Compare commits
70 Commits
Author | SHA1 | Date | |
---|---|---|---|
464ff30861 | |||
d12be7a074 | |||
a65316613e | |||
b06a2ab4e5 | |||
2002114425 | |||
85a37cdd4f | |||
49cc8a5c7d | |||
5f0b397793 | |||
95d703dbf2 | |||
a3078353a8 | |||
7c450ffeb8 | |||
a878f47636 | |||
de0677a07c | |||
022448647f | |||
96c0b7060d | |||
a67ca1980c | |||
cfd1d42e05 | |||
0e706d145e | |||
a97837faa2 | |||
ea93cd0237 | |||
aecbb00cda | |||
cbcde94402 | |||
28bf2ef521 | |||
6c47b7548d | |||
3ac3d074ab | |||
e1abaac8a3 | |||
643d785146 | |||
54dd40e640 | |||
9f883af133 | |||
5473639ad7 | |||
ad36f87414 | |||
c3aa755293 | |||
ba2ff8ba6e | |||
524f04389f | |||
d40d2a70d2 | |||
1ccd05384e | |||
3001cd7382 | |||
1b7e9f7646 | |||
ede45f151f | |||
1348cb95f5 | |||
a4b4a552fe | |||
a8233950e1 | |||
86da5c3246 | |||
9e75e0e768 | |||
a73f17fc35 | |||
2fbca21917 | |||
910d933467 | |||
e06f4a5a05 | |||
2906af6918 | |||
dd84829b6d | |||
5b25b93090 | |||
9fd7de6124 | |||
d56aaeef39 | |||
b4ef228a03 | |||
fc2e8b53c7 | |||
664ab1025b | |||
36378f4d6c | |||
1244655a68 | |||
70c08f47ab | |||
60ae1c96cd | |||
1ea6c85ab2 | |||
84440152eb | |||
a941939493 | |||
f4d2cfc3cd | |||
bd1ad26693 | |||
bc4d57a5ab | |||
921de3f423 | |||
b287715f44 | |||
eb14b7d235 | |||
3ffcf2c4db |
13
LICENCE.txt
Normal file
13
LICENCE.txt
Normal file
@@ -0,0 +1,13 @@
|
|||||||
|
Copyright 2025 Institute of Geophysics, Polish Academy of Sciences
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License.
|
142
gsim/lasocki_2013.py
Normal file
142
gsim/lasocki_2013.py
Normal file
@@ -0,0 +1,142 @@
|
|||||||
|
# -*- coding: utf-8 -*-
|
||||||
|
# vim: tabstop=4 shiftwidth=4 softtabstop=4
|
||||||
|
#
|
||||||
|
# Copyright (C) 2013-2023 GEM Foundation
|
||||||
|
#
|
||||||
|
# OpenQuake is free software: you can redistribute it and/or modify it
|
||||||
|
# under the terms of the GNU Affero General Public License as published
|
||||||
|
# by the Free Software Foundation, either version 3 of the License, or
|
||||||
|
# (at your option) any later version.
|
||||||
|
#
|
||||||
|
# OpenQuake is distributed in the hope that it will be useful,
|
||||||
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
# GNU Affero General Public License for more details.
|
||||||
|
#
|
||||||
|
# You should have received a copy of the GNU Affero General Public License
|
||||||
|
# along with OpenQuake. If not, see <http://www.gnu.org/licenses/>.
|
||||||
|
|
||||||
|
"""
|
||||||
|
Module exports :class:`Lasocki2013`.
|
||||||
|
"""
|
||||||
|
import numpy as np
|
||||||
|
from scipy.constants import g
|
||||||
|
|
||||||
|
from openquake.hazardlib.gsim.base import GMPE, CoeffsTable
|
||||||
|
from openquake.hazardlib import const
|
||||||
|
from openquake.hazardlib.imt import PGA, PGV, SA
|
||||||
|
|
||||||
|
def get_magnitude_energy(mag):
|
||||||
|
"""
|
||||||
|
Converts magnitude to energy-based magnitude term.
|
||||||
|
"""
|
||||||
|
return 1.15 + 1.96 * mag
|
||||||
|
|
||||||
|
def get_distance_term(coeffs, repi):
|
||||||
|
"""
|
||||||
|
Computes the distance term using the given GMPE coefficients.
|
||||||
|
"""
|
||||||
|
R_h = np.sqrt(repi ** 2 + coeffs["c7"] ** 2)
|
||||||
|
return np.log10(R_h)
|
||||||
|
|
||||||
|
def get_standard_deviation(coeffs, coeffs_cov, magE, repi):
|
||||||
|
"""
|
||||||
|
Computes the standard deviation term.
|
||||||
|
"""
|
||||||
|
Cb = np.array(list(coeffs_cov)).reshape(3,3)
|
||||||
|
R_h = np.sqrt(repi ** 2 + coeffs["c7"] ** 2)
|
||||||
|
X0 = np.array([1, magE[0], np.log10(R_h[0]**2)])
|
||||||
|
variance_term = np.sqrt(X0 @ Cb @ X0 + coeffs["sigma"]**2)
|
||||||
|
return variance_term
|
||||||
|
|
||||||
|
class Lasocki2013(GMPE):
|
||||||
|
"""
|
||||||
|
Implement equation developed by Lasocki in "REPORT ON THE ATTENUATION
|
||||||
|
RELATIONS OF PEAK GROUND ACCELERATION AND SPECTRAL ORDINATES OF GROUND
|
||||||
|
MOTION FOR MINING-INDUCED SEISMIC EVENTS IN THE REGION OF THE ŻELAZNY
|
||||||
|
MOST REPOSITORY", 2009.
|
||||||
|
Equation coefficients provided for the random horizontal component
|
||||||
|
"""
|
||||||
|
#: Supported tectonic region type is induced, given
|
||||||
|
#: that the equations have been derived for the LGCD mining area
|
||||||
|
DEFINED_FOR_TECTONIC_REGION_TYPE = const.TRT.INDUCED
|
||||||
|
|
||||||
|
#: Supported intensity measure types are spectral acceleration,
|
||||||
|
#: and peak ground acceleration
|
||||||
|
DEFINED_FOR_INTENSITY_MEASURE_TYPES = {PGA, SA}
|
||||||
|
|
||||||
|
#: Supported intensity measure component is random horizontal
|
||||||
|
#: :attr:`~openquake.hazardlib.const.IMC.RANDOM_HORIZONTAL`,
|
||||||
|
DEFINED_FOR_INTENSITY_MEASURE_COMPONENT = const.IMC.RANDOM_HORIZONTAL
|
||||||
|
# DEFINED_FOR_INTENSITY_MEASURE_COMPONENT = const.IMC.VERTICAL
|
||||||
|
|
||||||
|
#: Supported standard deviation type is total
|
||||||
|
DEFINED_FOR_STANDARD_DEVIATION_TYPES = {const.StdDev.TOTAL}
|
||||||
|
|
||||||
|
#: site params are not required
|
||||||
|
REQUIRES_SITES_PARAMETERS = set()
|
||||||
|
|
||||||
|
#: Required rupture parameter is magnitude
|
||||||
|
REQUIRES_RUPTURE_PARAMETERS = {'mag'}
|
||||||
|
|
||||||
|
#: Required distance measure is epicentral distance
|
||||||
|
#: see paragraph 'Predictor Variables', page 6.
|
||||||
|
REQUIRES_DISTANCES = {'repi'}
|
||||||
|
|
||||||
|
def compute(self, ctx: np.recarray, imts, mean, sig, tau, phi):
|
||||||
|
"""
|
||||||
|
Computes mean ground motion values and standard deviations for Lasocki (2013) GMPE.
|
||||||
|
|
||||||
|
Parameters:
|
||||||
|
repi (float): Epicentral distance (m)
|
||||||
|
mag (float): Earthquake magnitude
|
||||||
|
imts (list of str): List of intensity measure types (e.g., 'PHA', 'PVA')
|
||||||
|
mean (np.array): Array to store computed mean values
|
||||||
|
sig (np.array): Array to store computed standard deviations
|
||||||
|
"""
|
||||||
|
# Loop through each IMT and compute values
|
||||||
|
for i, imt in enumerate(imts):
|
||||||
|
C = self.COEFFS[imt]
|
||||||
|
C_cov = self.COEFFS_COV[imt]
|
||||||
|
mag = ctx.mag
|
||||||
|
repi = ctx.repi*1000.0 # Convert distance from km to m
|
||||||
|
# Compute magnitude energy term
|
||||||
|
magE = get_magnitude_energy(mag)
|
||||||
|
|
||||||
|
# Compute GMPE terms
|
||||||
|
mag_term = C['c1'] + C['c2'] * magE
|
||||||
|
dist_term = C['c5'] * get_distance_term(C, repi)
|
||||||
|
|
||||||
|
# Compute mean ground motion
|
||||||
|
imean = mag_term + dist_term
|
||||||
|
mean_value = np.log((10 ** imean) / g) # Convert to natural log scale and divide by g
|
||||||
|
mean[i] = mean_value
|
||||||
|
|
||||||
|
# Compute standard deviation
|
||||||
|
sigma = get_standard_deviation(C, C_cov, magE, repi)
|
||||||
|
sig[i] = sigma
|
||||||
|
|
||||||
|
#: coefficient table provided by report
|
||||||
|
COEFFS = CoeffsTable(sa_damping=5, table="""\
|
||||||
|
IMT c1 c2 c5 c7 sigma N
|
||||||
|
pga 1.25 0.31 -1.34 558 0.196 1196
|
||||||
|
0.6 -3.86 0.55 -0.65 183 0.242 1194
|
||||||
|
1.0 -3.94 0.62 -0.66 308 0.262 1197
|
||||||
|
2.0 -1.14 0.47 -1.02 741 0.235 1195
|
||||||
|
5.0 0.99 0.31 -1.15 690 0.234 1206
|
||||||
|
10.0 3.06 0.27 -1.65 906 0.203 1192
|
||||||
|
20.0 2.62 0.27 -1.60 435 0.196 1191
|
||||||
|
50.0 2.09 0.27 -1.48 375 0.204 1191
|
||||||
|
""")
|
||||||
|
|
||||||
|
COEFFS_COV = CoeffsTable(sa_damping=5, table="""\
|
||||||
|
IMT Cb00 Cb01 Cb02 Cb10 Cb11 Cb12 Cb20 Cb21 Cb22
|
||||||
|
pga 0.005586 -0.000376 -0.000752 -0.000376 0.000103 -0.000111 -0.000752 -0.000111 0.000440
|
||||||
|
0.6 0.007509 -0.000662 -0.000688 -0.000662 0.000161 -0.000154 -0.000688 -0.000154 0.000516
|
||||||
|
1.0 0.009119 -0.00075 -0.000948 -0.00075 0.000189 -0.000187 -0.000948 -0.000187 0.000657
|
||||||
|
2.0 0.008563 -0.000514 -0.001282 -0.000514 0.000147 -0.000164 -0.001282 -0.000164 0.000696
|
||||||
|
5.0 0.008283 -0.000516 -0.001202 -0.000516 0.000145 -0.000161 -0.001202 -0.000161 0.000668
|
||||||
|
10.0 0.006904 -0.00036 -0.001145 -0.00036 0.000108 -0.000126 -0.001145 -0.000126 0.000578
|
||||||
|
20.0 0.005389 -0.000396 -0.000658 -0.000396 0.000104 -0.000107 -0.000658 -0.000107 0.000408
|
||||||
|
50.0 0.005874 -0.000449 -0.000678 -0.000449 0.000114 -0.000114 -0.000678 -0.000114 0.000428
|
||||||
|
""")
|
@@ -1,5 +1,205 @@
|
|||||||
# -*- coding: utf-8 -*-
|
# -*- coding: utf-8 -*-
|
||||||
|
import numpy as np
|
||||||
|
from scipy.stats import t, norm
|
||||||
|
from scipy.optimize import root_scalar
|
||||||
|
from timeit import default_timer as timer
|
||||||
|
import logging
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
import mpmath
|
||||||
|
from openquake.hazardlib.geo import Point #This class represents a geographical point in terms of longitude, latitude, and depth (with respect to the Earth surface).
|
||||||
|
from openquake.hazardlib.geo.surface.planar import PlanarSurface
|
||||||
|
from openquake.hazardlib.source.characteristic import CharacteristicFaultSource
|
||||||
|
from openquake.hazardlib.mfd import ArbitraryMFD
|
||||||
|
from openquake.hazardlib.tom import PoissonTOM
|
||||||
|
from openquake.hazardlib.scalerel import WC1994 #Wells and Coppersmith magnitude – rupture area relationships
|
||||||
|
from openquake.hazardlib.site import Site, SiteCollection
|
||||||
|
from openquake.hazardlib.contexts import ContextMaker
|
||||||
|
from openquake.hazardlib.valid import gsim
|
||||||
|
from openquake.hazardlib.imt import PGA
|
||||||
|
import sys
|
||||||
|
|
||||||
|
def my_trivial_task(x):
|
||||||
|
"""
|
||||||
|
A function that does a trivial task
|
||||||
|
"""
|
||||||
|
return x * x
|
||||||
|
|
||||||
|
def compute_IMT_exceedance(rx_lat, rx_lon, r, fr, p, lambdas, D, percentages_D, magnitudes, magnitude_pdf, magnitude_cdf, model, imt='PGA', IMT_min=0.01, IMT_max=2.0, rx_label=None, rtol=0.1, use_cython=False, **kwargs):
|
||||||
|
|
||||||
|
n_events = len(r)
|
||||||
|
|
||||||
|
try:
|
||||||
|
gmpes = [gsim(model)]
|
||||||
|
except:
|
||||||
|
msg = f"{model} was not found in the openquake gsim directory"
|
||||||
|
logger.error(msg)
|
||||||
|
raise Exception(msg)
|
||||||
|
|
||||||
|
if model == 'Lasocki2013': #this model requires the number of earthquake records
|
||||||
|
|
||||||
|
if imt=='PGA': #extract number of records for PGA
|
||||||
|
num_ground_motion_records = gmpes[0].COEFFS.non_sa_coeffs[PGA()]['N']
|
||||||
|
else: #extract number of records for SA()
|
||||||
|
freq = float(imt[imt.find('(')+1:imt.find(')')]) # get the desired frequency of SA
|
||||||
|
first_index = np.where(gmpes[0].COEFFS.get_coeffs('N')[0]==freq)[0][0]
|
||||||
|
num_ground_motion_records = gmpes[0].COEFFS.get_coeffs('N')[1][first_index][0]
|
||||||
|
else:
|
||||||
|
num_ground_motion_records = 0
|
||||||
|
|
||||||
|
#placeholder values that do not have any effect
|
||||||
|
Mag = 5.0 #placeholder mag, must be valid for that context; will be overwritten in loop
|
||||||
|
rupture_aratio = 1.5
|
||||||
|
Strike = 0
|
||||||
|
Dip = 90
|
||||||
|
Rake = 0
|
||||||
|
|
||||||
|
Hypocenter = Point(rx_lon, rx_lat, 0.0) #does not matter in our case; just set eq location to be same as receiver
|
||||||
|
#according to the magnitude and MSR calculate planar surface
|
||||||
|
planar_surface = PlanarSurface.from_hypocenter(
|
||||||
|
hypoc=Hypocenter,
|
||||||
|
msr=WC1994(),
|
||||||
|
mag=Mag,
|
||||||
|
aratio=rupture_aratio,
|
||||||
|
strike=Strike,
|
||||||
|
dip=Dip,
|
||||||
|
rake=Rake,
|
||||||
|
)
|
||||||
|
|
||||||
|
# site for which we compute (receiver location)
|
||||||
|
site_collection = SiteCollection([Site(location=Point(rx_lon, rx_lat, 0))])
|
||||||
|
|
||||||
|
imtls = {s: [0] for s in [imt]} #required for context maker, M = 2 IMTs
|
||||||
|
|
||||||
|
context_maker = ContextMaker('Induced', gmpes, {'imtls': imtls, 'mags': [Mag]}) #necessary contexts builder
|
||||||
|
|
||||||
|
src = CharacteristicFaultSource(source_id = 1,
|
||||||
|
name = 'rup',
|
||||||
|
tectonic_region_type = 'Induced',
|
||||||
|
mfd = ArbitraryMFD([Mag], [0.01]), #this does not have any effect
|
||||||
|
temporal_occurrence_model = PoissonTOM(50.), #this is also not really used
|
||||||
|
surface = planar_surface,
|
||||||
|
rake = Rake)
|
||||||
|
|
||||||
|
ctx = context_maker.from_srcs([src], site_collection)[0] #returns one context from the source for one rupture
|
||||||
|
|
||||||
|
if use_cython:
|
||||||
|
|
||||||
|
from cython_exceedance import exceedance_core
|
||||||
|
|
||||||
|
def exceedance_root_function(a):
|
||||||
|
return exceedance_core(a, r, fr, lambdas, D, percentages_D, magnitudes,
|
||||||
|
magnitude_pdf, magnitude_cdf, context_maker, ctx,
|
||||||
|
model, num_ground_motion_records) - p
|
||||||
|
|
||||||
|
else:
|
||||||
|
|
||||||
|
def exceedance_root_function(a):
|
||||||
|
exceedance_prob_sum = 0
|
||||||
|
log_a = np.log(a) # Precompute log(a)
|
||||||
|
|
||||||
|
for j in range(len(lambdas)): #loop through all lambdas
|
||||||
|
lambda_j = lambdas[j]
|
||||||
|
D_j_val = percentages_D[j] * D # Use a different name to avoid shadowing D
|
||||||
|
lambda_D_j = lambda_j * D_j_val
|
||||||
|
denom_j = (1 - np.exp(-lambda_D_j))
|
||||||
|
if denom_j == 0: # Avoid division by zero if lambda_D_j is very small or zero
|
||||||
|
continue
|
||||||
|
|
||||||
|
for i in range(n_events): #loop through all events
|
||||||
|
ri = r[i] # Epicentral distance
|
||||||
|
fr_i = fr[i] # Location probability f(r)
|
||||||
|
ctx.repi = ri
|
||||||
|
|
||||||
|
# Precompute terms only dependent on lambda_j, D_j, m
|
||||||
|
lambda_D_j_f_m = lambda_D_j * magnitude_pdf
|
||||||
|
exp_term_m = np.exp(-lambda_D_j * (1 - magnitude_cdf))
|
||||||
|
f_conditional_base_m = (lambda_D_j_f_m * exp_term_m) / denom_j
|
||||||
|
|
||||||
|
for k in range(len(magnitudes)): #loop through all values of magnitude pdf and cdf
|
||||||
|
m = magnitudes[k]
|
||||||
|
ctx.mag = m # update context magnitude
|
||||||
|
|
||||||
|
# Calculate f_conditional (simpler now)
|
||||||
|
f_conditional = f_conditional_base_m[k]
|
||||||
|
|
||||||
|
mean, sig, _, _ = context_maker.get_mean_stds(ctx)
|
||||||
|
log_gm_predicted = mean[0][0][0]
|
||||||
|
variance_term = sig[0][0][0]
|
||||||
|
residual = log_a - log_gm_predicted # Use precomputed log_a
|
||||||
|
|
||||||
|
if residual <= 0:
|
||||||
|
exceedance_probability = 1.0
|
||||||
|
else:
|
||||||
|
# Avoid division by zero or very small numbers if variance_term is ~0
|
||||||
|
if variance_term < 1e-15: # Adjust threshold as needed
|
||||||
|
exceedance_probability = 0.0
|
||||||
|
else:
|
||||||
|
t_value = residual / variance_term
|
||||||
|
|
||||||
|
if model == 'Lasocki2013':
|
||||||
|
exceedance_probability = t.sf(t_value, num_ground_motion_records - 3) # student t distribution, degrees of freedom: n-3; sf = 1 - cdf
|
||||||
|
else:
|
||||||
|
exceedance_probability = norm.sf(t_value) # equivalent to 1.0 - norm.cdf(t_value)
|
||||||
|
|
||||||
|
location_exceedance_prob = exceedance_probability * f_conditional * fr_i
|
||||||
|
exceedance_prob_sum += location_exceedance_prob
|
||||||
|
|
||||||
|
return exceedance_prob_sum - p
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# Check function values at different test points
|
||||||
|
IMT_mid = (IMT_max-IMT_min)/2
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
lower_bound_value = exceedance_root_function(IMT_min)
|
||||||
|
|
||||||
|
|
||||||
|
mid_point_value = exceedance_root_function(IMT_mid)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
upper_bound_value = exceedance_root_function(IMT_max)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
logger.info(f"Receiver: {str(rx_label)}")
|
||||||
|
logger.info(f"Function value at {imt} = {str(IMT_min)} : {lower_bound_value}")
|
||||||
|
logger.info(f"Function value at {imt} = {str(IMT_mid)} : {mid_point_value}")
|
||||||
|
logger.info(f"Function value at {imt} = {str(IMT_max)} : {upper_bound_value}")
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
if np.sign(lower_bound_value) == np.sign(upper_bound_value):
|
||||||
|
msg = "Function values at the interval endpoints must differ in sign for fsolve to work. Expand the interval or use a different model."
|
||||||
|
logger.error(msg)
|
||||||
|
gm_est = np.nan
|
||||||
|
return gm_est
|
||||||
|
# raise ValueError(msg)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# Find root of function
|
||||||
|
start = timer()
|
||||||
|
|
||||||
|
try:
|
||||||
|
method='brenth'
|
||||||
|
logger.debug("Now trying Scipy " + method)
|
||||||
|
output = root_scalar(exceedance_root_function, bracket=[IMT_min, IMT_max], rtol=rtol, method=method)
|
||||||
|
#output = root_scalar(exceedance_root_function, method=method)
|
||||||
|
gm_est = output.root
|
||||||
|
except Exception as error:
|
||||||
|
logger.error(f"An exception occurred: {error}")
|
||||||
|
logger.info("Set ground motion value to nan")
|
||||||
|
gm_est = np.nan
|
||||||
|
|
||||||
|
end = timer()
|
||||||
|
logger.info(f"Ground motion estimation computation time: {round(end - start,1)} seconds")
|
||||||
|
logger.info(f"Estimated {imt}: {gm_est}")
|
||||||
|
|
||||||
|
return gm_est
|
||||||
|
|
||||||
def main(catalog_file, mc_file, pdf_file, m_file, m_select, mag_label, mc, m_max,
|
def main(catalog_file, mc_file, pdf_file, m_file, m_select, mag_label, mc, m_max,
|
||||||
m_kde_method, xy_select, grid_dim, xy_win_method, rate_select, time_win_duration,
|
m_kde_method, xy_select, grid_dim, xy_win_method, rate_select, time_win_duration,
|
||||||
@@ -17,7 +217,7 @@ def main(catalog_file, mc_file, pdf_file, m_file, m_select, mag_label, mc, m_max
|
|||||||
then the program looks for a label of 'Mw' for magnitude in the catalog
|
then the program looks for a label of 'Mw' for magnitude in the catalog
|
||||||
mc: The magnitude of completeness (Mc) of the catalog
|
mc: The magnitude of completeness (Mc) of the catalog
|
||||||
m_max:M_max. The magnitude distribution is estimated for the range from Mc to M_max. If no value is provided,
|
m_max:M_max. The magnitude distribution is estimated for the range from Mc to M_max. If no value is provided,
|
||||||
then the program sets M_max to be 3 magnitude units above the maximum magnitude value in the catalog.
|
then the program sets M_max to be 1 magnitude units above the maximum magnitude value in the catalog.
|
||||||
m_kde_method: The kernel density estimator to use.
|
m_kde_method: The kernel density estimator to use.
|
||||||
xy_select: If True, perform an estimation of the magnitude distribution using KDE with the chosen KDE method
|
xy_select: If True, perform an estimation of the magnitude distribution using KDE with the chosen KDE method
|
||||||
grid_dim: The grid cell size (in metres) of the final ground motion product map. A smaller cell size will
|
grid_dim: The grid cell size (in metres) of the final ground motion product map. A smaller cell size will
|
||||||
@@ -45,25 +245,22 @@ def main(catalog_file, mc_file, pdf_file, m_file, m_select, mag_label, mc, m_max
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
import sys
|
import sys
|
||||||
|
from importlib.metadata import version
|
||||||
import logging
|
import logging
|
||||||
from base_logger import getDefaultLogger
|
from base_logger import getDefaultLogger
|
||||||
from timeit import default_timer as timer
|
from timeit import default_timer as timer
|
||||||
from math import ceil, floor, isnan
|
from math import ceil, floor, isnan
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import scipy
|
|
||||||
import obspy
|
|
||||||
import dask
|
import dask
|
||||||
from dask.diagnostics import ProgressBar # use Dask progress bar
|
from dask.diagnostics import ProgressBar # use Dask progress bar
|
||||||
import kalepy as kale
|
import kalepy as kale
|
||||||
import utm
|
import utm
|
||||||
from skimage.transform import resize
|
from skimage.transform import resize
|
||||||
import psutil
|
|
||||||
import openquake.engine
|
|
||||||
import igfash
|
import igfash
|
||||||
from igfash.io import read_mat_cat, read_mat_m, read_mat_pdf, read_csv
|
from igfash.io import read_mat_cat, read_mat_m, read_mat_mc, read_mat_pdf, read_csv
|
||||||
from igfash.window import win_CTL, win_CNE
|
from igfash.window import win_CTL, win_CNE
|
||||||
import igfash.kde as kde
|
import igfash.kde as kde
|
||||||
from igfash.gm import compute_IMT_exceedance
|
#from igfash.gm import compute_IMT_exceedance
|
||||||
from igfash.compute import get_cdf, hellinger_dist, cols_to_rows
|
from igfash.compute import get_cdf, hellinger_dist, cols_to_rows
|
||||||
from igfash.rate import lambda_probs, calc_bins, bootstrap_forecast_rolling
|
from igfash.rate import lambda_probs, calc_bins, bootstrap_forecast_rolling
|
||||||
from igfash.mc import estimate_mc
|
from igfash.mc import estimate_mc
|
||||||
@@ -84,6 +281,7 @@ def main(catalog_file, mc_file, pdf_file, m_file, m_select, mag_label, mc, m_max
|
|||||||
m_range = [None]
|
m_range = [None]
|
||||||
else:
|
else:
|
||||||
m_range = read_mat_m(m_file)
|
m_range = read_mat_m(m_file)
|
||||||
|
m_max = m_range[-1] # take m_max from the m_file
|
||||||
|
|
||||||
if verbose:
|
if verbose:
|
||||||
logger.setLevel(logging.DEBUG)
|
logger.setLevel(logging.DEBUG)
|
||||||
@@ -105,26 +303,15 @@ verbose: {verbose}")
|
|||||||
|
|
||||||
# print key package version numbers
|
# print key package version numbers
|
||||||
logger.debug(f"Python version {sys.version}")
|
logger.debug(f"Python version {sys.version}")
|
||||||
logger.debug(f"Numpy version {np.__version__}")
|
logger.debug(f"Numpy version {version('numpy')}")
|
||||||
logger.debug(f"Scipy version {scipy.__version__}")
|
logger.debug(f"Scipy version {version('scipy')}")
|
||||||
logger.debug(f"Obspy version {obspy.__version__}")
|
logger.debug(f"Obspy version {version('obspy')}")
|
||||||
logger.debug(f"Openquake version {openquake.engine.__version__}")
|
logger.debug(f"Openquake version {version('openquake.engine')}")
|
||||||
logger.debug(f"Igfash version {igfash.__version__}")
|
logger.debug(f"Igfash version {version('igfash')}")
|
||||||
|
logger.debug(f"Rbeast version {version('rbeast')}")
|
||||||
# print number of cpu cores available
|
logger.debug(f"Dask version {version('dask')}")
|
||||||
ncpu = psutil.cpu_count(logical=False)
|
logger.debug(f"Logging version {logging.__version__}")
|
||||||
logger.debug(f"Number of cpu cores available: {ncpu}")
|
|
||||||
for process in psutil.process_iter():
|
|
||||||
with process.oneshot():
|
|
||||||
|
|
||||||
# cpu = process.cpu_percent()
|
|
||||||
cpu = process.cpu_percent() / ncpu
|
|
||||||
|
|
||||||
if cpu > 1:
|
|
||||||
logger.debug(f"{process.name()}, {cpu}")
|
|
||||||
|
|
||||||
logger.debug(f"BASELINE CPU LOAD% {psutil.cpu_percent(interval=None, percpu=True)}")
|
|
||||||
|
|
||||||
dask.config.set(scheduler='processes')
|
dask.config.set(scheduler='processes')
|
||||||
|
|
||||||
# run magnitude distribution modeling if selected by user and no magnitude pdf file provided
|
# run magnitude distribution modeling if selected by user and no magnitude pdf file provided
|
||||||
@@ -145,12 +332,18 @@ verbose: {verbose}")
|
|||||||
|
|
||||||
time, mag, lat, lon, depth = read_mat_cat(catalog_file, mag_label=mag_label, catalog_label='Catalog')
|
time, mag, lat, lon, depth = read_mat_cat(catalog_file, mag_label=mag_label, catalog_label='Catalog')
|
||||||
|
|
||||||
|
# check for null magnitude values
|
||||||
|
m_null_idx = np.where(np.isnan(mag))[0]
|
||||||
|
if len(m_null_idx) > 0:
|
||||||
|
msg = f"There are null values in the magnitude column of the catalog at indices {m_null_idx}"
|
||||||
|
logger.error(msg)
|
||||||
|
raise Exception(msg)
|
||||||
if mc != None:
|
if mc != None:
|
||||||
logger.info("Mc value provided by user")
|
logger.info("Mc value provided by user")
|
||||||
trim_to_mc = True
|
trim_to_mc = True
|
||||||
elif mc_file != None:
|
elif mc_file != None:
|
||||||
logger.info("Mc estimation output file provided; selecting largest Mc from the list")
|
logger.info("Mc estimation output file provided; selecting largest Mc from the list")
|
||||||
mc = read_mc(mc_file)
|
mc = read_mat_mc(mc_file)
|
||||||
trim_to_mc = True
|
trim_to_mc = True
|
||||||
else:
|
else:
|
||||||
logger.info("No Mc provided; using all magnitudes from the catalog")
|
logger.info("No Mc provided; using all magnitudes from the catalog")
|
||||||
@@ -166,9 +359,10 @@ verbose: {verbose}")
|
|||||||
lat = np.delete(lat, indices)
|
lat = np.delete(lat, indices)
|
||||||
lon = np.delete(lon, indices)
|
lon = np.delete(lon, indices)
|
||||||
|
|
||||||
# if user does not provide a m_max, set m_max to 3 magnitude units above max magnitude in catalog
|
# if user does not provide a m_max, set m_max to 1 magnitude unit above max magnitude in catalog
|
||||||
if m_max == None:
|
if m_max == None:
|
||||||
m_max = mag.max() + 3.0
|
m_max = mag.max() + 1.0
|
||||||
|
logger.info(f"No m_max was given. Therefore m_max is automatically set to: {m_max}")
|
||||||
|
|
||||||
start = timer()
|
start = timer()
|
||||||
|
|
||||||
@@ -233,8 +427,6 @@ verbose: {verbose}")
|
|||||||
y_min = y.min()
|
y_min = y.min()
|
||||||
x_max = x.max()
|
x_max = x.max()
|
||||||
y_max = y.max()
|
y_max = y.max()
|
||||||
z_min = depth.min()
|
|
||||||
z_max = depth.max()
|
|
||||||
|
|
||||||
grid_x_max = int(ceil(x_max / grid_dim) * grid_dim)
|
grid_x_max = int(ceil(x_max / grid_dim) * grid_dim)
|
||||||
grid_x_min = int(floor(x_min / grid_dim) * grid_dim)
|
grid_x_min = int(floor(x_min / grid_dim) * grid_dim)
|
||||||
@@ -330,8 +522,8 @@ verbose: {verbose}")
|
|||||||
lambdas = [None]
|
lambdas = [None]
|
||||||
if custom_rate != None and forecast_select:
|
if custom_rate != None and forecast_select:
|
||||||
logger.info(f"Using activity rate specified by user: {custom_rate} per {time_unit}")
|
logger.info(f"Using activity rate specified by user: {custom_rate} per {time_unit}")
|
||||||
lambdas = [custom_rate]
|
lambdas = np.array([custom_rate], dtype='d')
|
||||||
lambdas_perc = [1]
|
lambdas_perc = np.array([1], dtype='d')
|
||||||
|
|
||||||
elif rate_select:
|
elif rate_select:
|
||||||
logger.info(f"Activity rate modeling selected")
|
logger.info(f"Activity rate modeling selected")
|
||||||
@@ -349,6 +541,12 @@ verbose: {verbose}")
|
|||||||
elif time_unit == 'years':
|
elif time_unit == 'years':
|
||||||
multiplicator = 1 / 365
|
multiplicator = 1 / 365
|
||||||
|
|
||||||
|
# Raise an exception when time_win_duration from the user is too large relative to the catalog
|
||||||
|
if time_win_duration/multiplicator > 0.5*(time[-1] - time[0]):
|
||||||
|
msg = "Activity rate estimation time window must be less than half the catalog length. Use a shorter time window."
|
||||||
|
logger.error(msg)
|
||||||
|
raise Exception(msg)
|
||||||
|
|
||||||
# Selects dates in datenum format and procceeds to forecast value
|
# Selects dates in datenum format and procceeds to forecast value
|
||||||
start_date = datenum_data[-1] - (2 * time_win_duration / multiplicator)
|
start_date = datenum_data[-1] - (2 * time_win_duration / multiplicator)
|
||||||
dates_calc = [date for date in datenum_data if start_date <= date <= datenum_data[-1]]
|
dates_calc = [date for date in datenum_data if start_date <= date <= datenum_data[-1]]
|
||||||
@@ -365,11 +563,13 @@ verbose: {verbose}")
|
|||||||
act_rate, bin_counts, bin_edges, out, pprs, rt, idx, u_e = calc_bins(np.array(datenum_data), time_unit,
|
act_rate, bin_counts, bin_edges, out, pprs, rt, idx, u_e = calc_bins(np.array(datenum_data), time_unit,
|
||||||
time_win_duration, dates_calc,
|
time_win_duration, dates_calc,
|
||||||
rate_forecast, rate_unc_high, rate_unc_low,
|
rate_forecast, rate_unc_high, rate_unc_low,
|
||||||
multiplicator, quiet=True)
|
multiplicator, quiet=True, figsize=(14,9))
|
||||||
|
|
||||||
# Assign probabilities
|
# Assign probabilities
|
||||||
lambdas, lambdas_perc = lambda_probs(act_rate, dates_calc, bin_edges)
|
lambdas, lambdas_perc = lambda_probs(act_rate, dates_calc, bin_edges)
|
||||||
|
lambdas = np.array(lambdas, dtype='d')
|
||||||
|
lambdas_perc = np.array(lambdas_perc, dtype='d')
|
||||||
|
|
||||||
# print("Forecasted activity rates: ", lambdas, "events per", time_unit[:-1])
|
# print("Forecasted activity rates: ", lambdas, "events per", time_unit[:-1])
|
||||||
logger.info(f"Forecasted activity rates: {lambdas} events per {time_unit} with percentages {lambdas_perc}")
|
logger.info(f"Forecasted activity rates: {lambdas} events per {time_unit} with percentages {lambdas_perc}")
|
||||||
np.savetxt('activity_rate.csv', np.vstack((lambdas, lambdas_perc)).T, header="lambda, percentage",
|
np.savetxt('activity_rate.csv', np.vstack((lambdas, lambdas_perc)).T, header="lambda, percentage",
|
||||||
@@ -377,18 +577,29 @@ verbose: {verbose}")
|
|||||||
|
|
||||||
if forecast_select:
|
if forecast_select:
|
||||||
products = products_string.split()
|
products = products_string.split()
|
||||||
logger.info(
|
logger.info(f"Ground motion forecasting selected with ground motion model {model} and IMT products {products_string}")
|
||||||
f"Ground motion forecasting selected with ground motion model {model} and IMT products {products_string}")
|
|
||||||
|
# validate m_max against the grond motion model
|
||||||
|
models_anthro_limited = ['Lasocki2013', 'Atkinson2015', 'ConvertitoEtAl2012Geysers'] # these models require that m_max<=4.5
|
||||||
|
if m_max > 4.5 and model in models_anthro_limited:
|
||||||
|
if m_file is None:
|
||||||
|
msg = f"The selected ground motion model {model} is only valid for magnitudes up to 4.5. Please select a lower maximum magnitude."
|
||||||
|
else:
|
||||||
|
msg = f"The selected ground motion model {model} is only valid for magnitudes up to 4.5, but the provided magnitude file includes values up to {m_max}. Please adjust the magnitude range in the file accordingly."
|
||||||
|
logger.error(msg)
|
||||||
|
raise Exception(msg)
|
||||||
|
|
||||||
if not xy_select:
|
if not xy_select:
|
||||||
msg = "Event location distribution modeling was not selected; cannot continue..."
|
msg = "Event location distribution modeling was not selected; cannot continue..."
|
||||||
logger.error(msg)
|
logger.error(msg)
|
||||||
raise Exception(msg)
|
raise Exception(msg)
|
||||||
elif m_pdf[0] == None:
|
|
||||||
|
if m_pdf[0] == None:
|
||||||
msg = "Magnitude distribution modeling was not selected and magnitude PDF file was not provided; cannot continue..."
|
msg = "Magnitude distribution modeling was not selected and magnitude PDF file was not provided; cannot continue..."
|
||||||
logger.error(msg)
|
logger.error(msg)
|
||||||
raise Exception(msg)
|
raise Exception(msg)
|
||||||
elif lambdas[0] == None:
|
|
||||||
|
if lambdas[0] == None:
|
||||||
msg = "Activity rate modeling was not selected and custom activity rate was not provided; cannot continue..."
|
msg = "Activity rate modeling was not selected and custom activity rate was not provided; cannot continue..."
|
||||||
logger.error(msg)
|
logger.error(msg)
|
||||||
raise Exception(msg)
|
raise Exception(msg)
|
||||||
@@ -426,7 +637,10 @@ verbose: {verbose}")
|
|||||||
rx_lat[i], rx_lon[i] = utm.to_latlon(x_rx[i], y_rx[i], utm_zone_number,
|
rx_lat[i], rx_lon[i] = utm.to_latlon(x_rx[i], y_rx[i], utm_zone_number,
|
||||||
utm_zone_letter) # get receiver location as lat,lon
|
utm_zone_letter) # get receiver location as lat,lon
|
||||||
|
|
||||||
# experimental - compute ground motion only at grid points that have minimum probability density of thresh_fxy
|
# convert distances from m to km because openquake ground motion models take input distances in kilometres
|
||||||
|
distances = distances/1000.0
|
||||||
|
|
||||||
|
# compute ground motion only at grid points that have minimum probability density of thresh_fxy
|
||||||
if exclude_low_fxy:
|
if exclude_low_fxy:
|
||||||
indices = list(np.where(fxy.flatten() > thresh_fxy)[0])
|
indices = list(np.where(fxy.flatten() > thresh_fxy)[0])
|
||||||
else:
|
else:
|
||||||
@@ -441,7 +655,7 @@ verbose: {verbose}")
|
|||||||
|
|
||||||
start = timer()
|
start = timer()
|
||||||
|
|
||||||
use_pp = False
|
use_pp = True
|
||||||
|
|
||||||
if use_pp: # use dask parallel computing
|
if use_pp: # use dask parallel computing
|
||||||
pbar = ProgressBar()
|
pbar = ProgressBar()
|
||||||
@@ -452,13 +666,16 @@ verbose: {verbose}")
|
|||||||
for imt in products:
|
for imt in products:
|
||||||
logger.info(f"Estimating {imt}")
|
logger.info(f"Estimating {imt}")
|
||||||
|
|
||||||
imls = [dask.delayed(compute_IMT_exceedance)(rx_lat[i], rx_lon[i], distances[i].flatten(), fr, p, lambdas,
|
imls = [dask.delayed(compute_IMT_exceedance)(rx_lat[i], rx_lon[i], distances[i].flatten(), fr, p, lambdas, forecast_len,
|
||||||
forecast_len, lambdas_perc, m_range, m_pdf, m_cdf, model,
|
lambdas_perc, m_range, m_pdf, m_cdf, model, imt=imt, IMT_min=0.0,
|
||||||
log_level=logging.DEBUG, imt=imt, IMT_min=0.0, IMT_max=2.0, rx_label=i,
|
IMT_max=2.0, rx_label=i, rtol=0.1, use_cython=False) for i in iter[:2]]
|
||||||
rtol=0.1, use_cython=False) for i in iter]
|
#imls = [dask.delayed(my_trivial_task)(i) for i in iter]
|
||||||
iml = dask.compute(*imls)
|
iml = dask.compute(*imls)
|
||||||
iml_grid_raw.append(list(iml))
|
iml_grid_raw.append(list(iml))
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
else:
|
else:
|
||||||
iml_grid_raw = []
|
iml_grid_raw = []
|
||||||
iter = indices
|
iter = indices
|
||||||
@@ -475,6 +692,15 @@ verbose: {verbose}")
|
|||||||
end = timer()
|
end = timer()
|
||||||
logger.info(f"Ground motion exceedance computation time: {round(end - start, 1)} seconds")
|
logger.info(f"Ground motion exceedance computation time: {round(end - start, 1)} seconds")
|
||||||
|
|
||||||
|
logger.info("Test3 run finished")
|
||||||
|
|
||||||
|
if np.isnan(iml_grid_raw).all():
|
||||||
|
msg = "No valid ground motion intensity measures were forecasted. Try a different ground motion model."
|
||||||
|
logger.error(msg)
|
||||||
|
raise Exception(msg)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# create list of one empty list for each imt
|
# create list of one empty list for each imt
|
||||||
iml_grid = [[] for _ in range(len(products))] # final ground motion grids
|
iml_grid = [[] for _ in range(len(products))] # final ground motion grids
|
||||||
iml_grid_prep = iml_grid.copy() # temp ground motion grids
|
iml_grid_prep = iml_grid.copy() # temp ground motion grids
|
||||||
|
@@ -58,6 +58,7 @@ def main(argv):
|
|||||||
parser.add_argument("--verbose", type=str2bool)
|
parser.add_argument("--verbose", type=str2bool)
|
||||||
|
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
print(args)
|
||||||
shf(**vars(args))
|
shf(**vars(args))
|
||||||
return
|
return
|
||||||
|
|
||||||
|
Reference in New Issue
Block a user