Populated app repository with code and licence

This commit is contained in:
Joanna Kocot Test 2024-10-22 13:46:54 +02:00
commit 0df2172bf0
6 changed files with 1449 additions and 0 deletions

408
LICENCE.txt Normal file
View File

@ -0,0 +1,408 @@
Attribution-NonCommercial 4.0 International
=======================================================================
Creative Commons Corporation ("Creative Commons") is not a law firm and
does not provide legal services or legal advice. Distribution of
Creative Commons public licenses does not create a lawyer-client or
other relationship. Creative Commons makes its licenses and related
information available on an "as-is" basis. Creative Commons gives no
warranties regarding its licenses, any material licensed under their
terms and conditions, or any related information. Creative Commons
disclaims all liability for damages resulting from their use to the
fullest extent possible.
Using Creative Commons Public Licenses
Creative Commons public licenses provide a standard set of terms and
conditions that creators and other rights holders may use to share
original works of authorship and other material subject to copyright
and certain other rights specified in the public license below. The
following considerations are for informational purposes only, are not
exhaustive, and do not form part of our licenses.
Considerations for licensors: Our public licenses are
intended for use by those authorized to give the public
permission to use material in ways otherwise restricted by
copyright and certain other rights. Our licenses are
irrevocable. Licensors should read and understand the terms
and conditions of the license they choose before applying it.
Licensors should also secure all rights necessary before
applying our licenses so that the public can reuse the
material as expected. Licensors should clearly mark any
material not subject to the license. This includes other CC-
licensed material, or material used under an exception or
limitation to copyright. More considerations for licensors:
wiki.creativecommons.org/Considerations_for_licensors
Considerations for the public: By using one of our public
licenses, a licensor grants the public permission to use the
licensed material under specified terms and conditions. If
the licensor's permission is not necessary for any reason--for
example, because of any applicable exception or limitation to
copyright--then that use is not regulated by the license. Our
licenses grant only permissions under copyright and certain
other rights that a licensor has authority to grant. Use of
the licensed material may still be restricted for other
reasons, including because others have copyright or other
rights in the material. A licensor may make special requests,
such as asking that all changes be marked or described.
Although not required by our licenses, you are encouraged to
respect those requests where reasonable. More considerations
for the public:
wiki.creativecommons.org/Considerations_for_licensees
=======================================================================
Creative Commons Attribution-NonCommercial 4.0 International Public
License
By exercising the Licensed Rights (defined below), You accept and agree
to be bound by the terms and conditions of this Creative Commons
Attribution-NonCommercial 4.0 International Public License ("Public
License"). To the extent this Public License may be interpreted as a
contract, You are granted the Licensed Rights in consideration of Your
acceptance of these terms and conditions, and the Licensor grants You
such rights in consideration of benefits the Licensor receives from
making the Licensed Material available under these terms and
conditions.
Section 1 -- Definitions.
a. Adapted Material means material subject to Copyright and Similar
Rights that is derived from or based upon the Licensed Material
and in which the Licensed Material is translated, altered,
arranged, transformed, or otherwise modified in a manner requiring
permission under the Copyright and Similar Rights held by the
Licensor. For purposes of this Public License, where the Licensed
Material is a musical work, performance, or sound recording,
Adapted Material is always produced where the Licensed Material is
synched in timed relation with a moving image.
b. Adapter's License means the license You apply to Your Copyright
and Similar Rights in Your contributions to Adapted Material in
accordance with the terms and conditions of this Public License.
c. Copyright and Similar Rights means copyright and/or similar rights
closely related to copyright including, without limitation,
performance, broadcast, sound recording, and Sui Generis Database
Rights, without regard to how the rights are labeled or
categorized. For purposes of this Public License, the rights
specified in Section 2(b)(1)-(2) are not Copyright and Similar
Rights.
d. Effective Technological Measures means those measures that, in the
absence of proper authority, may not be circumvented under laws
fulfilling obligations under Article 11 of the WIPO Copyright
Treaty adopted on December 20, 1996, and/or similar international
agreements.
e. Exceptions and Limitations means fair use, fair dealing, and/or
any other exception or limitation to Copyright and Similar Rights
that applies to Your use of the Licensed Material.
f. Licensed Material means the artistic or literary work, database,
or other material to which the Licensor applied this Public
License.
g. Licensed Rights means the rights granted to You subject to the
terms and conditions of this Public License, which are limited to
all Copyright and Similar Rights that apply to Your use of the
Licensed Material and that the Licensor has authority to license.
h. Licensor means the individual(s) or entity(ies) granting rights
under this Public License.
i. NonCommercial means not primarily intended for or directed towards
commercial advantage or monetary compensation. For purposes of
this Public License, the exchange of the Licensed Material for
other material subject to Copyright and Similar Rights by digital
file-sharing or similar means is NonCommercial provided there is
no payment of monetary compensation in connection with the
exchange.
j. Share means to provide material to the public by any means or
process that requires permission under the Licensed Rights, such
as reproduction, public display, public performance, distribution,
dissemination, communication, or importation, and to make material
available to the public including in ways that members of the
public may access the material from a place and at a time
individually chosen by them.
k. Sui Generis Database Rights means rights other than copyright
resulting from Directive 96/9/EC of the European Parliament and of
the Council of 11 March 1996 on the legal protection of databases,
as amended and/or succeeded, as well as other essentially
equivalent rights anywhere in the world.
l. You means the individual or entity exercising the Licensed Rights
under this Public License. Your has a corresponding meaning.
Section 2 -- Scope.
a. License grant.
1. Subject to the terms and conditions of this Public License,
the Licensor hereby grants You a worldwide, royalty-free,
non-sublicensable, non-exclusive, irrevocable license to
exercise the Licensed Rights in the Licensed Material to:
a. reproduce and Share the Licensed Material, in whole or
in part, for NonCommercial purposes only; and
b. produce, reproduce, and Share Adapted Material for
NonCommercial purposes only.
2. Exceptions and Limitations. For the avoidance of doubt, where
Exceptions and Limitations apply to Your use, this Public
License does not apply, and You do not need to comply with
its terms and conditions.
3. Term. The term of this Public License is specified in Section
6(a).
4. Media and formats; technical modifications allowed. The
Licensor authorizes You to exercise the Licensed Rights in
all media and formats whether now known or hereafter created,
and to make technical modifications necessary to do so. The
Licensor waives and/or agrees not to assert any right or
authority to forbid You from making technical modifications
necessary to exercise the Licensed Rights, including
technical modifications necessary to circumvent Effective
Technological Measures. For purposes of this Public License,
simply making modifications authorized by this Section 2(a)
(4) never produces Adapted Material.
5. Downstream recipients.
a. Offer from the Licensor -- Licensed Material. Every
recipient of the Licensed Material automatically
receives an offer from the Licensor to exercise the
Licensed Rights under the terms and conditions of this
Public License.
b. No downstream restrictions. You may not offer or impose
any additional or different terms or conditions on, or
apply any Effective Technological Measures to, the
Licensed Material if doing so restricts exercise of the
Licensed Rights by any recipient of the Licensed
Material.
6. No endorsement. Nothing in this Public License constitutes or
may be construed as permission to assert or imply that You
are, or that Your use of the Licensed Material is, connected
with, or sponsored, endorsed, or granted official status by,
the Licensor or others designated to receive attribution as
provided in Section 3(a)(1)(A)(i).
b. Other rights.
1. Moral rights, such as the right of integrity, are not
licensed under this Public License, nor are publicity,
privacy, and/or other similar personality rights; however, to
the extent possible, the Licensor waives and/or agrees not to
assert any such rights held by the Licensor to the limited
extent necessary to allow You to exercise the Licensed
Rights, but not otherwise.
2. Patent and trademark rights are not licensed under this
Public License.
3. To the extent possible, the Licensor waives any right to
collect royalties from You for the exercise of the Licensed
Rights, whether directly or through a collecting society
under any voluntary or waivable statutory or compulsory
licensing scheme. In all other cases the Licensor expressly
reserves any right to collect such royalties, including when
the Licensed Material is used other than for NonCommercial
purposes.
Section 3 -- License Conditions.
Your exercise of the Licensed Rights is expressly made subject to the
following conditions.
a. Attribution.
1. If You Share the Licensed Material (including in modified
form), You must:
a. retain the following if it is supplied by the Licensor
with the Licensed Material:
i. identification of the creator(s) of the Licensed
Material and any others designated to receive
attribution, in any reasonable manner requested by
the Licensor (including by pseudonym if
designated);
ii. a copyright notice;
iii. a notice that refers to this Public License;
iv. a notice that refers to the disclaimer of
warranties;
v. a URI or hyperlink to the Licensed Material to the
extent reasonably practicable;
b. indicate if You modified the Licensed Material and
retain an indication of any previous modifications; and
c. indicate the Licensed Material is licensed under this
Public License, and include the text of, or the URI or
hyperlink to, this Public License.
2. You may satisfy the conditions in Section 3(a)(1) in any
reasonable manner based on the medium, means, and context in
which You Share the Licensed Material. For example, it may be
reasonable to satisfy the conditions by providing a URI or
hyperlink to a resource that includes the required
information.
3. If requested by the Licensor, You must remove any of the
information required by Section 3(a)(1)(A) to the extent
reasonably practicable.
4. If You Share Adapted Material You produce, the Adapter's
License You apply must not prevent recipients of the Adapted
Material from complying with this Public License.
Section 4 -- Sui Generis Database Rights.
Where the Licensed Rights include Sui Generis Database Rights that
apply to Your use of the Licensed Material:
a. for the avoidance of doubt, Section 2(a)(1) grants You the right
to extract, reuse, reproduce, and Share all or a substantial
portion of the contents of the database for NonCommercial purposes
only;
b. if You include all or a substantial portion of the database
contents in a database in which You have Sui Generis Database
Rights, then the database in which You have Sui Generis Database
Rights (but not its individual contents) is Adapted Material; and
c. You must comply with the conditions in Section 3(a) if You Share
all or a substantial portion of the contents of the database.
For the avoidance of doubt, this Section 4 supplements and does not
replace Your obligations under this Public License where the Licensed
Rights include other Copyright and Similar Rights.
Section 5 -- Disclaimer of Warranties and Limitation of Liability.
a. UNLESS OTHERWISE SEPARATELY UNDERTAKEN BY THE LICENSOR, TO THE
EXTENT POSSIBLE, THE LICENSOR OFFERS THE LICENSED MATERIAL AS-IS
AND AS-AVAILABLE, AND MAKES NO REPRESENTATIONS OR WARRANTIES OF
ANY KIND CONCERNING THE LICENSED MATERIAL, WHETHER EXPRESS,
IMPLIED, STATUTORY, OR OTHER. THIS INCLUDES, WITHOUT LIMITATION,
WARRANTIES OF TITLE, MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, NON-INFRINGEMENT, ABSENCE OF LATENT OR OTHER DEFECTS,
ACCURACY, OR THE PRESENCE OR ABSENCE OF ERRORS, WHETHER OR NOT
KNOWN OR DISCOVERABLE. WHERE DISCLAIMERS OF WARRANTIES ARE NOT
ALLOWED IN FULL OR IN PART, THIS DISCLAIMER MAY NOT APPLY TO YOU.
b. TO THE EXTENT POSSIBLE, IN NO EVENT WILL THE LICENSOR BE LIABLE
TO YOU ON ANY LEGAL THEORY (INCLUDING, WITHOUT LIMITATION,
NEGLIGENCE) OR OTHERWISE FOR ANY DIRECT, SPECIAL, INDIRECT,
INCIDENTAL, CONSEQUENTIAL, PUNITIVE, EXEMPLARY, OR OTHER LOSSES,
COSTS, EXPENSES, OR DAMAGES ARISING OUT OF THIS PUBLIC LICENSE OR
USE OF THE LICENSED MATERIAL, EVEN IF THE LICENSOR HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH LOSSES, COSTS, EXPENSES, OR
DAMAGES. WHERE A LIMITATION OF LIABILITY IS NOT ALLOWED IN FULL OR
IN PART, THIS LIMITATION MAY NOT APPLY TO YOU.
c. The disclaimer of warranties and limitation of liability provided
above shall be interpreted in a manner that, to the extent
possible, most closely approximates an absolute disclaimer and
waiver of all liability.
Section 6 -- Term and Termination.
a. This Public License applies for the term of the Copyright and
Similar Rights licensed here. However, if You fail to comply with
this Public License, then Your rights under this Public License
terminate automatically.
b. Where Your right to use the Licensed Material has terminated under
Section 6(a), it reinstates:
1. automatically as of the date the violation is cured, provided
it is cured within 30 days of Your discovery of the
violation; or
2. upon express reinstatement by the Licensor.
For the avoidance of doubt, this Section 6(b) does not affect any
right the Licensor may have to seek remedies for Your violations
of this Public License.
c. For the avoidance of doubt, the Licensor may also offer the
Licensed Material under separate terms or conditions or stop
distributing the Licensed Material at any time; however, doing so
will not terminate this Public License.
d. Sections 1, 5, 6, 7, and 8 survive termination of this Public
License.
Section 7 -- Other Terms and Conditions.
a. The Licensor shall not be bound by any additional or different
terms or conditions communicated by You unless expressly agreed.
b. Any arrangements, understandings, or agreements regarding the
Licensed Material not stated herein are separate from and
independent of the terms and conditions of this Public License.
Section 8 -- Interpretation.
a. For the avoidance of doubt, this Public License does not, and
shall not be interpreted to, reduce, limit, restrict, or impose
conditions on any use of the Licensed Material that could lawfully
be made without permission under this Public License.
b. To the extent possible, if any provision of this Public License is
deemed unenforceable, it shall be automatically reformed to the
minimum extent necessary to make it enforceable. If the provision
cannot be reformed, it shall be severed from this Public License
without affecting the enforceability of the remaining terms and
conditions.
c. No term or condition of this Public License will be waived and no
failure to comply consented to unless expressly agreed to by the
Licensor.
d. Nothing in this Public License constitutes or may be interpreted
as a limitation upon, or waiver of, any privileges and immunities
that apply to the Licensor or You, including from the legal
processes of any jurisdiction or authority.
=======================================================================
Creative Commons is not a party to its public
licenses. Notwithstanding, Creative Commons may elect to apply one of
its public licenses to material it publishes and in those instances
will be considered the “Licensor.” The text of the Creative Commons
public licenses is dedicated to the public domain under the CC0 Public
Domain Dedication. Except for the limited purpose of indicating that
material is shared under a Creative Commons public license or as
otherwise permitted by the Creative Commons policies published at
creativecommons.org/policies, Creative Commons does not authorize the
use of the trademark "Creative Commons" or any other trademark or logo
of Creative Commons without its prior written consent including,
without limitation, in connection with any unauthorized modifications
to any of its public licenses or any other arrangements,
understandings, or agreements concerning use of licensed material. For
the avoidance of doubt, this paragraph does not form part of the
public licenses.
Creative Commons may be contacted at creativecommons.org.

713
Mmax.py Normal file
View File

@ -0,0 +1,713 @@
import sys
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
# import os
import scipy.io
import logging
from geopy.distance import geodesic
from geopy.point import Point
def main(Input_catalog, Input_injection_rate, time_win_in_hours, time_step_in_hour, time_win_type,
End_time, ev_limit, Inpar, time_inj, time_shut_in, time_big_ev, Model_index,
Mc, Mu, G, ssd, C, b_value_type, cl, mag_name):
"""
Main function for application: MAXIMUM_MAGNITUDE_DETERMINISTIC_MODELS
Arguments:
Input catalog: path to input file of type 'catalog'
Input injection rate: path to input file of type 'injection_rate'
**kwargs: Model paramters.
Returns:
'PLOT_Mmax_param': Plot of all results (also check 'application.log' for more info)
'DATA_Mmax_param': Results with 'csv' format
'application.log': Logging file
"""
f_indx = Model_index
b_method = b_value_type
Plot_flag = 1
# Setting up the logfile--------------------------------
logging.basicConfig(filename="application.log",
filemode='a',
format='%(asctime)s,%(msecs)d %(name)s %(levelname)s %(message)s',
datefmt='%H:%M:%S',
level=logging.INFO)
logger = logging.getLogger(__name__)
# Importing utilities ----------------------
logger.info("Import utilities")
from util.Find_idx4Time import Find_idx4Time
from util.CandidateEventsTS import CandidateEventsTS
from util.M_max_models import M_max_models
def latlon_to_enu(lat, lon, alt):
lat0 = np.mean(lat)
lon0 = np.mean(lon)
alt0 = 0
# Reference point (origin)
origin = Point(lat0, lon0, alt0)
east = np.zeros_like(lon)
north = np.zeros_like(lat)
up = np.zeros_like(alt)
for i in range(len(lon)):
# Target point
target = Point(lat[i], lon[i], alt[i])
# Calculate East-North-Up
east[i] = geodesic((lat0, lon0), (lat0, lon[i])).meters
if lon[i] < lon0:
east[i] = -east[i]
north[i] = geodesic((lat0, lon0), (lat[i], lon0)).meters
if lat[i] < lat0:
north[i] = -north[i]
up = alt - alt0
return east, north, up
# Importing data
logger.info("Import data")
mat = scipy.io.loadmat(Input_catalog)
Cat_structure = mat['Catalog']
Cat_id, Cat_t, Cat_m = [], [], []
Cat_x, Cat_y, Cat_z = [], [], []
Cat_lat, Cat_lon, Cat_elv, Cat_depth = [], [], [], []
for i in range(1,Cat_structure.shape[1]):
if Cat_structure.T[i][0][0][0] == 'X':
Cat_x = Cat_structure.T[i][0][2]
if not all(np.isfinite(Cat_x)):
raise ValueError("Catalog-X contains infinite value")
if Cat_structure.T[i][0][3][0] == 'km':
Cat_x *= 1000
if Cat_structure.T[i][0][0][0] == 'Lat':
Cat_lat = Cat_structure.T[i][0][2]
if not all(np.isfinite(Cat_lat)):
raise ValueError("Catalog-Lat contains infinite value")
if Cat_structure.T[i][0][0][0] == 'Y':
Cat_y = Cat_structure.T[i][0][2]
if not all(np.isfinite(Cat_y)):
raise ValueError("Catalog-Y contains infinite value")
if Cat_structure.T[i][0][3][0] == 'km':
Cat_y *= 1000
if Cat_structure.T[i][0][0][0] == 'Long':
Cat_lon = Cat_structure.T[i][0][2]
if not all(np.isfinite(Cat_lon)):
raise ValueError("Catalog-Long contains infinite value")
if Cat_structure.T[i][0][0][0] == 'Z':
Cat_z = Cat_structure.T[i][0][2]
if not all(np.isfinite(Cat_z)):
raise ValueError("Catalog-Z contains infinite value")
if Cat_structure.T[i][0][3][0] == 'km':
Cat_z *= 1000
if Cat_structure.T[i][0][0][0] == 'Depth':
Cat_depth = Cat_structure.T[i][0][2]
if not all(np.isfinite(Cat_depth)):
raise ValueError("Catalog-Depth contains infinite value")
if Cat_structure.T[i][0][3][0] == 'km':
Cat_depth *= 1000
if Cat_structure.T[i][0][0][0] == 'Elevation':
Cat_elv = Cat_structure.T[i][0][2]
if not all(np.isfinite(Cat_elv)):
raise ValueError("Catalog-Elevation contains infinite value")
if Cat_structure.T[i][0][3][0] == 'km':
Cat_elv *= 1000
if Cat_structure.T[i][0][0][0] == 'Time':
Cat_t = Cat_structure.T[i][0][2]
if not all(np.isfinite(Cat_t)):
raise ValueError("Catalog-Time contains infinite value")
if Cat_structure.T[i][0][0][0] == mag_name:
Cat_m = Cat_structure.T[i][0][2]
# if not all(np.isfinite(Cat_m)):
if np.argwhere(all(np.isfinite(Cat_m))):
raise ValueError("Catalog-Magnitude contains infinite value")
if any(Cat_x):
Cat_id = np.linspace(0,Cat_x.shape[0],Cat_x.shape[0]).reshape((Cat_x.shape[0],1))
arg = (Cat_id, Cat_x, Cat_y, Cat_z, Cat_t, Cat_m)
Cat = np.concatenate(arg, axis=1)
elif any(Cat_lat):
if any(Cat_elv):
Cat_x, Cat_y, Cat_z = latlon_to_enu(Cat_lat, Cat_lon, Cat_elv)
elif any(Cat_depth):
Cat_x, Cat_y, Cat_z = latlon_to_enu(Cat_lat, Cat_lon, Cat_depth)
else:
raise ValueError("Catalog Depth or Elevation is not available")
Cat_id = np.linspace(0,Cat_x.shape[0],Cat_x.shape[0]).reshape((Cat_x.shape[0],1))
arg = (Cat_id, Cat_x, Cat_y, Cat_z, Cat_t, Cat_m)
Cat = np.concatenate(arg, axis=1)
else:
raise ValueError("Catalog data are not available")
mat = scipy.io.loadmat(Input_injection_rate)
Inj_structure = mat['d']
if 'Date' in Inj_structure.dtype.names:
inj_date = Inj_structure['Date'][0,0]
inj_rate = Inj_structure['Injection_rate'][0,0]
Hyd = np.concatenate((inj_date,inj_rate), axis=1)
else:
raise ValueError("Injection data are not available")
if Cat[0,4]>np.max(Hyd[:,0]) or Hyd[0,0]>np.max(Cat[:,4]):
raise ValueError('Catalog and injection data do not have time coverage!')
if Hyd[0,0] < Cat[0,4]:
same_time_idx = Find_idx4Time(Hyd[:,0], Cat[0,4])
Hyd = Hyd[same_time_idx:,:]
Hyd[:,0] = (Hyd[:,0] - Cat[0,4])*24*3600
Cat[:,4] = (Cat[:,4] - Cat[0,4])*24*3600
logger.info('Start of the computations is based on the time of catalog data.')
# Model dictionary
Feat_dic = {
'indx' :[0 ,1 ,2 ,3 ,4 ,5 ],
'Full_names':['All_M_max' ,'McGarr' ,'Hallo' ,'Li' ,'van-der-Elst','Shapiro' ],
'Short_name':['max_all' , 'max_mcg', 'max_hlo', 'max_li', 'max_vde' , 'max_shp'],
'f_num' :[5 ,4 ,4 ,1 ,6 ,5 ],
'Param' :[{'Mc': 0.8, 'b_method': ['b'], 'cl': [0.37], 'Inpar': ['dv','d_num'], 'Mu':0.6, 'G': 35*10**(9), 'ssd': 3*10**6, 'C': 0.95, 'ev_limit': 20, 'num_bootstraps': 100}]
}
Feat_dic['Param'][0]['Inpar'] = Inpar
Feat_dic['Param'][0]['ev_limit'] = ev_limit
num_bootstraps = 100 # Number of bootstraping for standard error computation
Feat_dic['Param'][0]['num_bootstraps'] = num_bootstraps
if f_indx in [0,1,2,4]:
if Mc < np.min(Cat[:,-1]) or Mc > np.max(Cat[:,-1]):
raise ValueError("Completeness magnitude (Mc) is out of magnitude range")
Feat_dic['Param'][0]['Mc'] = Mc
if f_indx in [0,1,2]:
if Mu < 0.2 or Mu > 0.8:
raise ValueError("Friction coefficient (Mu) must be between [0.2, 0.8]")
Feat_dic['Param'][0]['Mu'] = Mu
if f_indx in [0,1,2,3]:
if G < 1*10**(9) or G > 100*10**(9):
raise ValueError("Shear modulus of reservoir rock (G) must be between [1, 100] GPa")
Feat_dic['Param'][0]['G'] = G
if f_indx in [0,5]:
if ssd < 0.1*10**(6) or ssd > 100*10**(6):
raise ValueError("Static stress drop (ssd) must be between [0.1, 100] MPa")
Feat_dic['Param'][0]['ssd'] = ssd
if f_indx in [0,5]:
if C < 0.5 or C > 5:
raise ValueError("Geometrical constant (C) of Shaprio's model must be between [0.5, 5]")
Feat_dic['Param'][0]['C'] = C
if f_indx in [0,1,2,4]:
Feat_dic['Param'][0]['b_method'] = b_method
if f_indx in [0,4]:
for cl_i in cl:
if cl_i < 0 or cl_i > 1:
raise ValueError("Confidence level (cl) of van der Elst model must be between [0, 1]")
Feat_dic['Param'][0]['cl'] = cl
# Setting up based on the config and model dic --------------
ModelClass = M_max_models()
Model_name = Feat_dic['Full_names'][f_indx]
ModelClass.f_name = Feat_dic['Short_name'][f_indx]
f_num = Feat_dic['f_num'][f_indx]
if Feat_dic['Param'][0]['Mc']:
ModelClass.Mc = Mc
else:
Mc = np.min(Cat[:,-1])
ModelClass.Mc = Mc
time_win = time_win_in_hours*3600 # in sec
ModelClass.time_win = time_win
if f_indx == 0:
# Only first b_methods is used
Feat_dic['Param'][0]['b_method'] = b_method[0]
ModelClass.b_method = Feat_dic['Param'][0]['b_method']
logger.info(f"All models are based on b_method: { b_method[0]}")
Feat_dic['Param'][0]['cl'] = [cl[0]]
ModelClass.cl = Feat_dic['Param'][0]['cl']
logger.info(f"All models are based on cl: { cl[0]}")
ModelClass.Mu = Feat_dic['Param'][0]['Mu']
ModelClass.G = Feat_dic['Param'][0]['G']
ModelClass.ssd = Feat_dic['Param'][0]['ssd']
ModelClass.C = Feat_dic['Param'][0]['C']
ModelClass.num_bootstraps = Feat_dic['Param'][0]['num_bootstraps']
if f_indx == 1 or f_indx == 2:
ModelClass.b_method = Feat_dic['Param'][0]['b_method']
ModelClass.Mu = Feat_dic['Param'][0]['Mu']
ModelClass.G = Feat_dic['Param'][0]['G']
ModelClass.num_bootstraps = Feat_dic['Param'][0]['num_bootstraps']
Feat_dic['Param'][0]['cl'] = [None]
if f_indx == 3:
Feat_dic['Param'][0]['b_method'] = [None]
ModelClass.G = Feat_dic['Param'][0]['G']
Feat_dic['Param'][0]['cl'] = [None]
if f_indx == 4:
ModelClass.b_method = Feat_dic['Param'][0]['b_method']
ModelClass.num_bootstraps = Feat_dic['Param'][0]['num_bootstraps']
ModelClass.G = Feat_dic['Param'][0]['G']
ModelClass.cl = Feat_dic['Param'][0]['cl']
if f_indx == 5:
ModelClass.ssd = Feat_dic['Param'][0]['ssd']
ModelClass.C = Feat_dic['Param'][0]['C']
Feat_dic['Param'][0]['b_method'] = [None]
Feat_dic['Param'][0]['cl'] = [None]
# Output dictionary --------------------------------
Output_dict = {
'Type' :['idx', 'Time[day]'],
'label' :[None, None],
'b_method' :[None, None],
'cl' :[None, None],
}
c_out = 2
if any(Feat_dic['Param'][0]['b_method']) and any(Feat_dic['Param'][0]['cl']):
for i in range(len(Feat_dic['Param'][0]['b_method'])):
for j in range(len(Feat_dic['Param'][0]['cl'])):
if f_indx == 0: # f_index == 0
for i in Feat_dic['Full_names'][1:]:
Output_dict['Type'].append('Maximum magnitude')
Output_dict['label'].append(i)
Output_dict['b_method'].append(None)
Output_dict['cl'].append(None)
c_out += 1
elif j == 0: # f_index == 4
Output_dict['Type'].append('b_value')
Output_dict['label'].append('b_value')
Output_dict['b_method'].append(Feat_dic['Param'][0]['b_method'][i])
Output_dict['cl'].append(None)
Output_dict['Type'].append('Standard Error')
Output_dict['label'].append('b_std_err')
Output_dict['b_method'].append(Feat_dic['Param'][0]['b_method'][i])
Output_dict['cl'].append(None)
Output_dict['Type'].append('Seismogenic Index')
Output_dict['label'].append('SI')
Output_dict['b_method'].append(Feat_dic['Param'][0]['b_method'][i])
Output_dict['cl'].append(None)
Output_dict['Type'].append('Standard Error')
Output_dict['label'].append('si_std_err')
Output_dict['b_method'].append(Feat_dic['Param'][0]['b_method'][i])
Output_dict['cl'].append(None)
Output_dict['Type'].append('Maximum magnitude')
Output_dict['label'].append(Model_name)
Output_dict['b_method'].append(Feat_dic['Param'][0]['b_method'][i])
Output_dict['cl'].append(Feat_dic['Param'][0]['cl'][j])
Output_dict['Type'].append('Standard Error')
Output_dict['label'].append('M_std_err')
Output_dict['b_method'].append(Feat_dic['Param'][0]['b_method'][i])
Output_dict['cl'].append(None)
c_out += 6
else: # f_index == 4
Output_dict['Type'].append('Maximum magnitude')
Output_dict['label'].append(Model_name)
Output_dict['b_method'].append(Feat_dic['Param'][0]['b_method'][i])
Output_dict['cl'].append(Feat_dic['Param'][0]['cl'][j])
Output_dict['Type'].append('Standard Error')
Output_dict['label'].append('M_std_err')
Output_dict['b_method'].append(Feat_dic['Param'][0]['b_method'][i])
Output_dict['cl'].append(None)
c_out += 2
elif any(Feat_dic['Param'][0]['b_method']): # f_index == 1, 2
for i in range(len(Feat_dic['Param'][0]['b_method'])):
Output_dict['Type'].append('b_value')
Output_dict['label'].append('b_value')
Output_dict['b_method'].append(Feat_dic['Param'][0]['b_method'][i])
Output_dict['cl'].append(None)
Output_dict['Type'].append('Standard Error')
Output_dict['label'].append('b_std_err')
Output_dict['b_method'].append(Feat_dic['Param'][0]['b_method'][i])
Output_dict['cl'].append(None)
Output_dict['Type'].append('Maximum magnitude')
Output_dict['label'].append(Model_name)
Output_dict['b_method'].append(Feat_dic['Param'][0]['b_method'][i])
Output_dict['cl'].append(None)
Output_dict['Type'].append('Standard Error')
Output_dict['label'].append('M_std_err')
Output_dict['b_method'].append(Feat_dic['Param'][0]['b_method'][i])
Output_dict['cl'].append(None)
c_out += 4
elif f_indx == 5: # f_index == 5
for i in ['L(max)','L(int)','L(min)', 'L(avg)']:
Output_dict['Type'].append('Length[m]')
Output_dict['label'].append(i)
Output_dict['b_method'].append(None)
Output_dict['cl'].append(None)
Output_dict['Type'].append('Maximum magnitude')
Output_dict['label'].append(Model_name)
Output_dict['b_method'].append(None)
Output_dict['cl'].append(None)
c_out += 5
else: # f_index == 3
Output_dict['Type'].append('Maximum magnitude')
Output_dict['label'].append(Model_name)
Output_dict['b_method'].append(None)
Output_dict['cl'].append(None)
c_out += 1
# Add True maximum magnitude to the outputs
Output_dict['Type'].append('Maximum magnitude')
Output_dict['label'].append('True Max-Mag')
Output_dict['b_method'].append(None)
Output_dict['cl'].append(None)
c_out += 1
# if any(Feat_dic['Param'][0]['Inpar']): # Input parameters
if Inpar:
for i in Feat_dic['Param'][0]['Inpar']:
if i == 'd_num':
Output_dict['Type'].append('Number of events')
Output_dict['label'].append('Ev_Num')
elif i == 'dv':
Output_dict['Type'].append('Volume[m3]')
Output_dict['label'].append('Vol')
elif i == 'Mo':
Output_dict['Type'].append('Seismic moment')
Output_dict['label'].append('Mo')
elif i == 'SER':
Output_dict['Type'].append('Seismic efficiency ratio')
Output_dict['label'].append('SER')
Output_dict['b_method'].append(None)
Output_dict['cl'].append(None)
c_out += 1
# Functions ------------------------------
# Computing in extending time or time window
def Feature_in_Time(In_arr):
SER_l = 0
SER_c = 0
i_row = 0
for i in np.arange(1,Times):
# Defining time window and data
if time_win_type == 0:
ModelClass.time_win = i*time_step
candidate_events = CandidateEventsTS(Cat, i*time_step, None, i*time_step)
else:
candidate_events = CandidateEventsTS(Cat, i*time_step, None, time_win)
data = candidate_events.filter_data()
# USER: Check if cumulative dv is correctly computed !!!
end_time_indx = Find_idx4Time(Hyd[:,0], i*time_step)
# ModelClass.dv = np.sum(Hyd[:end_time_indx,1])
ModelClass.dv = np.trapz(Hyd[:end_time_indx,1], Hyd[:end_time_indx,0])/60
if len(data) > Feat_dic['Param'][0]['ev_limit'] and ModelClass.dv > 0:
ModelClass.Mo = np.sum(10**(1.5*data[:end_time_indx,5]+9.1))
if f_indx != 5: # Parameters have not been assinged for f_index == 5
SER_c = ModelClass.Mo/(2.0*ModelClass.G*ModelClass.dv)
SER_l = np.max((SER_c, SER_l))
ModelClass.SER = SER_l
ModelClass.data = data
In_arr[i_row,0] = i # index
In_arr[i_row,1] = i*time_step # Currecnt time
c = 2
if any(Feat_dic['Param'][0]['b_method']) and any(Feat_dic['Param'][0]['cl']):
for ii in range(len(Feat_dic['Param'][0]['b_method'])):
ModelClass.b_method = Feat_dic['Param'][0]['b_method'][ii]
for jj in range(len(Feat_dic['Param'][0]['cl'])): # f_index == 4
ModelClass.cl = Feat_dic['Param'][0]['cl'][jj]
Out = ModelClass.ComputeModel()
if jj == 0:
In_arr[i_row,c:c+f_num] = Out
c += f_num
else:
In_arr[i_row,c:c+2] = Out[-2:]
c += 2
elif any(Feat_dic['Param'][0]['b_method']): # f_index == 1, 2
for ii in range(len(Feat_dic['Param'][0]['b_method'])):
ModelClass.b_method = Feat_dic['Param'][0]['b_method'][ii]
In_arr[i_row,c:c+f_num] = ModelClass.ComputeModel()
c += f_num
else: # f_index = 0, 3, 5
In_arr[i_row,c:c+f_num] = ModelClass.ComputeModel()
c += f_num
# Compute true maximum magnitude in the data
In_arr[i_row,c] = np.max(data[:end_time_indx,5])
c += 1
if Inpar:
for ii in range(len(Feat_dic['Param'][0]['Inpar'])): # Add input parameters
if Feat_dic['Param'][0]['Inpar'][ii] == 'd_num':
In_arr[i_row,c+ii] = data.shape[0]
elif Feat_dic['Param'][0]['Inpar'][ii] == 'dv':
In_arr[i_row,c+ii] = ModelClass.dv
elif Feat_dic['Param'][0]['Inpar'][ii] == 'Mo':
In_arr[i_row,c+ii] = ModelClass.Mo
elif Feat_dic['Param'][0]['Inpar'][ii] == 'SER':
if ModelClass.SER:
In_arr[i_row,c+ii] = ModelClass.SER
i_row += 1
return In_arr[:i_row,:]
# Plotting models and parameters
def Plot_feature(Model_Param_array,Output_dict):
myVars = locals()
# Function for findin min-max of all similar parameters
def Extermom4All(Model_Param_array, itr_loc):
Mat1D = np.reshape(Model_Param_array[:,itr_loc], -1)
NotNone = np.isfinite(Mat1D)
if np.min(Mat1D[NotNone])>0:
return [np.min(Mat1D[NotNone])*0.95, np.max(Mat1D[NotNone])*1.05]
elif np.min(Mat1D[NotNone])<0 and np.max(Mat1D[NotNone])>0:
return [np.min(Mat1D[NotNone])*1.05, np.max(Mat1D[NotNone])*1.05]
elif np.max(Mat1D[NotNone])<0:
return [np.min(Mat1D[NotNone])*1.05, np.max(Mat1D[NotNone])*0.95]
# Function for setting relevant lagends in the plot
def Legend_label(loc):
l = Output_dict_c['label'][loc]
if Output_dict_c['b_method'][loc]:
if Output_dict_c['cl'][loc]:
l+='('+Output_dict_c['b_method'][loc]+', cl='+str(Output_dict_c['cl'][loc])+')'
else:
l+='('+Output_dict_c['b_method'][loc]+')'
return l
c_NotNone = [] # Removing all parameters with None or constant value
for i in range(Model_Param_array.shape[1]):
NotNone = np.isfinite(Model_Param_array[:,i])
Eq_value = np.mean(Model_Param_array[:,i])
if any(NotNone) and Eq_value != Model_Param_array[0,i]:
c_NotNone.append(i)
else:
logger.info(f"No-PLOT: All values of {Output_dict['Type'][i]} are {Model_Param_array[0,i]}!")
if len(c_NotNone) > 1:
Model_Param_array = Model_Param_array[:,c_NotNone]
# New output dictionary based on valid parameters for plotting
Output_dict_c = {'Type':[], 'label':[], 'b_method':[], 'cl':[]}
for i in range(len(c_NotNone)):
Output_dict_c['Type'].append(Output_dict['Type'][c_NotNone[i]])
Output_dict_c['label'].append(Output_dict['label'][c_NotNone[i]])
Output_dict_c['b_method'].append(Output_dict['b_method'][c_NotNone[i]])
Output_dict_c['cl'].append(Output_dict['cl'][c_NotNone[i]])
coloring=['blue','g','r','c','m','y',
'brown', 'darkolivegreen', 'teal', 'steelblue', 'slateblue',
'purple', 'darksalmon', '#c5b0d5', '#c49c94',
'#e377c2', '#f7b6d2', '#7f7f7f', '#c7c7c7', '#bcbd22', '#dbdb8d',
'#17becf', '#9edae5']
# All parameters to be plotted
All_vars = Output_dict_c['Type'][2:]
Uniqe_var = list(dict.fromkeys([s for s in All_vars if 'Standard Error' not in s])) #list(set(All_vars))
# defining handels and labels to make final legend
All_handels = ['p0']
for i in range(1,len(All_vars)):
All_handels.append('p'+str(i))
handels = []
labels = []
# itr_loc: location of paramteres with similar type
itr_loc = np.where(np.array(All_vars) == Uniqe_var[0])[0]+2
fig, myVars[Output_dict_c['Type'][0]] = plt.subplots(1,1,figsize=(8+int(len(All_vars)/3),6))
fig.subplots_adjust(right=1-len(Uniqe_var)*0.09)
if Output_dict_c['label'][itr_loc[0]] == 'True Max-Mag': # plot with dash-line
myVars[All_handels[itr_loc[0]-2]], = myVars[Output_dict_c['Type'][0]].plot(Model_Param_array[:,1]/24/3600, Model_Param_array[:,itr_loc[0]], c= coloring[itr_loc[0]], ls='--')
else:
myVars[All_handels[itr_loc[0]-2]], = myVars[Output_dict_c['Type'][0]].plot(Model_Param_array[:,1]/24/3600, Model_Param_array[:,itr_loc[0]], c= coloring[itr_loc[0]])
handels.append(All_handels[itr_loc[0]-2])
labels.append(Legend_label(itr_loc[0]))
myVars[Output_dict_c['Type'][0]].set_ylabel(Output_dict_c['Type'][itr_loc[0]])
myVars[Output_dict_c['Type'][0]].set_ylim(Extermom4All(Model_Param_array, itr_loc)[0], Extermom4All(Model_Param_array, itr_loc)[1])
myVars[Output_dict_c['Type'][0]].set_xlabel('Day (From start of the recording)')
if End_time:
myVars[Output_dict_c['Type'][0]].set_xlim(0,End_time)
# Plotting statndard error (if exists)
if Output_dict_c['Type'][itr_loc[0]+1] == 'Standard Error':
myVars[Output_dict_c['Type'][0]].fill_between(Model_Param_array[:,1]/24/3600,
Model_Param_array[:,itr_loc[0]] - Model_Param_array[:,itr_loc[0]+1],
Model_Param_array[:,itr_loc[0]] + Model_Param_array[:,itr_loc[0]+1], color= coloring[itr_loc[0]], alpha=0.1)
# Plotting similar parameters on one axis
for j in range(1,len(itr_loc)):
if Output_dict_c['label'][itr_loc[j]] == 'True Max-Mag': # plot with dash-line
myVars[All_handels[itr_loc[j]-2]], = myVars[Output_dict_c['Type'][0]].plot(Model_Param_array[:,1]/24/3600, Model_Param_array[:,itr_loc[j]], c= coloring[itr_loc[j]], ls='--')
else:
myVars[All_handels[itr_loc[j]-2]], = myVars[Output_dict_c['Type'][0]].plot(Model_Param_array[:,1]/24/3600, Model_Param_array[:,itr_loc[j]], c= coloring[itr_loc[j]])
handels.append(All_handels[itr_loc[j]-2])
labels.append(Legend_label(itr_loc[j]))
# Plotting statndard error (if exists)
if itr_loc[j]+1 <= len(itr_loc) and Output_dict_c['Type'][itr_loc[j]+1] == 'Standard Error':
myVars[Output_dict_c['Type'][0]].fill_between(Model_Param_array[:,1]/24/3600,
Model_Param_array[:,itr_loc[j]] - Model_Param_array[:,itr_loc[j]+1],
Model_Param_array[:,itr_loc[j]] + Model_Param_array[:,itr_loc[j]+1], color= coloring[itr_loc[j]], alpha=0.1)
first_itr = 0
# Check if there is any more parameter to be plotted in second axes
# The procedure is similar to last plots.
if len(Uniqe_var) > 1:
for i in range(1,len(Uniqe_var)):
itr_loc = np.where(np.array(All_vars) == Uniqe_var[i])[0]+2
myVars[Uniqe_var[i]] = myVars[Output_dict_c['Type'][0]].twinx()
# if it is third or more axis, make a distance between them
if first_itr == 0:
first_itr += 1
set_right = 1
else:
set_right = 1 + first_itr*0.2
first_itr += 1
myVars[Uniqe_var[i]].spines.right.set_position(("axes", set_right))
if Output_dict_c['label'][itr_loc[0]] == 'True Max-Mag': # plot with dash-line
myVars[All_handels[itr_loc[0]-2]], = myVars[Uniqe_var[i]].plot(Model_Param_array[:,1]/24/3600, Model_Param_array[:,itr_loc[0]], c= coloring[itr_loc[0]], ls='--')
else:
myVars[All_handels[itr_loc[0]-2]], = myVars[Uniqe_var[i]].plot(Model_Param_array[:,1]/24/3600, Model_Param_array[:,itr_loc[0]], c= coloring[itr_loc[0]])
handels.append(All_handels[itr_loc[0]-2])
labels.append(Legend_label(itr_loc[0]))
myVars[Uniqe_var[i]].set_ylabel(Output_dict_c['Type'][itr_loc[0]])
myVars[Uniqe_var[i]].yaxis.label.set_color(coloring[itr_loc[0]])
myVars[Uniqe_var[i]].spines["right"].set_edgecolor(coloring[itr_loc[0]])
myVars[Uniqe_var[i]].tick_params(axis='y', colors= coloring[itr_loc[0]])
myVars[Uniqe_var[i]].set_ylim(Extermom4All(Model_Param_array, itr_loc)[0], Extermom4All(Model_Param_array, itr_loc)[1])
if itr_loc[0]+1 < len(Output_dict_c['Type']) and Output_dict_c['Type'][itr_loc[0]+1] == 'Standard Error':
myVars[Uniqe_var[i]].fill_between(Model_Param_array[:,1]/24/3600,
Model_Param_array[:,itr_loc[0]] - Model_Param_array[:,itr_loc[0]+1],
Model_Param_array[:,itr_loc[0]] + Model_Param_array[:,itr_loc[0]+1], color= coloring[itr_loc[0]], alpha=0.1)
for j in range(1,len(itr_loc)):
if Output_dict_c['label'][itr_loc[j]] == 'True Max-Mag': # plot with dash-line
myVars[All_handels[itr_loc[j]-2]], = myVars[Uniqe_var[i]].plot(Model_Param_array[:,1]/24/3600, Model_Param_array[:,itr_loc[j]], c= coloring[itr_loc[j]], ls = '--')
else:
myVars[All_handels[itr_loc[j]-2]], = myVars[Uniqe_var[i]].plot(Model_Param_array[:,1]/24/3600, Model_Param_array[:,itr_loc[j]], c= coloring[itr_loc[j]])
handels.append(All_handels[itr_loc[j]-2])
labels.append(Legend_label(itr_loc[j]))
if Output_dict_c['Type'][itr_loc[j]+1] == 'Standard Error':
myVars[Uniqe_var[i]].fill_between(Model_Param_array[:,1]/24/3600,
Model_Param_array[:,itr_loc[j]] - Model_Param_array[:,itr_loc[j]+1],
Model_Param_array[:,itr_loc[j]] + Model_Param_array[:,itr_loc[j]+1], color= coloring[itr_loc[j]], alpha=0.1)
# If there are timing, plot them as vertical lines
if time_inj:
myVars['l1'], = plt.plot([time_inj,time_inj], [Extermom4All(Model_Param_array, itr_loc)[0],Extermom4All(Model_Param_array, itr_loc)[1]], ls='--', c='k')
handels.append('l1')
labels.append('Start-inj')
if time_shut_in:
myVars['l2'], = plt.plot([time_shut_in,time_shut_in], [Extermom4All(Model_Param_array, itr_loc)[0],Extermom4All(Model_Param_array, itr_loc)[1]], ls='-.', c='k')
handels.append('l2')
labels.append('Shut-in')
if time_big_ev:
myVars['l3'], = plt.plot([time_big_ev,time_big_ev], [Extermom4All(Model_Param_array, itr_loc)[0],Extermom4All(Model_Param_array, itr_loc)[1]], ls='dotted', c='k')
handels.append('l3')
labels.append('Large-Ev')
box = myVars[Output_dict_c['Type'][0]].get_position()
if len(handels) < 6:
myVars[Output_dict_c['Type'][0]].set_position([box.x0, box.y0 + box.height * 0.1,
box.width, box.height * 0.9])
plt.legend([myVars[ii] for ii in handels], labels, loc='upper center',
bbox_to_anchor=(0.5+0.06*first_itr, -0.15), fancybox=True, shadow=True, ncol=len(handels))
elif len(handels) < 13:
myVars[Output_dict_c['Type'][0]].set_position([box.x0, box.y0 + box.height * 0.04*int(len(handels)/2),
box.width, box.height * (1 - 0.04*int(len(handels)/2))])
plt.legend([myVars[ii] for ii in handels], labels, loc='upper center',
bbox_to_anchor=(0.5+0.1*first_itr, -0.04*int(len(handels)/2)), fancybox=True, shadow=True, ncol=int(len(handels)/2)+1, handleheight=2)
else:
myVars[Output_dict_c['Type'][0]].set_position([box.x0, box.y0 + box.height * 0.04*int(len(handels)/2),
box.width, box.height * (1 - 0.04*int(len(handels)/2))])
plt.legend([myVars[ii] for ii in handels], labels, loc='upper center',
bbox_to_anchor=(0.6+0.1*first_itr, -0.04*int(len(handels)/2)), fancybox=True, shadow=True, ncol=int(len(handels)/2)+1, handleheight=2)
plt.title(Model_name)
# plt.savefig(cwd+'/Results/'+Model_name+'.png', dpi=300)
plt.savefig('PLOT_Mmax_param.png', dpi=300)
# plt.show()
# Run functions based on the configurations -------------------
# Computing model
if time_step_in_hour > time_win_in_hours:
raise ValueError('Time steps should be <= time window.')
if (time_win_in_hours+3*time_step_in_hour)*3600 > np.max(Cat[:,4]):
raise ValueError('Time window and time steps are like that no more than three computations is possible. Use smaller value for either time window or time step.')
time_step = time_step_in_hour*3600
if End_time:
if End_time*24*3600 > np.max(Cat[:,4])+24*3600:
raise ValueError(f'End_time is longer than the maximum time of catalog, which is {np.ceil(np.max(Cat[:,4])/24/3600)} day!')
Times = int(np.floor((End_time*24*3600 - Cat[0,4]) / time_step))
else:
Times = int(np.floor((np.max(Cat[:,4]) - Cat[0,4]) / time_step))
Model_Param_array = np.zeros((Times,c_out))
logger.info("Computing input parameter(s) and the model(s)")
Model_Param_array = Feature_in_Time(Model_Param_array)
# Plotting
if Plot_flag > 0:
if Model_Param_array.any():
logger.info("Plotting results")
Plot_feature(Model_Param_array, Output_dict)
else:
logger.info("Model_Param_array is empty.")
raise ValueError("No model is generated since no event in all time windows is available due to imporoper values of either time window, minimum limit of events or completeness magnitude!")
# Saving
logger.info("Saving results")
# Save models and parameters in
def OneLineHeader(loc):
l = Output_dict['Type'][loc]
if Output_dict['b_method'][loc]:
if Output_dict['label'][loc] != 'b_value' and Output_dict['label'][loc] != 'b_std_err' and Output_dict['label'][loc] != 'M_std_err':
l += '_'+Output_dict['label'][loc]
else:
l = Output_dict['label'][loc]
if Output_dict['cl'][loc]:
l += '(b_method: '+Output_dict['b_method'][loc]+', q='+str(Output_dict['cl'][loc])+')'
else:
l += '(b_method: '+Output_dict['b_method'][loc]+')'
elif Output_dict['label'][loc]:
l += '('+ Output_dict['label'][loc] +')'
return l
db_df = pd.DataFrame(data = Model_Param_array,
columns = [OneLineHeader(i) for i in range(len(Output_dict['Type']))])
db_df = db_df.round(4)
# db_df.to_excel(cwd+'/Results/'+Full_feat_name+'.xlsx')
db_df.to_csv('DATA_Mmax_param.csv', sep=';', index=False)
# np.savez_compressed(cwd+'/Results/'+Full_feat_name+'.npz', Model_Param_array = Model_Param_array) # change the name!
if __name__=='__main__':
# Input_catalog = 'Data/Cooper_Basin_Catalog_HAB_1_2003_Reprocessed.mat'
# Input_injection_rate = 'Data/Cooper_Basin_HAB_1_2003_Injection_Rate.mat'
# Model_index = 4
# b_value_type = 'TGR'
main(Input_catalog, Input_injection_rate, time_win_in_hours, time_step_in_hour, time_win_type,
End_time, ev_limit, Inpar, time_inj, time_shut_in, time_big_ev, Model_index,
Mc, Mu, G, ssd, C, b_value_type, cl, mag_name)

55
maxmagnitude_wrapper.py Normal file
View File

@ -0,0 +1,55 @@
# -*- coding: utf-8 -*-
# -----------------
# Copyright © 2024 ACK Cyfronet AGH, Poland.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# This work was partially funded by DT-GEO Project.
# -----------------
import sys
import argparse
from Mmax import main as Mmax
def main(argv):
parser = argparse.ArgumentParser()
parser.add_argument("Input_catalog", help="Input catalog: path to input file of type 'catalog'")
parser.add_argument("Input_injection_rate", help="Input injection rate: path to input file of type 'injection_rate'")
parser.add_argument("--time_win_in_hours", help="Time window length (in hours- backward from the current time).", type=int, default=6)
parser.add_argument("--time_step_in_hour", help="Time interval for computation (in hours).", type=int, default=3)
parser.add_argument("--time_win_type", help="Time window type for computation.", type=int, default=0)
parser.add_argument("--End_time", help="End time of the computations (in day).", type=int, default=None)
parser.add_argument("--ev_limit", help="Minimum events number required for model computation.", type=int, default=20)
# Parameters with action='append' are array inputs. We can pass array by using a parameters multiple time. Eg.:
# --Inpar=A --Inpar=B --Inpar=C pass ['A', 'B', 'C'] array as script input.
parser.add_argument("--Inpar", help="Input parameters of the model to be saved and plotted.", type=str, action='append', default=None)
parser.add_argument("--time_inj", help="Injection time for plotting (in day).", type=int, default=None)
parser.add_argument("--time_shut_in", help="Shut-in time for plotting (in day).", type=int, default=None)
parser.add_argument("--time_big_ev", help="Big event time for plotting (in day).", type=int, default=None)
parser.add_argument("--Model_index", help="Model index: parameter of type 'INTEGER'", type=int)
parser.add_argument("--Mc", help="Completeness magnitude.", type=float, default=0.8)
parser.add_argument("--Mu", help="Friction coefficient.", type=float, default=0.6, required=False)
parser.add_argument("--G", help="Shear modulus of reservoir (in Pa).", type=float, default=35000000000)
parser.add_argument("--ssd", help="Static stress drop (in Pa).", type=float, default=3000000)
parser.add_argument("--C", help="Geometrical constant.", type=float, default=0.95)
parser.add_argument("--b_value_type", help="b-value type: parameter of type 'TEXT'", action='append')
parser.add_argument("--cl", help="Confidence level in van der Elst model.", type=float, action='append')
parser.add_argument("--mag_name", help="Magnitude column name", type=str)
args = parser.parse_args()
Mmax(**vars(args))
return
if __name__ == '__main__':
main(sys.argv)

43
util/CandidateEventsTS.py Normal file
View File

@ -0,0 +1,43 @@
import numpy as np
class CandidateEventsTS:
def __init__(self, data, current_time, Mc, time_win, space_win=None):
assert time_win > 0, f"Time windows is {time_win}, which should be a positive number"
self.data = data
self.current_time = current_time
self.Mc = Mc
self.time_win = time_win
self.space_win = space_win
def filter_by_time(self):
indx = np.where((self.data[:, 4] > (self.current_time - self.time_win)) & (self.data[:, 4] <= self.current_time))[0]
if len(indx) > 0:
self.data = self.data[indx, :]
else:
self.data = []
def filter_by_magnitude(self):
if self.Mc:
indx = np.where(self.data[:, 5] > self.Mc)[0]
if len(indx) > 0:
self.data = self.data[indx, :]
else:
self.data = []
def filter_by_space(self):
dist = np.sqrt(np.sum((self.data[:, 1:4] - self.data[-1, 1:4]) ** 2, axis=1))
indx = np.where(dist < self.space_win)[0]
if len(indx) > 0:
self.data = self.data[indx, :]
else:
self.data = []
def filter_data(self):
self.filter_by_time()
if len(self.data) > 0:
self.filter_by_magnitude()
if len(self.data) > 0 and self.space_win:
self.filter_by_space()
return self.data

14
util/Find_idx4Time.py Normal file
View File

@ -0,0 +1,14 @@
import numpy as np
def Find_idx4Time(In_mat, t):
# In_mat: time array
# t = target time
In_mat = np.array(In_mat)
t = np.array(t)
if len(np.shape(t)) == 0:
return np.where(abs(In_mat - t) <= min(abs(In_mat - t)))[0][0]
else:
In_mat = In_mat.reshape((len(In_mat), 1))
t = t.reshape((1,len(t)))
target_time = np.matmul(np.ones((len(In_mat),1)), t)
diff_mat = target_time - In_mat
return np.where(abs(diff_mat) <= np.min(abs(diff_mat), axis = 0))

216
util/M_max_models.py Normal file
View File

@ -0,0 +1,216 @@
# -----------------
# Copyright © 2024 ACK Cyfronet AGH, Poland.
# -----------------
import numpy as np
class M_max_models:
def __init__(self, data = None, f_name = None, time_win = None, space_win = None,
Mc = None, b_method = None, num_bootstraps = None,
G = None, Mu = None,
dv = None, Mo = None, SER = None,
cl = None,
ssd = None, C = None,
):
self.data = data # Candidate data table: 2darray n x m, for n events and m clonums: x, y, z, t, mag
self.f_name = f_name # Feature's name to be calculated, check: def ComputeFeaure(self)
self.time_win = time_win # Time window whihc a feature is computed in
self.space_win = space_win # Space window ...
self.Mc = Mc # Magnitude of completeness for computing b-positive
self.b_method = b_method # list of b_methods
self.num_bootstraps = num_bootstraps # Num of bootstraps for standard error estimation of b-value
self.G = G # Shear modulus
self.Mu = Mu # Friction coefficient
self.dv = dv # Injected fluid
self.SER = SER
self.Mo = Mo # Cumulative moment magnitude
self.cl = cl # Confidence level
self.ssd = ssd # Static stress drop (Shapiro et al. 2013)
self.C = C # Geometrical constant (Shapiro et al. 2013)
def b_value(self, b_flag):
if b_flag == '1':
return 1, None
# maximum-likelihood estimate (MLE) of b (Deemer & Votaw 1955; Aki 1965; Kagan 2002):
elif b_flag == 'b':
X = self.data[np.where(self.data[:,-1]>self.Mc)[0],:]
if X.shape[0] > 0:
b = 1/((np.mean(X[:,-1] - self.Mc))*np.log(10))
std_error = b/np.sqrt(X.shape[0])
else:
raise ValueError("All events in the current time window have a magnitude less than 'completeness magnitude'. Use another value either for 'time window', 'minimum number of events' or 'completeness magnitude'.")
return b, std_error
# B-positive (van der Elst 2021)
elif b_flag == 'bp':
# Function to perform bootstrap estimation
def bootstrap_estimate(data, num_bootstraps):
estimates = []
for _ in range(num_bootstraps):
# Generate bootstrap sample
bootstrap_sample = np.random.choice(data, size=len(data), replace=True)
# Perform maximum likelihood estimation on bootstrap sample
diff_mat = np.diff(bootstrap_sample)
diff_mat = diff_mat[np.where(diff_mat>0)[0]]
estimate = 1/((np.mean(diff_mat - np.min(diff_mat)))*np.log(10))
estimates.append(estimate)
return np.array(estimates)
diff_mat = np.diff(self.data[:,-1])
diff_mat = diff_mat[np.where(diff_mat>0)[0]]
bp = 1/((np.mean(diff_mat - np.min(diff_mat)))*np.log(10))
bootstrap_estimates = bootstrap_estimate(diff_mat, self.num_bootstraps)
std_error = np.std(bootstrap_estimates, axis=0)
return bp, std_error
# Tapered Gutenberg_Richter (TGR) distribution (Kagan 2002)
elif b_flag == 'TGR':
from scipy.optimize import minimize
# The logarithm of the likelihood function for the TGR distribution (Kagan 2002)
def log_likelihood(params, data):
beta, Mcm = params
n = len(data)
Mt = np.min(data)
l = n*beta*np.log(Mt)+1/Mcm*(n*Mt-np.sum(data))-beta*np.sum(np.log(data))+np.sum(np.log([(beta/data[i]+1/Mcm) for i in range(len(data))]))
return -l
X = self.data[np.where(self.data[:,-1]>self.Mc)[0],:]
M = 10**(1.5*X[:,-1]+9.1)
initial_guess = [0.5, np.max(M)]
bounds = [(0.0, None), (np.max(M), None)]
# Minimize the negative likelihood function for beta and maximum moment
result = minimize(log_likelihood, initial_guess, args=(M,), bounds=bounds, method='L-BFGS-B',
options={'gtol': 1e-12, 'disp': False})
beta_opt, Mcm_opt = result.x
eta = 1/Mcm_opt
S = M/np.min(M)
dldb2 = -np.sum([1/(beta_opt-eta*S[i])**2 for i in range(len(S))])
dldbde = -np.sum([S[i]/(beta_opt-eta*S[i])**2 for i in range(len(S))])
dlde2 = -np.sum([S[i]**2/(beta_opt-eta*S[i])**2 for i in range(len(S))])
std_error_beta = 1/np.sqrt(dldb2*dlde2-dldbde**2)*np.sqrt(-dlde2)
return beta_opt*1.5, std_error_beta*1.5
def McGarr(self):
b_value, b_stderr = self.b_value(self.b_method)
B = 2/3*b_value
if B < 1:
sigma_m = ((1-B)/B)*(2*self.Mu)*(5*self.G)/3*self.dv
Mmax = (np.log10(sigma_m)-9.1)/1.5
if b_stderr:
Mmax_stderr = b_stderr/np.abs(np.log(10)*(1.5*b_value-b_value**2))
else:
Mmax_stderr = None
else:
Mmax = None
Mmax_stderr = None
return b_value, b_stderr, Mmax, Mmax_stderr
def Hallo(self):
b_value, b_stderr = self.b_value(self.b_method)
B = 2/3*b_value
if b_value < 1.5:
sigma_m = self.SER*((1-B)/B)*(2*self.Mu)*(5*self.G)/3*self.dv
Mmax = (np.log10(sigma_m)-9.1)/1.5
if b_stderr:
Mmax_stderr = self.SER*b_stderr/np.abs(np.log(10)*(1.5*b_value-b_value**2))
else:
Mmax_stderr = None
else:
Mmax = None
Mmax_stderr = None
return b_value, b_stderr, Mmax, Mmax_stderr
def Li(self):
sigma_m = self.SER*2*self.G*self.dv - self.Mo
Mmax = (np.log10(sigma_m)-9.1)/1.5
if Mmax < 0:
return None
else:
return Mmax
def van_der_Elst(self):
b_value, b_stderr = self.b_value(self.b_method)
# Seismogenic_Index
X = self.data
si = np.log10(X.shape[0]) - np.log10(self.dv) + b_value*self.Mc
if b_stderr:
si_stderr = self.Mc*b_stderr
else:
si_stderr = None
Mmax = (si + np.log10(self.dv))/b_value - np.log10(X.shape[0]*(1-self.cl**(1/X.shape[0])))/b_value
if b_stderr:
Mmax_stderr = (np.log10(X.shape[0]) + np.log10(X.shape[0]*(1-self.cl**(1/X.shape[0]))))*b_stderr
else:
Mmax_stderr = None
return b_value, b_stderr, si, si_stderr, Mmax, Mmax_stderr
def L_Shapiro(self):
from scipy.stats import chi2
X = self.data[np.isfinite(self.data[:,1]),1:4]
# Parameters
STD = 2.0 # 2 standard deviations
conf = 2 * chi2.cdf(STD, 2) - 1 # covers around 95% of population
scalee = chi2.ppf(conf, 2) # inverse chi-squared with dof=#dimensions
# Center the data
Mu = np.mean(X, axis=0)
X0 = X - Mu
# Covariance matrix
Cov = np.cov(X0, rowvar=False) * scalee
# Eigen decomposition
D, V = np.linalg.eigh(Cov)
order = np.argsort(D)[::-1]
D = D[order]
V = V[:, order]
# Compute radii
VV = V * np.sqrt(D)
R1 = np.sqrt(VV[0, 0]**2 + VV[1, 0]**2 + VV[2, 0]**2)
R2 = np.sqrt(VV[0, 1]**2 + VV[1, 1]**2 + VV[2, 1]**2)
R3 = np.sqrt(VV[0, 2]**2 + VV[1, 2]**2 + VV[2, 2]**2)
L = (1/3*(1/R1**3+1/R2**3+1/R3**3))**(-1/3)
return R1, R2, R3, L
def Shapiro(self):
R1, R2, R3, L = self.L_Shapiro()
return R1, R2, R3, L, np.log10(R3**2)+(np.log10(self.ssd)-np.log10(self.C)-9.1)/1.5
def All_models(self):
return self.McGarr()[2], self.Hallo()[2], self.Li(), self.van_der_Elst()[-2], self.Shapiro()[-1]
def ComputeModel(self):
if self.f_name == 'max_mcg':
return self.McGarr()
if self.f_name == 'max_hlo':
return self.Hallo()
if self.f_name == 'max_li':
return self.Li()
if self.f_name == 'max_vde':
return self.van_der_Elst()
if self.f_name == 'max_shp':
return self.Shapiro()
if self.f_name == 'max_all':
return self.All_models()