------------------------
|
||||
%% --------------------------------------------------------------------------------------
|
||||
%
|
||||
function [beta]=beta_AK_UT_Mbin(Mmin,m,Rp)
|
||||
%
|
||||
% m - magnitude vector
|
||||
% Mmin - completeness magitude threshold
|
||||
% beta - beta value. b(G-R)=beta/log(10)
|
||||
% Rp - Rounding precision, (1 - one decimal, 2 - two decimals, etc)
|
||||
beta=1/(mean(m)-(Mmin-0.5*10^(-Rp)));
|
||||
end
|
||||
|
||||
%% --------------------------------------------------------------------------------------
|
||||
% Magnitude randomization
|
||||
%
|
||||
function [m_corr]=korekta(m,Mmin,eps,beta)
|
||||
%
|
||||
% m - magnitude vector
|
||||
% Mmin - completeness magitude threshold
|
||||
% beta - beta value. b(G-R)=beta/log(10)
|
||||
% EPS - magnitude round-off interval
|
||||
%
|
||||
% m_corr - randomized magnitude vector
|
||||
%
|
||||
F1=1-exp(-beta*(m-Mmin-0.5*eps));
|
||||
F2=1-exp(-beta*(m-Mmin+0.5*eps));
|
||||
u=rand(size(m));
|
||||
w=u.*(F2-F1)+F1;
|
||||
m_corr=Mmin-log(1-w)./beta;
|
||||
end
|
||||
%% --------------------------------------------------------------------------------------
|
||||
% Finding critical smoothing parameter value for which the non parametric
|
||||
% PDF demonstrates one mode in the selected interval
|
||||
%
|
||||
function [hcrit,gau]=critical_smoothing(mm,n,delta_h,x1,x2,m,h)
|
||||
%
|
||||
x=sort(mm);
|
||||
p=2.0;
|
||||
c=sqrt(2*pi);
|
||||
%x1=input('Lower limit ');
|
||||
%x2=input('Upper limit ');
|
||||
%m=input('No. of points ');
|
||||
y=linspace(x1,x2,m);
|
||||
%h=input('Initial smoothing factor ');
|
||||
while p>1
|
||||
for i=1:m,
|
||||
poch(i)=-sum((y(i)-x).*exp(-0.5*((y(i)-x)./h).^2));
|
||||
end
|
||||
p=0;
|
||||
for i=2:m,
|
||||
if poch(i-1)*poch(i)<0
|
||||
p=p+1;
|
||||
end
|
||||
end
|
||||
h=h+delta_h;
|
||||
end
|
||||
hcrit=h-delta_h;
|
||||
for i=1:m,
|
||||
gau(i)=sum(exp(-0.5*((y(i)-x)./hcrit).^2))/c/n/hcrit;
|
||||
end
|
||||
end
|
||||
%% --------------------------------------------------------------------------------------
|
||||
% "SMOOTHED BOOTSTRAP"
|
||||
%
|
||||
function [R]=test_multimodality(m,n,x1,x2,n_point,h_crit,mm)
|
||||
%
|
||||
x=sort(m);
|
||||
c=sqrt(2*pi);
|
||||
%x1=input('Lower limit ');
|
||||
%x2=input('Upper limit ');
|
||||
%m=input('No. of points ');
|
||||
y=linspace(x1,x2,n_point);
|
||||
%h_crit=input('Critical smoothing factor ');
|
||||
%mm=input('No of trials ');
|
||||
no_wielom=0;
|
||||
for j=1:mm,
|
||||
ind=unidrnd(n,n,1);
|
||||
eps=normrnd(0,1,n,1);
|
||||
z=x(ind)+h_crit.*eps;
|
||||
z=sort(z);
|
||||
poch(1)=-sum((y(1)-z).*exp(-0.5*((y(1)-z)./h_crit).^2));
|
||||
p=0;
|
||||
for i=2:n_point,
|
||||
poch(i)=-sum((y(i)-z).*exp(-0.5*((y(i)-z)./h_crit).^2));
|
||||
if poch(i-1)*poch(i)<0
|
||||
p=p+1;
|
||||
end
|
||||
end
|
||||
if p>1
|
||||
no_wielom=no_wielom+1;
|
||||
end
|
||||
end
|
||||
R=no_wielom/mm;
|
||||
end
|
||||
%% --------------------------------------------------------------------------------------
|
||||
% "SMOOTHED BOOTSTRAP"
|
||||
% EFRON
|
||||
%
|
||||
function [R]=test_multimodality_e(m,n,x1,x2,n_point,h_crit,mm)
|
||||
%
|
||||
x=sort(m);
|
||||
s2=sqrt(1+h_crit^2/var(x));
|
||||
c=sqrt(2*pi);
|
||||
%x1=input('Lower limit ');
|
||||
%x2=input('Upper limit ');
|
||||
%m=input('No. of points ');
|
||||
y=linspace(x1,x2,n_point);
|
||||
%h_crit=input('Critical smoothing factor ');
|
||||
%mm=input('No of trials ');
|
||||
no_wielom=0;
|
||||
for j=1:mm,
|
||||
ind=unidrnd(n,n,1);
|
||||
eps=normrnd(0,1,n,1);
|
||||
me=mean(x(ind));
|
||||
z=me+(x(ind)-me+h_crit.*eps)./s2;
|
||||
z=sort(z);
|
||||
poch(1)=-sum((y(1)-z).*exp(-0.5*((y(1)-z)./h_crit).^2));
|
||||
p=0;
|
||||
for i=2:n_point,
|
||||
poch(i)=-sum((y(i)-z).*exp(-0.5*((y(i)-z)./h_crit).^2));
|
||||
if poch(i-1)*poch(i)<0
|
||||
p=p+1;
|
||||
end
|
||||
end
|
||||
if p>1
|
||||
no_wielom=no_wielom+1;
|
||||
end
|
||||
end
|
||||
R=no_wielom/mm;
|
||||
end
|
||||
%% --------------------------------------------------------------------------------------
|
||||
% Finding critical smoothing parameter value for which the non parametric
|
||||
% PDF demonstrates one bump in the selected interval
|
||||
%
|
||||
function [hcrit,gau,poch,poch2]=critical_smoothing_bumps(mm,n,delta_h,x1,x2,m,h)
|
||||
%
|
||||
x=sort(mm);
|
||||
p=2.0;
|
||||
c=sqrt(2*pi);
|
||||
%x1=input('Lower limit ');
|
||||
%x2=input('Upper limit ');
|
||||
%m=input('No. of points ');
|
||||
y=linspace(x1,x2,m);
|
||||
%h=input('Initial smoothing factor ');
|
||||
while p>1
|
||||
for i=1:m,
|
||||
% poch(i)=-sum((y(i)-x).*exp(-0.5*((y(i)-x)./h).^2));
|
||||
poch2(i)=sum((((y(i)-x)./h).^2-1).*exp(-0.5*((y(i)-x)./h).^2));
|
||||
end
|
||||
p=0;
|
||||
for i=2:m,
|
||||
if poch2(i-1)*poch2(i)<0
|
||||
p=p+1;
|
||||
end
|
||||
end
|
||||
h=h+delta_h;
|
||||
end
|
||||
hcrit=h-delta_h;
|
||||
for i=1:m,
|
||||
gau(i)=sum(exp(-0.5*((y(i)-x)/hcrit).^2))/c/n/hcrit;
|
||||
poch(i)=-sum((y(i)-x).*exp(-0.5*((y(i)-x)./hcrit).^2));
|
||||
poch2(i)=sum((((y(i)-x)./hcrit).^2-1).*exp(-0.5*((y(i)-x)./hcrit).^2));
|
||||
end
|
||||
end
|
||||
%% --------------------------------------------------------------------------------------
|
||||
% "SMOOTHED BOOTSTRAP"
|
||||
%
|
||||
function [R]=bump_hunt(m,n,x1,x2,n_point,h_crit,mm)
|
||||
%
|
||||
x=sort(m);
|
||||
c=sqrt(2*pi);
|
||||
%x1=input('Lower limit ');
|
||||
%x2=input('Upper limit ');
|
||||
%m=input('No. of points ');
|
||||
y=linspace(x1,x2,n_point);
|
||||
%h_crit=input('Critical smoothing factor ');
|
||||
%mm=input('No of trials ');
|
||||
no_bump=0;
|
||||
for j=1:mm,
|
||||
ind=unidrnd(n,n,1);
|
||||
eps=normrnd(0,1,n,1);
|
||||
z=x(ind)+h_crit.*eps;
|
||||
z=sort(z);
|
||||
% poch(1)=-sum((y(1)-z).*exp(-0.5*((y(1)-z)./h_crit).^2));
|
||||
poch2(1)=sum((((y(1)-z)./h_crit).^2-1).*exp(-0.5*((y(1)-z)./h_crit).^2));
|
||||
p=0;
|
||||
for i=2:n_point,
|
||||
% poch(i)=-sum((y(i)-z).*exp(-0.5*((y(i)-z)./h_crit).^2));
|
||||
poch2(i)=sum((((y(i)-z)./h_crit).^2-1).*exp(-0.5*((y(i)-z)./h_crit).^2));
|
||||
if poch2(i-1)*poch2(i)<0
|
||||
p=p+1;
|
||||
end
|
||||
end
|
||||
if p>1
|
||||
no_bump=no_bump+1;
|
||||
end
|
||||
end
|
||||
R=no_bump/mm;
|
||||
end
|
||||
%% --------------------------------------------------------------------------------------
|
||||
% "SMOOTHED BOOTSTRAP"
|
||||
% EFRON
|
||||
%
|
||||
function [R]=bump_hunt_e(m,n,x1,x2,n_point,h_crit,mm)
|
||||
%
|
||||
x=sort(m);
|
||||
s2=sqrt(1+h_crit^2/var(x));
|
||||
c=sqrt(2*pi);
|
||||
%x1=input('Lower limit ');
|
||||
%x2=input('Upper limit ');
|
||||
%m=input('No. of points ');
|
||||
y=linspace(x1,x2,n_point);
|
||||
%h_crit=input('Critical smoothing factor ');
|
||||
%mm=input('No of trials ');
|
||||
no_bump=0;
|
||||
for j=1:mm,
|
||||
ind=unidrnd(n,n,1);
|
||||
eps=normrnd(0,1,n,1);
|
||||
me=mean(x(ind));
|
||||
z=me+(x(ind)-me+h_crit.*eps)./s2;
|
||||
z=sort(z);
|
||||
% poch(1)=-sum((y(1)-z).*exp(-0.5*((y(1)-z)./h_crit).^2));
|
||||
poch2(1)=sum((((y(1)-z)./h_crit).^2-1).*exp(-0.5*((y(1)-z)./h_crit).^2));
|
||||
p=0;
|
||||
for i=2:n_point,
|
||||
% poch(i)=-sum((y(i)-z).*exp(-0.5*((y(i)-z)./h_crit).^2));
|
||||
poch2(i)=sum((((y(i)-z)./h_crit).^2-1).*exp(-0.5*((y(i)-z)./h_crit).^2));
|
||||
if poch2(i-1)*poch2(i)<0
|
||||
p=p+1;
|
||||
end
|
||||
end
|
||||
if p>1
|
||||
no_bump=no_bump+1;
|
||||
end
|
||||
end
|
||||
R=no_bump/mm;
|
||||
end
|
||||
|
||||
%% --------------------------------------------------------------------------------------
|
||||
% Determination of PDF first derivative zeros estimates in the selected interval
|
||||
%
|
||||
function [zer1]=zera_1st(mm,n,x1,x2,m,h)
|
||||
%
|
||||
x=sort(mm);
|
||||
c=sqrt(2*pi);
|
||||
y=linspace(x1,x2,m);
|
||||
for i=1:m,
|
||||
poch(i)=-sum((y(i)-x).*exp(-0.5*((y(i)-x)./h).^2));
|
||||
end
|
||||
p=0;
|
||||
for i=2:m,
|
||||
if poch(i-1)*poch(i)<0
|
||||
p=p+1;
|
||||
zer1(p)=(y(i)+y(i-1))/2; %K 23JAN2019
|
||||
end
|
||||
end
|
||||
|
||||
end
|
||||
%% --------------------------------------------------------------------------------------
|
||||
% Determination of PDF second derivative zeros estimates in the selected interval
|
||||
%
|
||||
|
||||
function [zer2]=zera_2nd(mm,n,x1,x2,m,h)
|
||||
%
|
||||
x=sort(mm);
|
||||
c=sqrt(2*pi);
|
||||
y=linspace(x1,x2,m);
|
||||
for i=1:m,
|
||||
poch2(i)=sum((((y(i)-x)./h).^2-1).*exp(-0.5*((y(i)-x)./h).^2));
|
||||
end
|
||||
p1=0;
|
||||
for i=2:m,
|
||||
if poch2(i-1)*poch2(i)<0
|
||||
p1=p1+1;
|
||||
zer2(p1)=(y(i)+y(i-1))/2; %K 23JAN2019
|
||||
end
|
||||
end
|
||||
|
||||
end
|
||||
%% --------------------------------------------------------------------------------------------------------
|
||||
% --------------------------------------- SAVE OUTPUTS in the report file ---------------------------------------
|
||||
% Save Outputs
|
||||
function SaveOuts(EPS,Mmin,m,n_boot1,n_boot2,n,bval,Rmodes,hcrit_modes,Rbumps,hcrit_bumps)
|
||||
% ---- Save *.txt file with Parameters Report ----
|
||||
%cd Outputs/
|
||||
fid=fopen('REPORT_Multimodality.txt','w');
|
||||
fprintf(fid,['RESULTS from MULTIMODALITY/MULTIBUMP TESTING (created on ', datestr(now),')\n']);
|
||||
fprintf(fid,'------------------------------------------------------------------------------\n');
|
||||
fprintf(fid,['<Data Round-off interval >: ', num2str(EPS),'\n']);
|
||||
fprintf(fid,['<Number of points to divide the sample >: ', num2str(m),'\n']);
|
||||
fprintf(fid,['<Completeness Threshold >: ', num2str(Mmin),'\n']);
|
||||
fprintf(fid,['<Number of events used >: ', num2str(n),'\n']);
|
||||
fprintf(fid,['<Gutenberg-Richter b-value >: ', num2str(bval,'%5.3f'),'\n']);
|
||||
fprintf(fid,['<Number of bootstrap iterations (multimodality) >: ', num2str(n_boot1),'\n']);
|
||||
fprintf(fid,['<Number of bootstrap iterations (multibumps) >: ', num2str(n_boot2),'\n']);
|
||||
fprintf(fid,'------------------------------------------------------------------------------\n');
|
||||
fprintf(fid,['<Critical Smoothing Parameter,h (for modes) >: ', num2str(hcrit_modes,'%6.4f'),'\n']);
|
||||
fprintf(fid,['<Critical Smoothing Parameter,h (for bumps) >: ', num2str(hcrit_bumps,'%6.4f'),'\n']);
|
||||
fprintf(fid,['<p-value of H01 that input data PDF is unimodal >: ', num2str(Rmodes,'%4.3f'),'\n']);
|
||||
fprintf(fid,['<p-value of H02 that input data PDF has no more than \n']);
|
||||
fprintf(fid,[' one bump to the right of the global maximum >: ', num2str(Rbumps,'%4.3f'),'\n']);
|
||||
|
||||
|
||||
|
||||
fclose(fid);
|
||||
|
||||
end
|
@@ -0,0 +1,46 @@
|
||||
% This is a Wrapper Script for performing a test for the existence of multi-modes
|
||||
% and multi-bumps in a given (magnitude) time-series. The function MM_MB is
|
||||
% executed for this purpose. The description of the fuction can be found in
|
||||
% comments within "MM_MB_V2_*.m" code. Here, the input data and the
|
||||
% parameters (i.e. the function's arguments) are defined by the User. Please
|
||||
% modify the parameters in the script accordingly,the lines that can be modified
|
||||
% are followed by a comment "- PLEASE SET".
|
||||
% PLEASE REFER ALSO TO APPLCATION DOCUMENTATION:
|
||||
% "READ_ME_App_2B_v2_Description_MM_MB.docx"
|
||||
|
||||
clc;clear;
|
||||
% STEP 1. DATA Upload:
|
||||
cd Sample_Data % PLEASE Specify data directory path
|
||||
M=dlmread('test_vector.txt'); % PLEASE SET data (magnitude) vector input file
|
||||
cd ../
|
||||
|
||||
% STEP 2. Completeness Threshold Selection:
|
||||
Mc=1.5; % PLEASE SET
|
||||
|
||||
% STEP 3. Number of points:
|
||||
m=100; % PLEASE SET
|
||||
|
||||
% STEP 4. Bootstrap Iterations:
|
||||
n_boot=100; % PLEASE SET
|
||||
|
||||
% STEP 5. Initial h:
|
||||
h=0.01; % PLEASE SET
|
||||
|
||||
% STEP 6. h step (dh):
|
||||
delta_h=0.001; % PLEASE SET
|
||||
|
||||
% STEP 7. Method for MM testing:
|
||||
MMmeth='Efron'; % PLEASE SET
|
||||
|
||||
% STEP 8. Method for MB testing:
|
||||
MBmeth='Silverman'; % PLEASE SET
|
||||
|
||||
% STEP 9. RUN Function ['MM_MB']
|
||||
[n,bval,Rmodes,hcrit_modes,Rbumps,hcrit_bumps,gau,gau_b,poch,poch2,zer1,zer2,x1,x2]=...
|
||||
MM_MB_V2_8(M,Mc,m,n_boot,h,delta_h,MMmeth,MBmeth);
|
||||
|
||||
% STEP 10. Optional, Plotting % PLEASE Comment the next line to deactivate visualization
|
||||
MM_MB_Plot(M,Mc,x1,x2,m,zer1,zer2,gau_b,poch,poch2);
|
||||
|
||||
|
||||
|
Binary file not shown.
@@ -0,0 +1,880 @@
|
||||
1.7
|
||||
0.8
|
||||
1.8
|
||||
1.5
|
||||
1.7
|
||||
0.8
|
||||
1.7
|
||||
2.1
|
||||
0.9
|
||||
1.3
|
||||
1.1
|
||||
1.9
|
||||
2.3
|
||||
1.7
|
||||
1.9
|
||||
1.4
|
||||
1.5
|
||||
1.6
|
||||
1.5
|
||||
2.7
|
||||
2.9
|
||||
1.3
|
||||
1.2
|
||||
0.9
|
||||
2.7
|
||||
1.4
|
||||
1.2
|
||||
1.4
|
||||
1.7
|
||||
1.5
|
||||
1.4
|
||||
1.5
|
||||
2.4
|
||||
2.7
|
||||
1.7
|
||||
2.1
|
||||
1.0
|
||||
1.7
|
||||
2.3
|
||||
1.3
|
||||
1.7
|
||||
1.2
|
||||
1.8
|
||||
1.5
|
||||
1.7
|
||||
1.1
|
||||
1.6
|
||||
1.3
|
||||
1.1
|
||||
1.3
|
||||
1.2
|
||||
1.1
|
||||
2.1
|
||||
0.9
|
||||
1.5
|
||||
1.5
|
||||
0.9
|
||||
2.1
|
||||
1.5
|
||||
2.0
|
||||
3.4
|
||||
2.7
|
||||
2.1
|
||||
1.8
|
||||
2.1
|
||||
1.4
|
||||
2.6
|
||||
0.8
|
||||
1.5
|
||||
4.1
|
||||
1.7
|
||||
2.0
|
||||
2.1
|
||||
1.7
|
||||
2.1
|
||||
2.0
|
||||
1.7
|
||||
2.2
|
||||
1.7
|
||||
2.1
|
||||
2.2
|
||||
1.5
|
||||
3.6
|
||||
2.0
|
||||
1.5
|
||||
1.5
|
||||
2.0
|
||||
1.8
|
||||
1.3
|
||||
1.5
|
||||
2.8
|
||||
1.3
|
||||
1.5
|
||||
1.9
|
||||
1.5
|
||||
2.4
|
||||
1.6
|
||||
0.5
|
||||
1.8
|
||||
1.4
|
||||
1.6
|
||||
1.5
|
||||
2.2
|
||||
1.4
|
||||
1.5
|
||||
1.9
|
||||
2.5
|
||||
3.2
|
||||
2.9
|
||||
1.0
|
||||
1.4
|
||||
1.8
|
||||
2.0
|
||||
2.2
|
||||
1.4
|
||||
1.6
|
||||
1.8
|
||||
2.0
|
||||
1.3
|
||||
2.8
|
||||
1.4
|
||||
1.3
|
||||
1.1
|
||||
1.8
|
||||
1.6
|
||||
1.1
|
||||
0.8
|
||||
1.4
|
||||
1.0
|
||||
1.7
|
||||
1.3
|
||||
1.5
|
||||
1.7
|
||||
3.2
|
||||
1.9
|
||||
1.6
|
||||
2.1
|
||||
1.6
|
||||
1.7
|
||||
1.9
|
||||
1.6
|
||||
2.6
|
||||
1.2
|
||||
2.3
|
||||
2.1
|
||||
2.1
|
||||
1.8
|
||||
1.4
|
||||
1.1
|
||||
1.9
|
||||
3.3
|
||||
1.4
|
||||
1.6
|
||||
1.8
|
||||
1.7
|
||||
2.4
|
||||
1.6
|
||||
1.7
|
||||
2.2
|
||||
2.9
|
||||
2.7
|
||||
1.3
|
||||
2.2
|
||||
1.4
|
||||
1.9
|
||||
1.6
|
||||
1.4
|
||||
2.0
|
||||
1.5
|
||||
1.5
|
||||
2.1
|
||||
1.8
|
||||
3.3
|
||||
1.5
|
||||
1.3
|
||||
1.9
|
||||
1.3
|
||||
1.9
|
||||
3.8
|
||||
1.7
|
||||
1.2
|
||||
2.2
|
||||
1.7
|
||||
1.6
|
||||
2.3
|
||||
1.6
|
||||
1.8
|
||||
2.7
|
||||
1.5
|
||||
1.4
|
||||
1.5
|
||||
1.6
|
||||
1.3
|
||||
1.6
|
||||
1.1
|
||||
2.0
|
||||
1.8
|
||||
0.8
|
||||
2.5
|
||||
1.7
|
||||
1.9
|
||||
1.8
|
||||
3.2
|
||||
1.1
|
||||
1.9
|
||||
2.9
|
||||
1.1
|
||||
1.7
|
||||
1.8
|
||||
1.6
|
||||
1.6
|
||||
1.9
|
||||
1.4
|
||||
1.6
|
||||
1.5
|
||||
1.7
|
||||
1.6
|
||||
1.8
|
||||
1.3
|
||||
1.4
|
||||
0.6
|
||||
1.4
|
||||
1.2
|
||||
1.8
|
||||
1.7
|
||||
1.6
|
||||
1.3
|
||||
1.6
|
||||
1.5
|
||||
2.4
|
||||
2.0
|
||||
2.1
|
||||
2.5
|
||||
1.8
|
||||
1.4
|
||||
2.0
|
||||
1.1
|
||||
1.4
|
||||
2.5
|
||||
1.5
|
||||
1.9
|
||||
1.9
|
||||
1.6
|
||||
1.2
|
||||
1.3
|
||||
2.8
|
||||
2.8
|
||||
2.7
|
||||
2.4
|
||||
2.6
|
||||
2.3
|
||||
1.0
|
||||
1.6
|
||||
1.3
|
||||
2.0
|
||||
0.8
|
||||
1.7
|
||||
0.7
|
||||
1.1
|
||||
1.2
|
||||
0.6
|
||||
1.1
|
||||
0.9
|
||||
3.1
|
||||
0.9
|
||||
1.0
|
||||
2.0
|
||||
1.6
|
||||
1.1
|
||||
1.0
|
||||
1.2
|
||||
2.3
|
||||
1.5
|
||||
2.2
|
||||
1.2
|
||||
1.6
|
||||
2.6
|
||||
1.4
|
||||
1.3
|
||||
1.9
|
||||
1.6
|
||||
2.2
|
||||
1.7
|
||||
2.0
|
||||
2.4
|
||||
1.3
|
||||
1.6
|
||||
1.8
|
||||
1.7
|
||||
1.7
|
||||
2.1
|
||||
2.2
|
||||
2.3
|
||||
1.8
|
||||
2.3
|
||||
1.7
|
||||
1.4
|
||||
1.6
|
||||
2.5
|
||||
1.3
|
||||
1.1
|
||||
1.4
|
||||
3.0
|
||||
1.2
|
||||
1.7
|
||||
1.7
|
||||
1.8
|
||||
2.2
|
||||
1.7
|
||||
2.1
|
||||
2.9
|
||||
1.8
|
||||
1.8
|
||||
2.1
|
||||
1.7
|
||||
1.2
|
||||
2.3
|
||||
1.2
|
||||
1.5
|
||||
1.7
|
||||
1.8
|
||||
1.4
|
||||
1.5
|
||||
2.7
|
||||
2.4
|
||||
1.6
|
||||
1.9
|
||||
2.2
|
||||
1.6
|
||||
1.6
|
||||
1.9
|
||||
1.7
|
||||
1.8
|
||||
1.8
|
||||
2.0
|
||||
1.0
|
||||
1.2
|
||||
1.3
|
||||
1.6
|
||||
2.9
|
||||
1.5
|
||||
1.3
|
||||
1.4
|
||||
1.3
|
||||
1.7
|
||||
1.8
|
||||
1.9
|
||||
1.9
|
||||
3.7
|
||||
1.5
|
||||
2.0
|
||||
1.6
|
||||
1.6
|
||||
1.5
|
||||
2.5
|
||||
4.2
|
||||
1.6
|
||||
3.6
|
||||
1.9
|
||||
1.8
|
||||
2.0
|
||||
1.8
|
||||
3.0
|
||||
2.4
|
||||
1.2
|
||||
1.5
|
||||
2.8
|
||||
2.8
|
||||
1.7
|
||||
1.8
|
||||
2.3
|
||||
1.5
|
||||
1.5
|
||||
1.9
|
||||
1.9
|
||||
1.8
|
||||
1.2
|
||||
1.2
|
||||
1.3
|
||||
2.1
|
||||
2.0
|
||||
1.8
|
||||
1.7
|
||||
1.6
|
||||
1.9
|
||||
1.9
|
||||
2.0
|
||||
1.7
|
||||
1.8
|
||||
1.2
|
||||
2.1
|
||||
0.8
|
||||
2.2
|
||||
1.9
|
||||
1.6
|
||||
1.0
|
||||
2.1
|
||||
2.3
|
||||
1.6
|
||||
1.2
|
||||
1.9
|
||||
1.7
|
||||
2.3
|
||||
1.8
|
||||
3.3
|
||||
1.7
|
||||
2.5
|
||||
2.0
|
||||
1.2
|
||||
1.5
|
||||
2.5
|
||||
1.8
|
||||
2.7
|
||||
1.2
|
||||
3.4
|
||||
1.6
|
||||
2.4
|
||||
1.6
|
||||
2.2
|
||||
0.6
|
||||
2.0
|
||||
1.9
|
||||
1.6
|
||||
2.4
|
||||
1.4
|
||||
1.3
|
||||
1.1
|
||||
2.3
|
||||
0.5
|
||||
0.7
|
||||
0.8
|
||||
1.8
|
||||
1.5
|
||||
1.0
|
||||
2.3
|
||||
1.7
|
||||
0.5
|
||||
1.8
|
||||
2.7
|
||||
2.5
|
||||
1.5
|
||||
2.1
|
||||
5.8
|
||||
1.5
|
||||
1.1
|
||||
1.5
|
||||
2.4
|
||||
2.2
|
||||
1.2
|
||||
1.9
|
||||
1.0
|
||||
2.0
|
||||
1.2
|
||||
1.1
|
||||
1.5
|
||||
1.9
|
||||
0.5
|
||||
2.5
|
||||
1.6
|
||||
1.4
|
||||
1.9
|
||||
2.5
|
||||
1.3
|
||||
2.1
|
||||
1.6
|
||||
1.6
|
||||
1.3
|
||||
1.7
|
||||
1.5
|
||||
2.1
|
||||
1.6
|
||||
1.5
|
||||
3.2
|
||||
1.2
|
||||
2.6
|
||||
1.4
|
||||
1.3
|
||||
1.6
|
||||
1.7
|
||||
1.4
|
||||
1.6
|
||||
1.8
|
||||
1.5
|
||||
1.9
|
||||
0.9
|
||||
2.6
|
||||
1.6
|
||||
1.8
|
||||
2.1
|
||||
1.6
|
||||
1.2
|
||||
0.8
|
||||
1.6
|
||||
1.2
|
||||
0.7
|
||||
1.1
|
||||
3.1
|
||||
2.4
|
||||
2.1
|
||||
2.2
|
||||
3.0
|
||||
1.6
|
||||
1.8
|
||||
1.5
|
||||
3.2
|
||||
1.1
|
||||
1.4
|
||||
1.9
|
||||
1.2
|
||||
1.9
|
||||
1.4
|
||||
2.4
|
||||
1.8
|
||||
1.3
|
||||
1.8
|
||||
2.3
|
||||
1.9
|
||||
1.9
|
||||
1.5
|
||||
1.2
|
||||
1.6
|
||||
1.5
|
||||
2.4
|
||||
1.9
|
||||
1.5
|
||||
1.8
|
||||
1.7
|
||||
1.8
|
||||
2.2
|
||||
1.5
|
||||
1.6
|
||||
2.3
|
||||
1.8
|
||||
2.7
|
||||
1.7
|
||||
2.0
|
||||
3.0
|
||||
1.8
|
||||
2.1
|
||||
1.5
|
||||
1.0
|
||||
1.9
|
||||
1.7
|
||||
2.6
|
||||
2.7
|
||||
2.0
|
||||
1.5
|
||||
1.9
|
||||
1.7
|
||||
2.1
|
||||
1.7
|
||||
1.3
|
||||
1.6
|
||||
2.9
|
||||
3.1
|
||||
1.7
|
||||
2.4
|
||||
1.3
|
||||
2.0
|
||||
2.0
|
||||
1.7
|
||||
4.6
|
||||
2.6
|
||||
1.5
|
||||
2.0
|
||||
1.3
|
||||
1.4
|
||||
1.8
|
||||
1.4
|
||||
1.3
|
||||
1.9
|
||||
1.4
|
||||
1.7
|
||||
1.5
|
||||
1.7
|
||||
0.9
|
||||
1.9
|
||||
1.3
|
||||
1.2
|
||||
1.4
|
||||
1.4
|
||||
1.3
|
||||
1.1
|
||||
1.3
|
||||
2.1
|
||||
1.5
|
||||
1.9
|
||||
1.9
|
||||
4.6
|
||||
1.1
|
||||
1.0
|
||||
1.7
|
||||
1.2
|
||||
1.7
|
||||
0.6
|
||||
1.3
|
||||
1.7
|
||||
1.8
|
||||
1.9
|
||||
1.6
|
||||
1.6
|
||||
1.7
|
||||
1.8
|
||||
2.2
|
||||
1.7
|
||||
1.4
|
||||
1.1
|
||||
1.1
|
||||
1.5
|
||||
1.7
|
||||
1.8
|
||||
1.3
|
||||
1.1
|
||||
1.7
|
||||
1.6
|
||||
0.9
|
||||
1.8
|
||||
1.8
|
||||
1.2
|
||||
1.3
|
||||
1.6
|
||||
0.8
|
||||
1.4
|
||||
2.2
|
||||
1.8
|
||||
1.5
|
||||
1.9
|
||||
2.0
|
||||
1.7
|
||||
1.6
|
||||
1.0
|
||||
0.8
|
||||
1.5
|
||||
2.1
|
||||
1.4
|
||||
2.7
|
||||
1.5
|
||||
1.1
|
||||
1.2
|
||||
1.7
|
||||
2.2
|
||||
2.1
|
||||
1.6
|
||||
1.2
|
||||
1.6
|
||||
1.8
|
||||
1.1
|
||||
2.3
|
||||
1.2
|
||||
1.6
|
||||
1.4
|
||||
1.7
|
||||
1.6
|
||||
1.0
|
||||
1.5
|
||||
1.8
|
||||
2.0
|
||||
1.5
|
||||
3.0
|
||||
1.7
|
||||
2.0
|
||||
1.7
|
||||
2.4
|
||||
2.7
|
||||
1.5
|
||||
1.3
|
||||
2.2
|
||||
3.3
|
||||
1.4
|
||||
2.1
|
||||
2.0
|
||||
1.7
|
||||
1.4
|
||||
2.1
|
||||
1.7
|
||||
2.3
|
||||
1.2
|
||||
1.7
|
||||
1.5
|
||||
1.7
|
||||
1.7
|
||||
2.3
|
||||
1.8
|
||||
1.5
|
||||
2.7
|
||||
2.3
|
||||
3.0
|
||||
2.4
|
||||
2.4
|
||||
2.9
|
||||
1.7
|
||||
1.5
|
||||
1.0
|
||||
2.5
|
||||
1.7
|
||||
1.9
|
||||
2.0
|
||||
1.8
|
||||
1.4
|
||||
2.1
|
||||
1.6
|
||||
2.3
|
||||
1.7
|
||||
2.3
|
||||
2.7
|
||||
1.8
|
||||
1.4
|
||||
1.6
|
||||
1.7
|
||||
1.2
|
||||
2.5
|
||||
1.5
|
||||
1.9
|
||||
1.4
|
||||
1.9
|
||||
1.5
|
||||
1.9
|
||||
1.4
|
||||
1.7
|
||||
1.5
|
||||
1.5
|
||||
1.6
|
||||
2.1
|
||||
1.7
|
||||
2.3
|
||||
1.0
|
||||
1.5
|
||||
1.5
|
||||
1.4
|
||||
0.9
|
||||
2.8
|
||||
1.6
|
||||
2.1
|
||||
1.8
|
||||
1.7
|
||||
2.3
|
||||
1.8
|
||||
2.0
|
||||
1.3
|
||||
2.1
|
||||
2.0
|
||||
0.5
|
||||
1.2
|
||||
1.2
|
||||
2.2
|
||||
2.2
|
||||
0.8
|
||||
1.2
|
||||
1.8
|
||||
1.0
|
||||
1.9
|
||||
2.0
|
||||
1.7
|
||||
1.9
|
||||
2.5
|
||||
1.1
|
||||
2.2
|
||||
1.1
|
||||
1.4
|
||||
1.4
|
||||
1.7
|
||||
2.1
|
||||
1.4
|
||||
2.0
|
||||
1.9
|
||||
1.7
|
||||
2.5
|
||||
1.2
|
||||
0.9
|
||||
1.2
|
||||
2.2
|
||||
2.9
|
||||
2.5
|
||||
2.0
|
||||
2.1
|
||||
2.0
|
||||
1.8
|
||||
2.0
|
||||
2.1
|
||||
2.0
|
||||
1.5
|
||||
1.5
|
||||
2.7
|
||||
1.8
|
||||
2.6
|
||||
1.4
|
||||
1.9
|
||||
2.6
|
||||
1.5
|
||||
2.1
|
||||
1.6
|
||||
2.2
|
||||
2.0
|
||||
1.5
|
||||
2.1
|
||||
1.8
|
||||
1.9
|
||||
2.0
|
||||
1.8
|
||||
0.9
|
||||
2.0
|
||||
4.6
|
||||
3.6
|
||||
1.6
|
||||
1.4
|
||||
1.3
|
||||
2.0
|
||||
2.9
|
||||
1.3
|
||||
2.3
|
||||
1.7
|
||||
1.5
|
||||
3.1
|
||||
1.8
|
||||
1.4
|
||||
1.7
|
||||
2.9
|
||||
1.9
|
||||
1.2
|
||||
3.0
|
||||
1.7
|
||||
2.5
|
||||
1.3
|
||||
4.2
|
||||
1.4
|
||||
1.6
|
||||
2.2
|
||||
2.2
|
||||
1.5
|
||||
1.6
|
||||
1.7
|
||||
1.7
|
||||
1.3
|
||||
2.1
|
||||
3.1
|
||||
2.6
|
||||
1.6
|
||||
1.5
|
||||
1.7
|
||||
1.0
|
||||
1.0
|
||||
1.9
|
||||
1.4
|
||||
1.2
|
||||
0.9
|
||||
2.2
|
||||
1.6
|
||||
1.4
|
||||
2.2
|
||||
2.2
|
||||
1.2
|
||||
1.5
|
||||
1.2
|
||||
1.9
|
||||
1.3
|
||||
2.1
|
||||
0.9
|
||||
1.2
|
||||
1.3
|
||||
1.5
|
||||
1.5
|
||||
2.4
|
||||
2.4
|
||||
2.3
|
||||
1.9
|
||||
2.0
|
||||
2.2
|
||||
0.8
|
||||
1.8
|
||||
1.9
|
||||
1.1
|
||||
1.2
|
||||
1.5
|
||||
3.4
|
||||
1.6
|
||||
1.5
|
||||
1.4
|
||||
0.9
|
||||
1.7
|
||||
1.5
|
Reference in New Issue
Block a user