Compare commits
2 Commits
master
...
finetuning
Author | SHA1 | Date | |
---|---|---|---|
|
f40ac35cc8 | ||
|
ebc759c215 |
@ -1,149 +0,0 @@
|
||||
import json
|
||||
import pathlib
|
||||
|
||||
import numpy as np
|
||||
import obspy
|
||||
import pandas as pd
|
||||
import seisbench.data as sbd
|
||||
import seisbench.models as sbm
|
||||
from seisbench.models.team import itertools
|
||||
from sklearn.metrics import precision_recall_curve, roc_auc_score, roc_curve
|
||||
|
||||
datasets = [
|
||||
# path to datasets in seisbench format
|
||||
]
|
||||
|
||||
models = [
|
||||
# model names
|
||||
]
|
||||
|
||||
|
||||
def find_keys_phase(meta, phase):
|
||||
phases = []
|
||||
for k in meta.keys():
|
||||
if k.startswith("trace_" + phase) and k.endswith("_arrival_sample"):
|
||||
phases.append(k)
|
||||
|
||||
return phases
|
||||
|
||||
|
||||
def create_stream(meta, raw, start, length=30):
|
||||
|
||||
st = obspy.Stream()
|
||||
|
||||
for i in range(3):
|
||||
tr = obspy.Trace(raw[i, :])
|
||||
tr.stats.starttime = meta["trace_start_time"]
|
||||
tr.stats.sampling_rate = meta["trace_sampling_rate_hz"]
|
||||
tr.stats.network = meta["station_network_code"]
|
||||
tr.stats.station = meta["station_code"]
|
||||
tr.stats.channel = meta["trace_channel"][:2] + meta["trace_component_order"][i]
|
||||
|
||||
stop = start + length
|
||||
tr = tr.slice(start, stop)
|
||||
|
||||
st.append(tr)
|
||||
|
||||
return st
|
||||
|
||||
|
||||
def get_pred(model, stream):
|
||||
ann = model.annotate(stream)
|
||||
noise = ann.select(channel="PhaseNet_N")[0]
|
||||
pred = max(1 - noise.data)
|
||||
return pred
|
||||
|
||||
|
||||
def to_short(stream):
|
||||
short = [tr for tr in stream if tr.data.shape[0] < 3001]
|
||||
return any(short)
|
||||
|
||||
|
||||
for ds, model_name in itertools.product(datasets, models):
|
||||
|
||||
data = sbd.WaveformDataset(ds, sampling_rate=100).test()
|
||||
data_name = pathlib.Path(ds).stem
|
||||
fname = f"roc___{model_name}___{data_name}.csv"
|
||||
|
||||
print(f"{fname:.<50s}.... ", flush=True, end="")
|
||||
|
||||
if pathlib.Path(fname).is_file():
|
||||
print(" ready, skipping", flush=True)
|
||||
continue
|
||||
|
||||
p_labels = find_keys_phase(data.metadata, "P")
|
||||
s_labels = find_keys_phase(data.metadata, "S")
|
||||
|
||||
model = sbm.PhaseNet().from_pretrained(model_name)
|
||||
|
||||
label_true = []
|
||||
label_pred = []
|
||||
|
||||
for i in range(len(data)):
|
||||
|
||||
waveform, metadata = data.get_sample(i)
|
||||
m = pd.Series(metadata)
|
||||
|
||||
has_p_label = m[p_labels].notna()
|
||||
has_s_label = m[s_labels].notna()
|
||||
|
||||
if any(has_p_label):
|
||||
|
||||
trace_start_time = obspy.UTCDateTime(m["trace_start_time"])
|
||||
pick_sample = m[p_labels][has_p_label][0]
|
||||
|
||||
start = trace_start_time + pick_sample / m["trace_sampling_rate_hz"] - 15
|
||||
|
||||
try:
|
||||
st_p = create_stream(m, waveform, start)
|
||||
if not (to_short(st_p)):
|
||||
pred_p = get_pred(model, st_p)
|
||||
label_true.append(1)
|
||||
label_pred.append(pred_p)
|
||||
except IndexError:
|
||||
pass
|
||||
|
||||
try:
|
||||
st_n = create_stream(m, waveform, trace_start_time + 1)
|
||||
if not (to_short(st_n)):
|
||||
pred_n = get_pred(model, st_n)
|
||||
label_true.append(0)
|
||||
label_pred.append(pred_n)
|
||||
except IndexError:
|
||||
pass
|
||||
|
||||
if any(has_s_label):
|
||||
trace_start_time = obspy.UTCDateTime(m["trace_start_time"])
|
||||
pick_sample = m[s_labels][has_s_label][0]
|
||||
start = trace_start_time + pick_sample / m["trace_sampling_rate_hz"] - 15
|
||||
|
||||
try:
|
||||
st_s = create_stream(m, waveform, start)
|
||||
if not (to_short(st_s)):
|
||||
pred_s = get_pred(model, st_s)
|
||||
label_true.append(1)
|
||||
label_pred.append(pred_s)
|
||||
except IndexError:
|
||||
pass
|
||||
|
||||
fpr, tpr, roc_thresholds = roc_curve(label_true, label_pred)
|
||||
df = pd.DataFrame({"fpr": fpr, "tpr": tpr, "thresholds": roc_thresholds})
|
||||
df.to_csv(fname)
|
||||
|
||||
precision, recall, prc_thresholds = precision_recall_curve(label_true, label_pred)
|
||||
prc_thresholds_extra = np.append(prc_thresholds, -999)
|
||||
df = pd.DataFrame(
|
||||
{"pre": precision, "rec": recall, "thresholds": prc_thresholds_extra}
|
||||
)
|
||||
df.to_csv(fname.replace("roc", "pr"))
|
||||
|
||||
stats = {
|
||||
"model": str(model_name),
|
||||
"data": str(data_name),
|
||||
"auc": float(roc_auc_score(label_true, label_pred)),
|
||||
}
|
||||
|
||||
with open(f"stats___{model_name}___{data_name}.json", "w") as fp:
|
||||
json.dump(stats, fp)
|
||||
|
||||
print(" finished", flush=True)
|
Loading…
Reference in New Issue
Block a user