11 Commits

Author SHA1 Message Date
a5534212ba cleanup 2025-09-25 12:07:02 +02:00
d661cad991 disable progress bar 2025-09-24 14:13:21 +02:00
3136c4985d disable cython 2025-09-24 14:05:22 +02:00
deb7005604 Force use of fork in multiprocessing
From Tomasz Balawajder:
"Since we are using a Java service to launch the Python process, its behavior differs from running the script directly on the cluster.

By default, Dask uses fork() to create worker processes. However, when running under the JVM, the start method defaults to spawn, which does not share memory between processes. This caused the slowdown and unexpected behavior.

I’ve forced Python to use fork() in the configuration, and now the application completes in the same time as when executed with sbatch."
2025-09-23 11:41:08 +02:00
fe9d886499 interpolation is always used on the final grid 2025-09-12 10:37:03 +02:00
f7eb39c43c add final image smoothing through binlinear interpolation 2025-09-10 18:39:43 +02:00
00bd39a098 impose requirement of minimum size of range of output data to do image processing 2025-09-10 16:33:11 +02:00
5a1f43d6cd enforce: user must have "activity rate estimation" unselected for custom rate to be used
Previously, user could enter a value enter the  custom rate box, enable "activity rate estimation" and the custom rate box would disappear but the program would still see the value previously entered and use it even though it was no longer visible in the user interface
2025-09-10 12:00:50 +02:00
a1c0ae36bb set a minimum number of computed grid values to trigger upscaling of grid image 2025-09-09 14:41:02 +02:00
63351ceb10 fix weighting option selection 2025-09-09 11:03:05 +02:00
65759b86f1 change search interval for PGV to be different than that for PGA/SA 2025-09-09 10:56:35 +02:00

View File

@@ -52,7 +52,6 @@ def main(catalog_file, mc_file, pdf_file, m_file, m_select, mag_label, mc, m_max
from math import ceil, floor, isnan
import numpy as np
import dask
from dask.diagnostics import ProgressBar # use Dask progress bar
import kalepy as kale
import utm
from skimage.transform import resize
@@ -69,6 +68,7 @@ def main(catalog_file, mc_file, pdf_file, m_file, m_select, mag_label, mc, m_max
from matplotlib.contour import ContourSet
import xml.etree.ElementTree as ET
import json
import multiprocessing as mp
logger = getDefaultLogger('igfash')
@@ -88,9 +88,7 @@ def main(catalog_file, mc_file, pdf_file, m_file, m_select, mag_label, mc, m_max
else:
logger.setLevel(logging.INFO)
# temporary hard-coded configuration
# exclude_low_fxy = False
exclude_low_fxy = True
exclude_low_fxy = True # skip low probability areas of the map
thresh_fxy = 1e-3 # minimum fxy value (location PDF) needed to do PGA estimation (to skip low probability areas); also should scale according to number of grid points
# log user selections
@@ -125,10 +123,6 @@ verbose: {verbose}")
logger.info("No magnitude label of catalog specified, therefore try Mw by default")
mag_label = 'Mw'
# if cat_label == None:
# print("No magnitude label of catalog specified, therefore try 'Catalog' by default")
# cat_label='Catalog'
time, mag, lat, lon, depth = read_mat_cat(catalog_file, mag_label=mag_label, catalog_label='Catalog')
# check for null magnitude values
@@ -258,7 +252,7 @@ verbose: {verbose}")
# %% compute KDE and extract PDF
start = timer()
if xy_win_method == "TW":
if xy_win_method:
logger.info("Time weighting function selected")
x_weights = np.linspace(0, 15, len(t_windowed))
@@ -319,7 +313,7 @@ verbose: {verbose}")
# run activity rate modeling
lambdas = [None]
if custom_rate != None and forecast_select:
if custom_rate != None and forecast_select and not rate_select:
logger.info(f"Using activity rate specified by user: {custom_rate} per {time_unit}")
lambdas = np.array([custom_rate], dtype='d')
lambdas_perc = np.array([1], dtype='d')
@@ -457,17 +451,20 @@ verbose: {verbose}")
use_pp = True
if use_pp: # use dask parallel computing
pbar = ProgressBar()
pbar.register()
# iter = range(0,len(distances))
mp.set_start_method("fork", force=True)
iter = indices
iml_grid_raw = [] # raw ground motion grids
for imt in products:
logger.info(f"Estimating {imt}")
if imt == "PGV":
IMT_max = 200 # search interval max for velocity (cm/s)
else:
IMT_max = 2.0 # search interval max for acceleration (g)
imls = [dask.delayed(compute_IMT_exceedance)(rx_lat[i], rx_lon[i], distances[i].flatten(), fr, p, lambdas,
forecast_len, lambdas_perc, m_range, m_pdf, m_cdf, model,
log_level=logging.DEBUG, imt=imt, IMT_min=0.0, IMT_max=2.0, rx_label=i,
log_level=logging.DEBUG, imt=imt, IMT_min=0.0, IMT_max=IMT_max, rx_label=i,
rtol=0.1, use_cython=True) for i in iter]
iml = dask.compute(*imls)
iml_grid_raw.append(list(iml))
@@ -476,11 +473,17 @@ verbose: {verbose}")
iml_grid_raw = []
iter = indices
for imt in products:
if imt == "PGV":
IMT_max = 200 # search interval max for velocity (cm/s)
else:
IMT_max = 2.0 # search interval max for acceleration (g)
iml = []
for i in iter:
iml_i = compute_IMT_exceedance(rx_lat[i], rx_lon[i], distances[i].flatten(), fr, p, lambdas, forecast_len,
lambdas_perc, m_range, m_pdf, m_cdf, model, imt=imt, IMT_min = 0.0,
IMT_max = 2.0, rx_label = i, rtol = 0.1, use_cython=True)
IMT_max = IMT_max, rx_label = i, rtol = 0.1, use_cython=True)
iml.append(iml_i)
logger.info(f"Estimated {imt} at rx {i} is {iml_i}")
iml_grid_raw.append(iml)
@@ -515,17 +518,20 @@ verbose: {verbose}")
dtype=np.float64) # this reduces values to 8 decimal places
iml_grid_tmp = np.nan_to_num(iml_grid[j]) # change nans to zeroes
# upscale the grid
up_factor = 4
iml_grid_hd = resize(iml_grid_tmp, (up_factor * len(iml_grid_tmp), up_factor * len(iml_grid_tmp)),
mode='reflect', anti_aliasing=False)
# upscale the grid, trim, and interpolate if there are at least 10 grid values with range greater than 0.1
if np.count_nonzero(iml_grid_tmp) >= 10 and vmax-vmin > 0.1:
up_factor = 4
iml_grid_hd = resize(iml_grid_tmp, (up_factor * len(iml_grid_tmp), up_factor * len(iml_grid_tmp)),
mode='reflect', anti_aliasing=False)
trim_thresh = vmin
iml_grid_hd[iml_grid_hd < trim_thresh] = np.nan
else:
iml_grid_hd = iml_grid_tmp
iml_grid_hd[iml_grid_hd == 0.0] = np.nan # change zeroes back to nan
# trim edges so the grid is not so blocky
vmin_hd = min(x for x in iml_grid_hd.flatten() if not isnan(x))
#vmin_hd = min(x for x in iml_grid_hd.flatten() if not isnan(x))
vmax_hd = max(x for x in iml_grid_hd.flatten() if not isnan(x))
trim_thresh = vmin
iml_grid_hd[iml_grid_hd < trim_thresh] = np.nan
# generate image overlay
north, south = lat.max(), lat.min() # Latitude range
@@ -538,7 +544,7 @@ verbose: {verbose}")
cmap_name = 'YlOrRd'
cmap = plt.get_cmap(cmap_name)
fig, ax = plt.subplots(figsize=(6, 6))
ax.imshow(iml_grid_hd, origin='lower', cmap=cmap, vmin=vmin, vmax=vmax)
ax.imshow(iml_grid_hd, origin='lower', cmap=cmap, vmin=vmin, vmax=vmax, interpolation='bilinear')
ax.axis('off')
# Save the figure