12 Commits

Author SHA1 Message Date
fe9d886499 interpolation is always used on the final grid 2025-09-12 10:37:03 +02:00
f7eb39c43c add final image smoothing through binlinear interpolation 2025-09-10 18:39:43 +02:00
00bd39a098 impose requirement of minimum size of range of output data to do image processing 2025-09-10 16:33:11 +02:00
5a1f43d6cd enforce: user must have "activity rate estimation" unselected for custom rate to be used
Previously, user could enter a value enter the  custom rate box, enable "activity rate estimation" and the custom rate box would disappear but the program would still see the value previously entered and use it even though it was no longer visible in the user interface
2025-09-10 12:00:50 +02:00
a1c0ae36bb set a minimum number of computed grid values to trigger upscaling of grid image 2025-09-09 14:41:02 +02:00
63351ceb10 fix weighting option selection 2025-09-09 11:03:05 +02:00
65759b86f1 change search interval for PGV to be different than that for PGA/SA 2025-09-09 10:56:35 +02:00
a8233950e1 Merge pull request 'Fixes issue related to use of Cython' (!21) from EPOSDEV-68 into master
Reviewed-on: #21
2025-08-12 12:56:15 +02:00
86da5c3246 Update src/seismic_hazard_forecasting.py 2025-08-08 18:28:34 +02:00
9e75e0e768 Merge pull request 'upload Lasocki2013 ground motion model' (!20) from lasocki2013_gmm into master
Reviewed-on: #20
2025-07-11 11:28:58 +02:00
a73f17fc35 upload Lasocki2013 ground motion model 2025-07-10 11:05:36 +02:00
2fbca21917 Merge pull request 'enable cython' (!19) from ftong-patch-cython into master
Reviewed-on: #19
Reviewed-by: asia <asia@noreply.example.org>
2025-07-10 09:36:22 +02:00
2 changed files with 173 additions and 22 deletions

142
gsim/lasocki_2013.py Normal file
View File

@@ -0,0 +1,142 @@
# -*- coding: utf-8 -*-
# vim: tabstop=4 shiftwidth=4 softtabstop=4
#
# Copyright (C) 2013-2023 GEM Foundation
#
# OpenQuake is free software: you can redistribute it and/or modify it
# under the terms of the GNU Affero General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# OpenQuake is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with OpenQuake. If not, see <http://www.gnu.org/licenses/>.
"""
Module exports :class:`Lasocki2013`.
"""
import numpy as np
from scipy.constants import g
from openquake.hazardlib.gsim.base import GMPE, CoeffsTable
from openquake.hazardlib import const
from openquake.hazardlib.imt import PGA, PGV, SA
def get_magnitude_energy(mag):
"""
Converts magnitude to energy-based magnitude term.
"""
return 1.15 + 1.96 * mag
def get_distance_term(coeffs, repi):
"""
Computes the distance term using the given GMPE coefficients.
"""
R_h = np.sqrt(repi ** 2 + coeffs["c7"] ** 2)
return np.log10(R_h)
def get_standard_deviation(coeffs, coeffs_cov, magE, repi):
"""
Computes the standard deviation term.
"""
Cb = np.array(list(coeffs_cov)).reshape(3,3)
R_h = np.sqrt(repi ** 2 + coeffs["c7"] ** 2)
X0 = np.array([1, magE[0], np.log10(R_h[0]**2)])
variance_term = np.sqrt(X0 @ Cb @ X0 + coeffs["sigma"]**2)
return variance_term
class Lasocki2013(GMPE):
"""
Implement equation developed by Lasocki in "REPORT ON THE ATTENUATION
RELATIONS OF PEAK GROUND ACCELERATION AND SPECTRAL ORDINATES OF GROUND
MOTION FOR MINING-INDUCED SEISMIC EVENTS IN THE REGION OF THE ŻELAZNY
MOST REPOSITORY", 2009.
Equation coefficients provided for the random horizontal component
"""
#: Supported tectonic region type is induced, given
#: that the equations have been derived for the LGCD mining area
DEFINED_FOR_TECTONIC_REGION_TYPE = const.TRT.INDUCED
#: Supported intensity measure types are spectral acceleration,
#: and peak ground acceleration
DEFINED_FOR_INTENSITY_MEASURE_TYPES = {PGA, SA}
#: Supported intensity measure component is random horizontal
#: :attr:`~openquake.hazardlib.const.IMC.RANDOM_HORIZONTAL`,
DEFINED_FOR_INTENSITY_MEASURE_COMPONENT = const.IMC.RANDOM_HORIZONTAL
# DEFINED_FOR_INTENSITY_MEASURE_COMPONENT = const.IMC.VERTICAL
#: Supported standard deviation type is total
DEFINED_FOR_STANDARD_DEVIATION_TYPES = {const.StdDev.TOTAL}
#: site params are not required
REQUIRES_SITES_PARAMETERS = set()
#: Required rupture parameter is magnitude
REQUIRES_RUPTURE_PARAMETERS = {'mag'}
#: Required distance measure is epicentral distance
#: see paragraph 'Predictor Variables', page 6.
REQUIRES_DISTANCES = {'repi'}
def compute(self, ctx: np.recarray, imts, mean, sig, tau, phi):
"""
Computes mean ground motion values and standard deviations for Lasocki (2013) GMPE.
Parameters:
repi (float): Epicentral distance (m)
mag (float): Earthquake magnitude
imts (list of str): List of intensity measure types (e.g., 'PHA', 'PVA')
mean (np.array): Array to store computed mean values
sig (np.array): Array to store computed standard deviations
"""
# Loop through each IMT and compute values
for i, imt in enumerate(imts):
C = self.COEFFS[imt]
C_cov = self.COEFFS_COV[imt]
mag = ctx.mag
repi = ctx.repi*1000.0 # Convert distance from km to m
# Compute magnitude energy term
magE = get_magnitude_energy(mag)
# Compute GMPE terms
mag_term = C['c1'] + C['c2'] * magE
dist_term = C['c5'] * get_distance_term(C, repi)
# Compute mean ground motion
imean = mag_term + dist_term
mean_value = np.log((10 ** imean) / g) # Convert to natural log scale and divide by g
mean[i] = mean_value
# Compute standard deviation
sigma = get_standard_deviation(C, C_cov, magE, repi)
sig[i] = sigma
#: coefficient table provided by report
COEFFS = CoeffsTable(sa_damping=5, table="""\
IMT c1 c2 c5 c7 sigma N
pga 1.25 0.31 -1.34 558 0.196 1196
0.6 -3.86 0.55 -0.65 183 0.242 1194
1.0 -3.94 0.62 -0.66 308 0.262 1197
2.0 -1.14 0.47 -1.02 741 0.235 1195
5.0 0.99 0.31 -1.15 690 0.234 1206
10.0 3.06 0.27 -1.65 906 0.203 1192
20.0 2.62 0.27 -1.60 435 0.196 1191
50.0 2.09 0.27 -1.48 375 0.204 1191
""")
COEFFS_COV = CoeffsTable(sa_damping=5, table="""\
IMT Cb00 Cb01 Cb02 Cb10 Cb11 Cb12 Cb20 Cb21 Cb22
pga 0.005586 -0.000376 -0.000752 -0.000376 0.000103 -0.000111 -0.000752 -0.000111 0.000440
0.6 0.007509 -0.000662 -0.000688 -0.000662 0.000161 -0.000154 -0.000688 -0.000154 0.000516
1.0 0.009119 -0.00075 -0.000948 -0.00075 0.000189 -0.000187 -0.000948 -0.000187 0.000657
2.0 0.008563 -0.000514 -0.001282 -0.000514 0.000147 -0.000164 -0.001282 -0.000164 0.000696
5.0 0.008283 -0.000516 -0.001202 -0.000516 0.000145 -0.000161 -0.001202 -0.000161 0.000668
10.0 0.006904 -0.00036 -0.001145 -0.00036 0.000108 -0.000126 -0.001145 -0.000126 0.000578
20.0 0.005389 -0.000396 -0.000658 -0.000396 0.000104 -0.000107 -0.000658 -0.000107 0.000408
50.0 0.005874 -0.000449 -0.000678 -0.000449 0.000114 -0.000114 -0.000678 -0.000114 0.000428
""")

View File

@@ -88,9 +88,7 @@ def main(catalog_file, mc_file, pdf_file, m_file, m_select, mag_label, mc, m_max
else:
logger.setLevel(logging.INFO)
# temporary hard-coded configuration
# exclude_low_fxy = False
exclude_low_fxy = True
exclude_low_fxy = True # skip low probability areas of the map
thresh_fxy = 1e-3 # minimum fxy value (location PDF) needed to do PGA estimation (to skip low probability areas); also should scale according to number of grid points
# log user selections
@@ -125,10 +123,6 @@ verbose: {verbose}")
logger.info("No magnitude label of catalog specified, therefore try Mw by default")
mag_label = 'Mw'
# if cat_label == None:
# print("No magnitude label of catalog specified, therefore try 'Catalog' by default")
# cat_label='Catalog'
time, mag, lat, lon, depth = read_mat_cat(catalog_file, mag_label=mag_label, catalog_label='Catalog')
# check for null magnitude values
@@ -258,7 +252,7 @@ verbose: {verbose}")
# %% compute KDE and extract PDF
start = timer()
if xy_win_method == "TW":
if xy_win_method:
logger.info("Time weighting function selected")
x_weights = np.linspace(0, 15, len(t_windowed))
@@ -319,7 +313,7 @@ verbose: {verbose}")
# run activity rate modeling
lambdas = [None]
if custom_rate != None and forecast_select:
if custom_rate != None and forecast_select and not rate_select:
logger.info(f"Using activity rate specified by user: {custom_rate} per {time_unit}")
lambdas = np.array([custom_rate], dtype='d')
lambdas_perc = np.array([1], dtype='d')
@@ -366,6 +360,8 @@ verbose: {verbose}")
# Assign probabilities
lambdas, lambdas_perc = lambda_probs(act_rate, dates_calc, bin_edges)
lambdas = np.array(lambdas, dtype='d')
lambdas_perc = np.array(lambdas_perc, dtype='d')
# print("Forecasted activity rates: ", lambdas, "events per", time_unit[:-1])
logger.info(f"Forecasted activity rates: {lambdas} events per {time_unit} with percentages {lambdas_perc}")
@@ -457,15 +453,19 @@ verbose: {verbose}")
if use_pp: # use dask parallel computing
pbar = ProgressBar()
pbar.register()
# iter = range(0,len(distances))
iter = indices
iml_grid_raw = [] # raw ground motion grids
for imt in products:
logger.info(f"Estimating {imt}")
if imt == "PGV":
IMT_max = 200 # search interval max for velocity (cm/s)
else:
IMT_max = 2.0 # search interval max for acceleration (g)
imls = [dask.delayed(compute_IMT_exceedance)(rx_lat[i], rx_lon[i], distances[i].flatten(), fr, p, lambdas,
forecast_len, lambdas_perc, m_range, m_pdf, m_cdf, model,
log_level=logging.DEBUG, imt=imt, IMT_min=0.0, IMT_max=2.0, rx_label=i,
log_level=logging.DEBUG, imt=imt, IMT_min=0.0, IMT_max=IMT_max, rx_label=i,
rtol=0.1, use_cython=True) for i in iter]
iml = dask.compute(*imls)
iml_grid_raw.append(list(iml))
@@ -474,11 +474,17 @@ verbose: {verbose}")
iml_grid_raw = []
iter = indices
for imt in products:
if imt == "PGV":
IMT_max = 200 # search interval max for velocity (cm/s)
else:
IMT_max = 2.0 # search interval max for acceleration (g)
iml = []
for i in iter:
iml_i = compute_IMT_exceedance(rx_lat[i], rx_lon[i], distances[i].flatten(), fr, p, lambdas, forecast_len,
lambdas_perc, m_range, m_pdf, m_cdf, model, imt=imt, IMT_min = 0.0,
IMT_max = 2.0, rx_label = i, rtol = 0.1, use_cython=True)
IMT_max = IMT_max, rx_label = i, rtol = 0.1, use_cython=True)
iml.append(iml_i)
logger.info(f"Estimated {imt} at rx {i} is {iml_i}")
iml_grid_raw.append(iml)
@@ -513,17 +519,20 @@ verbose: {verbose}")
dtype=np.float64) # this reduces values to 8 decimal places
iml_grid_tmp = np.nan_to_num(iml_grid[j]) # change nans to zeroes
# upscale the grid
# upscale the grid, trim, and interpolate if there are at least 10 grid values with range greater than 0.1
if np.count_nonzero(iml_grid_tmp) >= 10 and vmax-vmin > 0.1:
up_factor = 4
iml_grid_hd = resize(iml_grid_tmp, (up_factor * len(iml_grid_tmp), up_factor * len(iml_grid_tmp)),
mode='reflect', anti_aliasing=False)
iml_grid_hd[iml_grid_hd == 0.0] = np.nan # change zeroes back to nan
# trim edges so the grid is not so blocky
vmin_hd = min(x for x in iml_grid_hd.flatten() if not isnan(x))
vmax_hd = max(x for x in iml_grid_hd.flatten() if not isnan(x))
trim_thresh = vmin
iml_grid_hd[iml_grid_hd < trim_thresh] = np.nan
else:
iml_grid_hd = iml_grid_tmp
iml_grid_hd[iml_grid_hd == 0.0] = np.nan # change zeroes back to nan
#vmin_hd = min(x for x in iml_grid_hd.flatten() if not isnan(x))
vmax_hd = max(x for x in iml_grid_hd.flatten() if not isnan(x))
# generate image overlay
north, south = lat.max(), lat.min() # Latitude range
@@ -536,7 +545,7 @@ verbose: {verbose}")
cmap_name = 'YlOrRd'
cmap = plt.get_cmap(cmap_name)
fig, ax = plt.subplots(figsize=(6, 6))
ax.imshow(iml_grid_hd, origin='lower', cmap=cmap, vmin=vmin, vmax=vmax)
ax.imshow(iml_grid_hd, origin='lower', cmap=cmap, vmin=vmin, vmax=vmax, interpolation='bilinear')
ax.axis('off')
# Save the figure