Added scripts converting mseeds from Bogdanka to seisbench format, extended readme, modidified logging
This commit is contained in:
@@ -15,8 +15,8 @@ config = load_config(config_path)
|
||||
|
||||
data_path = f"{project_path}/{config['data_path']}"
|
||||
models_path = f"{project_path}/{config['models_path']}"
|
||||
targets_path = f"{project_path}/{config['targets_path']}"
|
||||
dataset_name = config['dataset_name']
|
||||
targets_path = f"{project_path}/{config['targets_path']}/{dataset_name}"
|
||||
configs_path = f"{project_path}/{config['configs_path']}"
|
||||
|
||||
sweep_files = config['sweep_files']
|
||||
|
@@ -29,11 +29,11 @@ data_aliases = {
|
||||
"instance": "InstanceCountsCombined",
|
||||
"iquique": "Iquique",
|
||||
"lendb": "LenDB",
|
||||
"scedc": "SCEDC"
|
||||
"scedc": "SCEDC",
|
||||
}
|
||||
|
||||
|
||||
def main(weights, targets, sets, batchsize, num_workers, sampling_rate=None, sweep_id=None, test_run=False):
|
||||
def main(weights, targets, sets, batchsize, num_workers, sampling_rate=None, sweep_id=None):
|
||||
weights = Path(weights)
|
||||
targets = Path(os.path.abspath(targets))
|
||||
print(targets)
|
||||
@@ -100,8 +100,6 @@ def main(weights, targets, sets, batchsize, num_workers, sampling_rate=None, swe
|
||||
for task in ["1", "23"]:
|
||||
task_csv = targets / f"task{task}.csv"
|
||||
|
||||
print(task_csv)
|
||||
|
||||
if not task_csv.is_file():
|
||||
continue
|
||||
|
||||
@@ -227,9 +225,7 @@ if __name__ == "__main__":
|
||||
parser.add_argument(
|
||||
"--sweep_id", type=str, help="wandb sweep_id", required=False, default=None
|
||||
)
|
||||
parser.add_argument(
|
||||
"--test_run", action="store_true", required=False, default=False
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
main(
|
||||
@@ -239,8 +235,7 @@ if __name__ == "__main__":
|
||||
batchsize=args.batchsize,
|
||||
num_workers=args.num_workers,
|
||||
sampling_rate=args.sampling_rate,
|
||||
sweep_id=args.sweep_id,
|
||||
test_run=args.test_run
|
||||
sweep_id=args.sweep_id
|
||||
)
|
||||
running_time = str(
|
||||
datetime.timedelta(seconds=time.perf_counter() - code_start_time)
|
||||
|
@@ -3,6 +3,7 @@
|
||||
# This work was partially funded by EPOS Project funded in frame of PL-POIR4.2
|
||||
# -----------------
|
||||
|
||||
import os
|
||||
import os.path
|
||||
import argparse
|
||||
from pytorch_lightning.loggers import WandbLogger, CSVLogger
|
||||
@@ -22,6 +23,7 @@ from config_loader import models_path, dataset_name, seed, experiment_count
|
||||
|
||||
|
||||
torch.multiprocessing.set_sharing_strategy('file_system')
|
||||
os.system("ulimit -n unlimited")
|
||||
|
||||
load_dotenv()
|
||||
wandb_api_key = os.environ.get('WANDB_API_KEY')
|
||||
|
@@ -17,8 +17,8 @@ import eval
|
||||
import collect_results
|
||||
from config_loader import data_path, targets_path, sampling_rate, dataset_name, sweep_files
|
||||
|
||||
logging.root.setLevel(logging.INFO)
|
||||
logger = logging.getLogger('pipeline')
|
||||
logger.setLevel(logging.INFO)
|
||||
|
||||
|
||||
def load_sweep_config(model_name, args):
|
||||
@@ -76,16 +76,19 @@ def main():
|
||||
args = parser.parse_args()
|
||||
|
||||
# generate labels
|
||||
logger.info("Started generating labels for the dataset.")
|
||||
generate_eval_targets.main(data_path, targets_path, "2,3", sampling_rate, None)
|
||||
|
||||
# find the best hyperparams for the models
|
||||
logger.info("Started training the models.")
|
||||
for model_name in ["GPD", "PhaseNet"]:
|
||||
sweep_id = find_the_best_params(model_name, args)
|
||||
generate_predictions(sweep_id, model_name)
|
||||
|
||||
# collect results
|
||||
logger.info("Collecting results.")
|
||||
collect_results.traverse_path("pred", "pred/results.csv")
|
||||
|
||||
logger.info("Results saved in pred/results.csv")
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
@@ -20,18 +20,13 @@ import torch
|
||||
import os
|
||||
import logging
|
||||
from pathlib import Path
|
||||
from dotenv import load_dotenv
|
||||
|
||||
import models, data, util
|
||||
import time
|
||||
import datetime
|
||||
import wandb
|
||||
#
|
||||
# load_dotenv()
|
||||
# wandb_api_key = os.environ.get('WANDB_API_KEY')
|
||||
# if wandb_api_key is None:
|
||||
# raise ValueError("WANDB_API_KEY environment variable is not set.")
|
||||
#
|
||||
# wandb.login(key=wandb_api_key)
|
||||
|
||||
|
||||
def train(config, experiment_name, test_run):
|
||||
"""
|
||||
@@ -210,6 +205,14 @@ def generate_phase_mask(dataset, phases):
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
load_dotenv()
|
||||
wandb_api_key = os.environ.get('WANDB_API_KEY')
|
||||
if wandb_api_key is None:
|
||||
raise ValueError("WANDB_API_KEY environment variable is not set.")
|
||||
|
||||
wandb.login(key=wandb_api_key)
|
||||
|
||||
code_start_time = time.perf_counter()
|
||||
|
||||
torch.manual_seed(42)
|
||||
|
@@ -16,7 +16,7 @@ load_dotenv()
|
||||
|
||||
|
||||
logging.basicConfig()
|
||||
logging.getLogger().setLevel(logging.DEBUG)
|
||||
logging.getLogger().setLevel(logging.INFO)
|
||||
|
||||
|
||||
def load_best_model_data(sweep_id, weights):
|
||||
|
Reference in New Issue
Block a user