Compare commits
42 Commits
Author | SHA1 | Date | |
---|---|---|---|
9e75e0e768 | |||
a73f17fc35 | |||
2fbca21917 | |||
910d933467 | |||
e06f4a5a05 | |||
2906af6918 | |||
dd84829b6d | |||
5b25b93090 | |||
9fd7de6124 | |||
d56aaeef39 | |||
b4ef228a03 | |||
fc2e8b53c7 | |||
664ab1025b | |||
36378f4d6c | |||
1244655a68 | |||
70c08f47ab | |||
60ae1c96cd | |||
1ea6c85ab2 | |||
84440152eb | |||
a941939493 | |||
f4d2cfc3cd | |||
bd1ad26693 | |||
bc4d57a5ab | |||
921de3f423 | |||
b287715f44 | |||
eb14b7d235 | |||
3ffcf2c4db | |||
6f3d95974e | |||
4adfbb6a54 | |||
bd468927f3 | |||
bda00e225c | |||
a0f29de47f | |||
86fb03c792 | |||
846078352b | |||
f1472bf250 | |||
7a39d5a07e | |||
9c58664770 | |||
17cbcc8e79 | |||
cce0cd258d | |||
c20f7c06a7 | |||
22fc9f7c07 | |||
8f1ab5518a |
13
LICENCE.txt
Normal file
13
LICENCE.txt
Normal file
@ -0,0 +1,13 @@
|
||||
Copyright 2025 Institute of Geophysics, Polish Academy of Sciences
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
142
gsim/lasocki_2013.py
Normal file
142
gsim/lasocki_2013.py
Normal file
@ -0,0 +1,142 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
# vim: tabstop=4 shiftwidth=4 softtabstop=4
|
||||
#
|
||||
# Copyright (C) 2013-2023 GEM Foundation
|
||||
#
|
||||
# OpenQuake is free software: you can redistribute it and/or modify it
|
||||
# under the terms of the GNU Affero General Public License as published
|
||||
# by the Free Software Foundation, either version 3 of the License, or
|
||||
# (at your option) any later version.
|
||||
#
|
||||
# OpenQuake is distributed in the hope that it will be useful,
|
||||
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
# GNU Affero General Public License for more details.
|
||||
#
|
||||
# You should have received a copy of the GNU Affero General Public License
|
||||
# along with OpenQuake. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
"""
|
||||
Module exports :class:`Lasocki2013`.
|
||||
"""
|
||||
import numpy as np
|
||||
from scipy.constants import g
|
||||
|
||||
from openquake.hazardlib.gsim.base import GMPE, CoeffsTable
|
||||
from openquake.hazardlib import const
|
||||
from openquake.hazardlib.imt import PGA, PGV, SA
|
||||
|
||||
def get_magnitude_energy(mag):
|
||||
"""
|
||||
Converts magnitude to energy-based magnitude term.
|
||||
"""
|
||||
return 1.15 + 1.96 * mag
|
||||
|
||||
def get_distance_term(coeffs, repi):
|
||||
"""
|
||||
Computes the distance term using the given GMPE coefficients.
|
||||
"""
|
||||
R_h = np.sqrt(repi ** 2 + coeffs["c7"] ** 2)
|
||||
return np.log10(R_h)
|
||||
|
||||
def get_standard_deviation(coeffs, coeffs_cov, magE, repi):
|
||||
"""
|
||||
Computes the standard deviation term.
|
||||
"""
|
||||
Cb = np.array(list(coeffs_cov)).reshape(3,3)
|
||||
R_h = np.sqrt(repi ** 2 + coeffs["c7"] ** 2)
|
||||
X0 = np.array([1, magE[0], np.log10(R_h[0]**2)])
|
||||
variance_term = np.sqrt(X0 @ Cb @ X0 + coeffs["sigma"]**2)
|
||||
return variance_term
|
||||
|
||||
class Lasocki2013(GMPE):
|
||||
"""
|
||||
Implement equation developed by Lasocki in "REPORT ON THE ATTENUATION
|
||||
RELATIONS OF PEAK GROUND ACCELERATION AND SPECTRAL ORDINATES OF GROUND
|
||||
MOTION FOR MINING-INDUCED SEISMIC EVENTS IN THE REGION OF THE ŻELAZNY
|
||||
MOST REPOSITORY", 2009.
|
||||
Equation coefficients provided for the random horizontal component
|
||||
"""
|
||||
#: Supported tectonic region type is induced, given
|
||||
#: that the equations have been derived for the LGCD mining area
|
||||
DEFINED_FOR_TECTONIC_REGION_TYPE = const.TRT.INDUCED
|
||||
|
||||
#: Supported intensity measure types are spectral acceleration,
|
||||
#: and peak ground acceleration
|
||||
DEFINED_FOR_INTENSITY_MEASURE_TYPES = {PGA, SA}
|
||||
|
||||
#: Supported intensity measure component is random horizontal
|
||||
#: :attr:`~openquake.hazardlib.const.IMC.RANDOM_HORIZONTAL`,
|
||||
DEFINED_FOR_INTENSITY_MEASURE_COMPONENT = const.IMC.RANDOM_HORIZONTAL
|
||||
# DEFINED_FOR_INTENSITY_MEASURE_COMPONENT = const.IMC.VERTICAL
|
||||
|
||||
#: Supported standard deviation type is total
|
||||
DEFINED_FOR_STANDARD_DEVIATION_TYPES = {const.StdDev.TOTAL}
|
||||
|
||||
#: site params are not required
|
||||
REQUIRES_SITES_PARAMETERS = set()
|
||||
|
||||
#: Required rupture parameter is magnitude
|
||||
REQUIRES_RUPTURE_PARAMETERS = {'mag'}
|
||||
|
||||
#: Required distance measure is epicentral distance
|
||||
#: see paragraph 'Predictor Variables', page 6.
|
||||
REQUIRES_DISTANCES = {'repi'}
|
||||
|
||||
def compute(self, ctx: np.recarray, imts, mean, sig, tau, phi):
|
||||
"""
|
||||
Computes mean ground motion values and standard deviations for Lasocki (2013) GMPE.
|
||||
|
||||
Parameters:
|
||||
repi (float): Epicentral distance (m)
|
||||
mag (float): Earthquake magnitude
|
||||
imts (list of str): List of intensity measure types (e.g., 'PHA', 'PVA')
|
||||
mean (np.array): Array to store computed mean values
|
||||
sig (np.array): Array to store computed standard deviations
|
||||
"""
|
||||
# Loop through each IMT and compute values
|
||||
for i, imt in enumerate(imts):
|
||||
C = self.COEFFS[imt]
|
||||
C_cov = self.COEFFS_COV[imt]
|
||||
mag = ctx.mag
|
||||
repi = ctx.repi*1000.0 # Convert distance from km to m
|
||||
# Compute magnitude energy term
|
||||
magE = get_magnitude_energy(mag)
|
||||
|
||||
# Compute GMPE terms
|
||||
mag_term = C['c1'] + C['c2'] * magE
|
||||
dist_term = C['c5'] * get_distance_term(C, repi)
|
||||
|
||||
# Compute mean ground motion
|
||||
imean = mag_term + dist_term
|
||||
mean_value = np.log((10 ** imean) / g) # Convert to natural log scale and divide by g
|
||||
mean[i] = mean_value
|
||||
|
||||
# Compute standard deviation
|
||||
sigma = get_standard_deviation(C, C_cov, magE, repi)
|
||||
sig[i] = sigma
|
||||
|
||||
#: coefficient table provided by report
|
||||
COEFFS = CoeffsTable(sa_damping=5, table="""\
|
||||
IMT c1 c2 c5 c7 sigma N
|
||||
pga 1.25 0.31 -1.34 558 0.196 1196
|
||||
0.6 -3.86 0.55 -0.65 183 0.242 1194
|
||||
1.0 -3.94 0.62 -0.66 308 0.262 1197
|
||||
2.0 -1.14 0.47 -1.02 741 0.235 1195
|
||||
5.0 0.99 0.31 -1.15 690 0.234 1206
|
||||
10.0 3.06 0.27 -1.65 906 0.203 1192
|
||||
20.0 2.62 0.27 -1.60 435 0.196 1191
|
||||
50.0 2.09 0.27 -1.48 375 0.204 1191
|
||||
""")
|
||||
|
||||
COEFFS_COV = CoeffsTable(sa_damping=5, table="""\
|
||||
IMT Cb00 Cb01 Cb02 Cb10 Cb11 Cb12 Cb20 Cb21 Cb22
|
||||
pga 0.005586 -0.000376 -0.000752 -0.000376 0.000103 -0.000111 -0.000752 -0.000111 0.000440
|
||||
0.6 0.007509 -0.000662 -0.000688 -0.000662 0.000161 -0.000154 -0.000688 -0.000154 0.000516
|
||||
1.0 0.009119 -0.00075 -0.000948 -0.00075 0.000189 -0.000187 -0.000948 -0.000187 0.000657
|
||||
2.0 0.008563 -0.000514 -0.001282 -0.000514 0.000147 -0.000164 -0.001282 -0.000164 0.000696
|
||||
5.0 0.008283 -0.000516 -0.001202 -0.000516 0.000145 -0.000161 -0.001202 -0.000161 0.000668
|
||||
10.0 0.006904 -0.00036 -0.001145 -0.00036 0.000108 -0.000126 -0.001145 -0.000126 0.000578
|
||||
20.0 0.005389 -0.000396 -0.000658 -0.000396 0.000104 -0.000107 -0.000658 -0.000107 0.000408
|
||||
50.0 0.005874 -0.000449 -0.000678 -0.000449 0.000114 -0.000114 -0.000678 -0.000114 0.000428
|
||||
""")
|
@ -17,7 +17,7 @@ def main(catalog_file, mc_file, pdf_file, m_file, m_select, mag_label, mc, m_max
|
||||
then the program looks for a label of 'Mw' for magnitude in the catalog
|
||||
mc: The magnitude of completeness (Mc) of the catalog
|
||||
m_max:M_max. The magnitude distribution is estimated for the range from Mc to M_max. If no value is provided,
|
||||
then the program sets M_max to be 3 magnitude units above the maximum magnitude value in the catalog.
|
||||
then the program sets M_max to be 1 magnitude units above the maximum magnitude value in the catalog.
|
||||
m_kde_method: The kernel density estimator to use.
|
||||
xy_select: If True, perform an estimation of the magnitude distribution using KDE with the chosen KDE method
|
||||
grid_dim: The grid cell size (in metres) of the final ground motion product map. A smaller cell size will
|
||||
@ -45,22 +45,19 @@ def main(catalog_file, mc_file, pdf_file, m_file, m_select, mag_label, mc, m_max
|
||||
"""
|
||||
|
||||
import sys
|
||||
from importlib.metadata import version
|
||||
import logging
|
||||
from base_logger import getDefaultLogger
|
||||
from timeit import default_timer as timer
|
||||
from math import ceil, floor
|
||||
from math import ceil, floor, isnan
|
||||
import numpy as np
|
||||
import scipy
|
||||
import obspy
|
||||
import dask
|
||||
from dask.diagnostics import ProgressBar # use Dask progress bar
|
||||
import kalepy as kale
|
||||
import utm
|
||||
from skimage.transform import resize
|
||||
import psutil
|
||||
import openquake.engine
|
||||
import igfash
|
||||
from igfash.io import read_mat_cat, read_mat_m, read_mat_pdf, read_csv
|
||||
from igfash.io import read_mat_cat, read_mat_m, read_mat_mc, read_mat_pdf, read_csv
|
||||
from igfash.window import win_CTL, win_CNE
|
||||
import igfash.kde as kde
|
||||
from igfash.gm import compute_IMT_exceedance
|
||||
@ -70,6 +67,8 @@ def main(catalog_file, mc_file, pdf_file, m_file, m_select, mag_label, mc, m_max
|
||||
import matplotlib.pyplot as plt
|
||||
from matplotlib.ticker import MultipleLocator
|
||||
from matplotlib.contour import ContourSet
|
||||
import xml.etree.ElementTree as ET
|
||||
import json
|
||||
|
||||
logger = getDefaultLogger('igfash')
|
||||
|
||||
@ -82,6 +81,7 @@ def main(catalog_file, mc_file, pdf_file, m_file, m_select, mag_label, mc, m_max
|
||||
m_range = [None]
|
||||
else:
|
||||
m_range = read_mat_m(m_file)
|
||||
m_max = m_range[-1] # take m_max from the m_file
|
||||
|
||||
if verbose:
|
||||
logger.setLevel(logging.DEBUG)
|
||||
@ -103,25 +103,13 @@ verbose: {verbose}")
|
||||
|
||||
# print key package version numbers
|
||||
logger.debug(f"Python version {sys.version}")
|
||||
logger.debug(f"Numpy version {np.__version__}")
|
||||
logger.debug(f"Scipy version {scipy.__version__}")
|
||||
logger.debug(f"Obspy version {obspy.__version__}")
|
||||
logger.debug(f"Openquake version {openquake.engine.__version__}")
|
||||
logger.debug(f"Igfash version {igfash.__version__}")
|
||||
|
||||
# print number of cpu cores available
|
||||
ncpu = psutil.cpu_count(logical=False)
|
||||
logger.debug(f"Number of cpu cores available: {ncpu}")
|
||||
for process in psutil.process_iter():
|
||||
with process.oneshot():
|
||||
|
||||
# cpu = process.cpu_percent()
|
||||
cpu = process.cpu_percent() / ncpu
|
||||
|
||||
if cpu > 1:
|
||||
logger.debug(f"{process.name()}, {cpu}")
|
||||
|
||||
logger.debug(f"BASELINE CPU LOAD% {psutil.cpu_percent(interval=None, percpu=True)}")
|
||||
logger.debug(f"Numpy version {version('numpy')}")
|
||||
logger.debug(f"Scipy version {version('scipy')}")
|
||||
logger.debug(f"Obspy version {version('obspy')}")
|
||||
logger.debug(f"Openquake version {version('openquake.engine')}")
|
||||
logger.debug(f"Igfash version {version('igfash')}")
|
||||
logger.debug(f"Rbeast version {version('rbeast')}")
|
||||
logger.debug(f"Dask version {version('dask')}")
|
||||
|
||||
dask.config.set(scheduler='processes')
|
||||
|
||||
@ -143,12 +131,18 @@ verbose: {verbose}")
|
||||
|
||||
time, mag, lat, lon, depth = read_mat_cat(catalog_file, mag_label=mag_label, catalog_label='Catalog')
|
||||
|
||||
# check for null magnitude values
|
||||
m_null_idx = np.where(np.isnan(mag))[0]
|
||||
if len(m_null_idx) > 0:
|
||||
msg = f"There are null values in the magnitude column of the catalog at indices {m_null_idx}"
|
||||
logger.error(msg)
|
||||
raise Exception(msg)
|
||||
if mc != None:
|
||||
logger.info("Mc value provided by user")
|
||||
trim_to_mc = True
|
||||
elif mc_file != None:
|
||||
logger.info("Mc estimation output file provided; selecting largest Mc from the list")
|
||||
mc = read_mc(mc_file)
|
||||
mc = read_mat_mc(mc_file)
|
||||
trim_to_mc = True
|
||||
else:
|
||||
logger.info("No Mc provided; using all magnitudes from the catalog")
|
||||
@ -164,9 +158,10 @@ verbose: {verbose}")
|
||||
lat = np.delete(lat, indices)
|
||||
lon = np.delete(lon, indices)
|
||||
|
||||
# if user does not provide a m_max, set m_max to 3 magnitude units above max magnitude in catalog
|
||||
# if user does not provide a m_max, set m_max to 1 magnitude unit above max magnitude in catalog
|
||||
if m_max == None:
|
||||
m_max = mag.max() + 3.0
|
||||
m_max = mag.max() + 1.0
|
||||
logger.info(f"No m_max was given. Therefore m_max is automatically set to: {m_max}")
|
||||
|
||||
start = timer()
|
||||
|
||||
@ -231,14 +226,15 @@ verbose: {verbose}")
|
||||
y_min = y.min()
|
||||
x_max = x.max()
|
||||
y_max = y.max()
|
||||
z_min = depth.min()
|
||||
z_max = depth.max()
|
||||
|
||||
grid_x_max = int(ceil(x_max / grid_dim) * grid_dim)
|
||||
grid_x_min = int(floor(x_min / grid_dim) * grid_dim)
|
||||
grid_y_max = int(ceil(y_max / grid_dim) * grid_dim)
|
||||
grid_y_min = int(floor(y_min / grid_dim) * grid_dim)
|
||||
|
||||
grid_lat_max, grid_lon_max = utm.to_latlon(grid_x_max, grid_y_max, utm_zone_number, utm_zone_letter)
|
||||
grid_lat_min, grid_lon_min = utm.to_latlon(grid_x_min, grid_y_min, utm_zone_number, utm_zone_letter)
|
||||
|
||||
# rectangular grid
|
||||
nx = int((grid_x_max - grid_x_min) / grid_dim) + 1
|
||||
ny = int((grid_y_max - grid_y_min) / grid_dim) + 1
|
||||
@ -325,8 +321,8 @@ verbose: {verbose}")
|
||||
lambdas = [None]
|
||||
if custom_rate != None and forecast_select:
|
||||
logger.info(f"Using activity rate specified by user: {custom_rate} per {time_unit}")
|
||||
lambdas = [custom_rate]
|
||||
lambdas_perc = [1]
|
||||
lambdas = np.array([custom_rate], dtype='d')
|
||||
lambdas_perc = np.array([1], dtype='d')
|
||||
|
||||
elif rate_select:
|
||||
logger.info(f"Activity rate modeling selected")
|
||||
@ -344,6 +340,12 @@ verbose: {verbose}")
|
||||
elif time_unit == 'years':
|
||||
multiplicator = 1 / 365
|
||||
|
||||
# Raise an exception when time_win_duration from the user is too large relative to the catalog
|
||||
if time_win_duration/multiplicator > 0.5*(time[-1] - time[0]):
|
||||
msg = "Activity rate estimation time window must be less than half the catalog length. Use a shorter time window."
|
||||
logger.error(msg)
|
||||
raise Exception(msg)
|
||||
|
||||
# Selects dates in datenum format and procceeds to forecast value
|
||||
start_date = datenum_data[-1] - (2 * time_win_duration / multiplicator)
|
||||
dates_calc = [date for date in datenum_data if start_date <= date <= datenum_data[-1]]
|
||||
@ -360,7 +362,7 @@ verbose: {verbose}")
|
||||
act_rate, bin_counts, bin_edges, out, pprs, rt, idx, u_e = calc_bins(np.array(datenum_data), time_unit,
|
||||
time_win_duration, dates_calc,
|
||||
rate_forecast, rate_unc_high, rate_unc_low,
|
||||
multiplicator, quiet=True)
|
||||
multiplicator, quiet=True, figsize=(14,9))
|
||||
|
||||
# Assign probabilities
|
||||
lambdas, lambdas_perc = lambda_probs(act_rate, dates_calc, bin_edges)
|
||||
@ -372,18 +374,29 @@ verbose: {verbose}")
|
||||
|
||||
if forecast_select:
|
||||
products = products_string.split()
|
||||
logger.info(
|
||||
f"Ground motion forecasting selected with ground motion model {model} and IMT products {products_string}")
|
||||
logger.info(f"Ground motion forecasting selected with ground motion model {model} and IMT products {products_string}")
|
||||
|
||||
# validate m_max against the grond motion model
|
||||
models_anthro_limited = ['Lasocki2013', 'Atkinson2015', 'ConvertitoEtAl2012Geysers'] # these models require that m_max<=4.5
|
||||
if m_max > 4.5 and model in models_anthro_limited:
|
||||
if m_file is None:
|
||||
msg = f"The selected ground motion model {model} is only valid for magnitudes up to 4.5. Please select a lower maximum magnitude."
|
||||
else:
|
||||
msg = f"The selected ground motion model {model} is only valid for magnitudes up to 4.5, but the provided magnitude file includes values up to {m_max}. Please adjust the magnitude range in the file accordingly."
|
||||
logger.error(msg)
|
||||
raise Exception(msg)
|
||||
|
||||
if not xy_select:
|
||||
msg = "Event location distribution modeling was not selected; cannot continue..."
|
||||
logger.error(msg)
|
||||
raise Exception(msg)
|
||||
elif m_pdf[0] == None:
|
||||
|
||||
if m_pdf[0] == None:
|
||||
msg = "Magnitude distribution modeling was not selected and magnitude PDF file was not provided; cannot continue..."
|
||||
logger.error(msg)
|
||||
raise Exception(msg)
|
||||
elif lambdas[0] == None:
|
||||
|
||||
if lambdas[0] == None:
|
||||
msg = "Activity rate modeling was not selected and custom activity rate was not provided; cannot continue..."
|
||||
logger.error(msg)
|
||||
raise Exception(msg)
|
||||
@ -421,7 +434,10 @@ verbose: {verbose}")
|
||||
rx_lat[i], rx_lon[i] = utm.to_latlon(x_rx[i], y_rx[i], utm_zone_number,
|
||||
utm_zone_letter) # get receiver location as lat,lon
|
||||
|
||||
# experimental - compute ground motion only at grid points that have minimum probability density of thresh_fxy
|
||||
# convert distances from m to km because openquake ground motion models take input distances in kilometres
|
||||
distances = distances/1000.0
|
||||
|
||||
# compute ground motion only at grid points that have minimum probability density of thresh_fxy
|
||||
if exclude_low_fxy:
|
||||
indices = list(np.where(fxy.flatten() > thresh_fxy)[0])
|
||||
else:
|
||||
@ -434,25 +450,47 @@ verbose: {verbose}")
|
||||
|
||||
PGA = np.zeros(shape=(nx * ny))
|
||||
|
||||
# use dask parallel computing
|
||||
start = timer()
|
||||
pbar = ProgressBar()
|
||||
pbar.register()
|
||||
# iter = range(0,len(distances))
|
||||
iter = indices
|
||||
iml_grid_raw = [] # raw ground motion grids
|
||||
for imt in products:
|
||||
logger.info(f"Estimating {imt}")
|
||||
|
||||
imls = [dask.delayed(compute_IMT_exceedance)(rx_lat[i], rx_lon[i], distances[i].flatten(), fr, p, lambdas,
|
||||
forecast_len, lambdas_perc, m_range, m_pdf, m_cdf, model,
|
||||
log_level=logging.DEBUG, imt=imt, IMT_min=0.0, IMT_max=2.0,
|
||||
rx_label=i) for i in iter]
|
||||
iml = dask.compute(*imls)
|
||||
iml_grid_raw.append(list(iml))
|
||||
use_pp = False
|
||||
|
||||
if use_pp: # use dask parallel computing
|
||||
pbar = ProgressBar()
|
||||
pbar.register()
|
||||
# iter = range(0,len(distances))
|
||||
iter = indices
|
||||
iml_grid_raw = [] # raw ground motion grids
|
||||
for imt in products:
|
||||
logger.info(f"Estimating {imt}")
|
||||
|
||||
imls = [dask.delayed(compute_IMT_exceedance)(rx_lat[i], rx_lon[i], distances[i].flatten(), fr, p, lambdas,
|
||||
forecast_len, lambdas_perc, m_range, m_pdf, m_cdf, model,
|
||||
log_level=logging.DEBUG, imt=imt, IMT_min=0.0, IMT_max=2.0, rx_label=i,
|
||||
rtol=0.1, use_cython=True) for i in iter]
|
||||
iml = dask.compute(*imls)
|
||||
iml_grid_raw.append(list(iml))
|
||||
|
||||
else:
|
||||
iml_grid_raw = []
|
||||
iter = indices
|
||||
for imt in products:
|
||||
iml = []
|
||||
for i in iter:
|
||||
iml_i = compute_IMT_exceedance(rx_lat[i], rx_lon[i], distances[i].flatten(), fr, p, lambdas, forecast_len,
|
||||
lambdas_perc, m_range, m_pdf, m_cdf, model, imt=imt, IMT_min = 0.0,
|
||||
IMT_max = 2.0, rx_label = i, rtol = 0.1, use_cython=True)
|
||||
iml.append(iml_i)
|
||||
logger.info(f"Estimated {imt} at rx {i} is {iml_i}")
|
||||
iml_grid_raw.append(iml)
|
||||
|
||||
end = timer()
|
||||
logger.info(f"Ground motion exceedance computation time: {round(end - start, 1)} seconds")
|
||||
|
||||
if np.isnan(iml_grid_raw).all():
|
||||
msg = "No valid ground motion intensity measures were forecasted. Try a different ground motion model."
|
||||
logger.error(msg)
|
||||
raise Exception(msg)
|
||||
|
||||
# create list of one empty list for each imt
|
||||
iml_grid = [[] for _ in range(len(products))] # final ground motion grids
|
||||
iml_grid_prep = iml_grid.copy() # temp ground motion grids
|
||||
@ -481,6 +519,12 @@ verbose: {verbose}")
|
||||
mode='reflect', anti_aliasing=False)
|
||||
iml_grid_hd[iml_grid_hd == 0.0] = np.nan # change zeroes back to nan
|
||||
|
||||
# trim edges so the grid is not so blocky
|
||||
vmin_hd = min(x for x in iml_grid_hd.flatten() if not isnan(x))
|
||||
vmax_hd = max(x for x in iml_grid_hd.flatten() if not isnan(x))
|
||||
trim_thresh = vmin
|
||||
iml_grid_hd[iml_grid_hd < trim_thresh] = np.nan
|
||||
|
||||
# generate image overlay
|
||||
north, south = lat.max(), lat.min() # Latitude range
|
||||
east, west = lon.max(), lon.min() # Longitude range
|
||||
@ -489,17 +533,27 @@ verbose: {verbose}")
|
||||
map_center = [np.mean([north, south]), np.mean([east, west])]
|
||||
|
||||
# Create an image from the grid
|
||||
cmap_name = 'YlOrRd'
|
||||
cmap = plt.get_cmap(cmap_name)
|
||||
fig, ax = plt.subplots(figsize=(6, 6))
|
||||
ax.imshow(iml_grid_hd, origin='lower', cmap='viridis')
|
||||
ax.imshow(iml_grid_hd, origin='lower', cmap=cmap, vmin=vmin, vmax=vmax)
|
||||
ax.axis('off')
|
||||
|
||||
# Save the figure
|
||||
fig.canvas.draw()
|
||||
plt.savefig("overlay_" + str(j) + ".svg", bbox_inches="tight", pad_inches=0, transparent=True)
|
||||
overlay_filename = f"overlay_{j}.svg"
|
||||
plt.savefig(overlay_filename, bbox_inches="tight", pad_inches=0, transparent=True)
|
||||
plt.close(fig)
|
||||
|
||||
# Embed geographic bounding box into the SVG
|
||||
map_bounds = dict(zip(("south", "west", "north", "east"),
|
||||
map(float, (grid_lat_min, grid_lon_min, grid_lat_max, grid_lon_max))))
|
||||
tree = ET.parse(overlay_filename)
|
||||
tree.getroot().set("data-map-bounds", json.dumps(map_bounds))
|
||||
tree.write(overlay_filename, encoding="utf-8", xml_declaration=True)
|
||||
logger.info(f"Saved geographic bounds to SVG metadata (data-map-bounds): {overlay_filename} → {map_bounds}")
|
||||
|
||||
# Make the color bar
|
||||
cmap_name = 'viridis'
|
||||
width = 50
|
||||
height = 500
|
||||
|
||||
@ -507,16 +561,20 @@ verbose: {verbose}")
|
||||
gradient = np.vstack((gradient, gradient)).T
|
||||
gradient = np.tile(gradient, (1, width))
|
||||
|
||||
colorbar_title = products[j]
|
||||
if "PGA" in colorbar_title or "SA" in colorbar_title:
|
||||
colorbar_title = colorbar_title + " (g)"
|
||||
|
||||
fig, ax = plt.subplots(figsize=((width + 40) / 100.0, (height + 20) / 100.0),
|
||||
dpi=100) # Increase fig size for labels
|
||||
ax.imshow(gradient, aspect='auto', cmap=plt.get_cmap(cmap_name),
|
||||
extent=[0, 1, vmin, vmax]) # Note: extent order is different for vertical
|
||||
ax.imshow(gradient, aspect='auto', cmap=cmap.reversed(),
|
||||
extent=[0, 1, vmin, vmax_hd]) # Note: extent order is different for vertical
|
||||
ax.set_xticks([]) # Remove x-ticks for vertical colorbar
|
||||
num_ticks = 11 # Show more ticks
|
||||
tick_positions = np.linspace(vmin, vmax, num_ticks)
|
||||
tick_positions = np.linspace(vmin, vmax_hd, num_ticks)
|
||||
ax.set_yticks(tick_positions)
|
||||
ax.set_yticklabels([f"{tick:.2f}" for tick in tick_positions]) # format tick labels
|
||||
ax.set_title(imt, pad=15)
|
||||
ax.set_title(colorbar_title, loc='right', pad=15)
|
||||
fig.subplots_adjust(left=0.25, right=0.75, bottom=0.05, top=0.95) # Adjust Layout
|
||||
fig.savefig("colorbar_" + str(j) + ".svg", bbox_inches='tight')
|
||||
plt.close(fig)
|
||||
|
Loading…
Reference in New Issue
Block a user